Part II: Web Content Mining Chapter 3: Clustering

- Learning by Example and Clustering
- Hierarchical Agglomerative Clustering
- K-Means Clustering
- Probability-Based Clustering
- Collaborative Filtering

Learning by Example and Clustering

- Learning by Example
 - Given a set of objects each one labeled with a class (supervised learning)
 - The learning system builds a mapping between objects and classes
 - The mapping can be then used for classifying new (unlabeled) objects
- Clustering
 - Unsupervised learning (objects are not labeled)
 - Goal is finding common patterns, grouping similar objects or creating a hierarchy
- Web content learning
 - Objects are web documents and class labels are topics or user preferences
 - Supervised web learning builds a mapping between documents and topics
 - Clustering groups web documents or organizes them in hierarchies
- Web document clustering
 - Useful in web search for grouping search results into related sets
 - Can improve similarity search by focusing on relevant documents
 - Hierarchical clustering can be used to automatically create topic directories
 - Valuable technique for analyzing the Web

Types of Clustering

- *Model-based* (conceptual) vs. *partitioning*. Conceptual clustering creates models (explicit representations) of clusters, while partitioning enumerates the members of each cluster.
- *Deterministic* vs. *probabilistic*. Cluster membership may be defined as a boolean value (in deterministic clustering) or as a probability (in probabilistic clustering).
- *Hierarchical* vs. *flat*. Flat clustering splits the set of objects into subsets, while hierarchical clustering creates tree structures of clusters.
- *Incremental* vs. *batch*. Batch algorithms use the complete set of objects to create the clustering, while incremental algorithms take one object at a time and update the current clustering to accommodate it.

Representations for Clustering

- Attribute-value (feature-value) representation
 - A number of attributes are identified for the whole population and each object is represented by a set of attribute-value pairs.
 - If the order of attributes is fixed, a vector of values (data points) can be used instead. The *vector space model* is an example of this representation.
 - *Hierarchical agglomerative clustering* and *k-means* clustering use this representation.
- Generative document modeling
 - Considers documents as outcomes of random processes and tries to identify the parameters of these processes.
 - *Probabilistic model-based approach*, where each cluster is described by the probability distribution most likely to have generated the documents in it.
 - Documents are represented by terms (as in vector space), however they are considered as *elementary* (*atomic*) *random events*.
 - Does not use similarity measures or distances between documents or clusters
 - Expectation maximization (EM) uses this representation

Hierarchical Partitioning

- Produces a nested sequence of partitions of the set of data points,
- Can be displayed as a tree (called *dendrogram*) with a single cluster including all points at the root and singleton clusters (individual points) at the leaves.
- Example of hierarchical partitioning of set of numbers {1, 2, 4, 5, 8, 10}:

The similarity measure used in this example is computed as (10-d)/10, where d is the distance between data points or cluster centers.

Approaches to Hierarchical Partitioning

- *Agglomerative*. Starts with the data points and at each step merges the two closest (most similar) points (or clusters at later steps) until a single cluster remains.
- *Divisible*. Starts with the original set of points and at each step splits a cluster until only individual points remain. To implement this approach we need to decide which cluster to split and how to perform the split.
- The agglomerative approach is more popular as it needs only the definition of a distance or similarity function on clusters/points.
- For data points in the Euclidean space the *Euclidean distance* is the best choice.
- For documents represented as TFIDF vectors the preferred measure is the *cosine similarity* defined as follows

$$sim(d_1, d_2) = \frac{d_1 \bullet d_2}{\|d_1\| \|d_2\|}$$

Agglomerative Hierarchical Clustering

There are several versions of this approach depending on how similarity on clusters $sim(S_1, S_2)$ is defined (S_1 and S_2 are sets of documents):

- Similarity between cluster *centroids*, i.e. $sim(S_1, S_2) = sim(c_1, c_2)$, where the centroid c of cluster S is $c = \frac{1}{|S|} \sum_{d \in S} d$
- *Maximum similarity* between documents from each cluster (*nearest neighbor* clustering) $sim(S_1, S_2) = \max_{d_1 \in S_1, d_2 \in S_2} sim(d_1, d_2)$
- Minimum similarity between documents from each cluster (farthest neighbor clustering) $sim(S_1, S_2) = \min_{i=1}^{n} sim(d_1, d_2)$

$$sim(S_1, S_2) = \min_{d_1 \in S_1, d_2 \in S_2} sim(d_1, d_2)$$

• Average similarity between documents from each cluster

$$sim(S_1, S_2) = \frac{1}{|S_1| |S_2|} \sum_{d_1 \in S_1, d_2 \in S_2} sim(d_1, d_2)$$

Agglomerative Clustering Algorithm

S is the initial set of documents and G is the clustering tree. k and q are control *parameters* that stop merging when a desired number of clusters (k) is reached or when the similarity between the clusters to be merged becomes less than a specified threshold (q).

- 1. $G \leftarrow \{\{d\} | d \in S\}$ (initialize G with singleton clusters, each one containing a document from S)
- 2. If $|G| \le k$ then exit (stop if the desired number of clusters is reached) 3. Find $S_i, S_j \in G$, such that $(i, j) = \arg \max_{(i,j)} sim(S_i, S_j)$ (find the two closest clusters)
- 4. If $sim(S_i, S_j) < q$ then exit (stop if the similarity of the closest clusters is less than q)
- 5. Remove S_i and S_j from G.
- 6. $G = G \cup \{S_i, S_i\}$ (merge S_i and S_j , and add the new cluster to the hierarchy)
- 7. Go to 2

For *n* documents both *time* and *space complexity* of the algorithm are $O(n^2)$.

Agglomerative Clustering Example 1

CCSU departments represented as TFIDF vectors with 671 terms Nearest neighbor algorithm (k = 0)

	1 [0 0224143]	1 []	
Cluster similarity	2 [0.0308927]	2 [0.0554991]	Cluster similarity
Cluster similarity	3 [0.0368782]	3 [0.0662345]	Cluster similarity
cut off parameter	4 [0.0556825]	4 [0.0864619]	cut off parameter
cut on parameter	5 [0.129523]	5 [0.177997]	eut on parameter
$\alpha = 0$	Art	History	a = 0.04
q = 0	Theatre	Philosophy	q = 0.04
	Geography	6 [0.186299]	
	6 [0.0858613]	English	
A T 1 1	7 [0.148599]	Languages	A T 1 1
Average Intracluster	Chemistry	7 [0.122659]	Average Intracluster
Cincilenites 0.4257	Music	Anthropology	$C_{i} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 0.451$
Similarity = 0.4257	8 [0.23571]	Sociology	Similarity = 0.4516
	Computer	8 [0.0952722]	
	Political	9 [0.163493]	
	9 [0.0937594]	10 [0.245171]	
	10 [0.176625]	Biology	
	Communication	Math	
	Economics	Psychology	
	Justice	Physics	
	11 [0.0554991]	11 [0.0556825]	
	12 [0.0662345]	12 [0.129523]	
	13 [0.0864619]	Art	
	14 [0.177997]	Theatre	
	History	Geography	
	Philosophy	13 [0.0858613]	
	15 [0.186299]	14 [0.148599]	
	English	Chemistry	
	Languages	Music	
	16 [0.122659]	15 [0.23571]	
	Anthropology	Computer	
	Sociology	Political	
	17 [0.0952722]	16 [0.0937594]	
	18 [0.163493]	17 [0.176625]	
	19 [0.245171]	Communication	
	Biology	Economics	
	Math	Justice	
	Psychology		
	Physics		

Agglomerative Clustering Example 2

CCSU departments represented as TFIDF vectors with 671 terms Using two different similarity functions (k = 0, q = 0)

	-		
	1 [0.098857]	1 [0.138338]	
Farthest neighbor	3 [0.126011]	3 [0.237572]	Intracluster similarity
8	4 [0.129523]	4 [0.342219]	
$sim(S_1, S_2) =$	5 [0.142059]	5 [0.57103]	sim(S) =
$\langle 1' 2' \rangle$	7 [0 148331]	Psychology	
max $sim(d d)$	8 [0.148599]	6 [0.588313]	$1 \mathbf{\nabla} \cdot (1 1)$
$\max_{\alpha_1,\alpha_2} sin(\alpha_1,\alpha_2)$	9 [0.169039]	Communication	$\int \frac{1}{1+2} \sum SIM(d_i, d_j)$
$d_1 \in S_1, d_2 \in S_2$	10 [0.17462]	Economics	$ \mathbf{C} ^2$
	11 [0.176625]	7 [0.39463]	$ \mathbf{J} d_i, d_j \in S$
	12 [0.201999]	8 [0.617855]	
	13 [0.202129]	Computer	
	14 [0.223392]	Political	
	15 [0.226308]	9 [0.622585]	
$\Delta verage Intracluster$	16 [0.23571]	Biology	Average Intracluster
Twenage intractuster	Computer	Math	Twenage intractuster
Similarity -0.304475	Political	10 [0.292074]	Similarity -0.434181
Similarity = 0.504475	Economics	11 [0.519653]	$\int \sin \sin \alpha = 0.434101$
	Chemistry	Justice	
	Anthropology	Theatre	
	17 [0.245171]	12 [0.541863]	
	Biology	Geography	
	Math	Physics	
	Communication	13 [0.209028]	
	Physics		
	Psychology	15 [U.56133]	
		Anthropology	
	18 [U.1//99/]	SOCIOLOGY 16 [0 5742]	
	Dhilosophy	Chemistry	
	19 [0 186299]	Music	
	English	17 [0 357257]	
	Languages	18 [0.588999]	
	Art	History	
	Theatre	Philosophy	
	Sociology	19 [0.59315]	
	Geography	English	
	Justice	Languages	

K-means Clustering

- Number of clusters (k) is known in advance
- Clusters are represented by the centroid $c = \frac{1}{|S|} \sum_{d \in S} d$ of the documents that belong to that cluster
- Cluster membership is determined by the most similar cluster centroid
 - Select k documents from S to be used as cluster centroids. This is 1. usually done at random.
 - 2. Assign documents to clusters according to their similarity to the cluster centroids, i.e. for each document find the most similar centroid and assign that document to the corresponding cluster.
 - 3. For each cluster recompute the cluster centroid using the newly computed cluster members.
 - Go to step 2 until the process converges, i.e. the same documents are 4. assigned to each cluster in two consecutive iterations or the cluster centroids remain the same.

K-means Clustering Discussion

- In step 2 documents are moved between clusters in order to maximize the intracluster similarity.
- The clustering maximizes the *criterion function* (a measure for evaluating *clustering quality*).
- In distance-based k-means clustering the criterion function is the *sum of squared errors* (based on Euclidean distance and means).
- For k-means clustering of documents a function based on centroids and similarity is used: $I = \sum_{k=1}^{k} \sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{j=1}^{k} \sum_{j=1}^{k} \sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{j$

$$J = \sum_{i=1}^{n} \sum_{d_j \in D_i} sim(c_i, d_j)$$

- Clustering that *maximizes* this function is called *minimum variance clustering*
- K-means algorithm produces minimum variance clustering, but does not guarantee that it always finds the global maximum of the criterion function.
- After each iteration the value of *J* increases, but it may converge to a local maximum.
- The result greatly depends on the initial choice of cluster centroids.

K-means Clustering Example (data)

	history	science	research	offers	students	hall
Anthropology	0	0.537	0.477	0	0.673	0.177
Art	0	0	0	0.961	0.195	0.196
Biology	0	0.347	0.924	0	0.111	0.112
Chemistry	0	0.975	0	0	0.155	0.158
Communication	0	0	0	0.780	0.626	0
Computer	0	0.989	0	0	0.130	0.067
Justice	0	0	0	0	1	0
Economics	0	0	1	0	0	0
English	0	0	0	0.980	0	0.199
Geography	0	0.849	0	0	0.528	0
History	0.991	0	0	0.135	0	0
Math	0	0.616	0.549	0.490	0.198	0.201
Languages	0	0	0	0.928	0	0.373
Music	0.970	0	0	0	0.170	0.172
Philosophy	0.741	0	0	0.658	0	0.136
Physics	0	0	0.894	0	0.315	0.318
Political	0	0.933	0.348	0	0.062	0.063
Psychology	0	0	0.852	0.387	0.313	0.162
Sociology	0	0	0.639	0.570	0.459	0.237
Theatre	0	0	0	0	0.967	0.254

CCSU Departments data with 6 TFIDF attributes

K-means Clustering Example (results)

Clustering of CCSU Departments data with 6 TFIDF attributes (k = 2)

Bad choice of initial cluster centroids

Iteration	Cluster A	Cluster B	Criterion function
1	{Computer, Political}	{Anthropology, Art, Biology, Chemistry, Communication, Justice, Economics, English, Geography, History, Math, Languages, Music, Philosophy, Physics, Psychology, Sociology, Theatre}	1.93554 (A) + 4.54975 (B) = 6.48529
2	{Chemistry, Computer, Geography, Political}	{Anthropology, Art, Biology, Communication, Justice, Economics, English, History, Math, Languages, Music, Philosophy, Physics, Psychology, Sociology, Theatre}	3.82736 (A) + 10.073 (B) = 13.9003
3	{Anthropology, Chemistry, Computer, Geography, Political}	{Art, Biology, Communication, Justice, Economics, English, History, Math, Languages, Music, Philosophy, Physics, Psychology, Sociology, Theatre}	4.60125 (A) + 9.51446 (B) = 14.1157

Good choice of initial cluster centroids
--

Iteration	Cluster A	Cluster B	Criterion function
1	{Anthropology, Biology, Economics, Math, Physics, Political, Psychology}	{Art, Chemistry, Communication, Computer, Justice, English, Geography, History, Languages, Music, Philosophy, Sociology, Theatre}	5.04527 (A) + 5.99025 (B) = 11.0355
2	{Anthropology, Biology, Computer, Economics, Math, Physics, Political, Psychology, Sociology}	{Art, Chemistry, Communication, Justice, English, Geography, History, Languages, Music, Philosophy, Theatre}	7.23827 (A) + 6.70864 (B) = 13.9469
3	{Anthropology, Biology, Chemistry, Computer, Economics, Geography, Math, Physics, Political, Psychology, Sociology}	{Art, Communication, Justice, English, History, Languages, Music, Philosophy, Theatre}	8.53381 (A) + 6.12743 (B) = 14.6612

K-means Clustering Extensions

- By applying the algorithm recursively to the obtained clusters k-means can be easily extended to produce *hierarchical clustering*.
- Other *content-based similarities* can be used, such as *Jaccard* similarity and *document resemblance*.
- *Link-based similarity* may be used too:
 - The length of shortest path between the documents in the web graph
 - The number of common ancestors of the documents (pages with links to both).
 - The number of common successors of the documents (pages that are pointed by links in both).
- *Combined similarity* may be computed as the maximum of the content similarity (cosine, Jaccard or resemblance) plus a weighted sum of the three link-based similarities.

Probability-Based Clustering

- Document is a *random event* that occurs according to different *probability distributions* depending on which cluster the document belongs to
- Parameters involved:
 - The document class labels (may be known or unknown)
 - The parameters of the probability distribution for each cluster
 - The way terms are used in the document representation
- Generally there are three ways a term can be used in this model:
 - As a *binary variable* taking values 0/1 depending on whether or not the term occurs in the document. Documents are binary vectors following *multivariate binary distribution*.
 - As a *natural number* indicating the number of occurrences (frequency) of the term in the document. Documents are *vectors of* natural numbers following *multinominal distribution*.
 - A normally distributed *continuous variable* taking TFIDF values. Documents are TFIDF vectors following *multivariate normal distribution*.

Two Class Mixture Model

Values of "offers" taken from the CCSU departments collection (data table on Slide 13)

Zdravko Markov and Daniel T. Larose, Data Mining the Web: Uncovering Patterns in Web Content, Structure, and Usage, Wiley, 2007. Slides for Chapter 1: Information Retrieval an Web Search

17

Finite Mixture Problem

Given the labeled data, for each class *C* compute:

• mean
$$\mu_C = \frac{1}{|C|} \sum_{x \in C} x$$

• standard deviation
$$\sigma_C = \sqrt{\frac{1}{|C|} \sum_{x \in C} (x - \mu_C)^2}$$

• probability of sampling P(C)

Generative document model
$$\langle \mu_C, \sigma_C, P(C) \rangle$$

Finite Mixture Problem (example)

А	0	
В	0.961	$u = \frac{1}{1}(0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +$
А	0	$\mu_A = \frac{1}{11} (0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 $
А	0	
В	0.780	
А	0	$\mu_{B} = -(0.961+0.780+0+0.980+0.135+0.928+0+0.658+0) = 0.494$
В	0	9
А	0	
В	0.980	
А	0	$\sigma_{A} = 0.229$
В	0.135	
А	0.490	$\sigma_{R} = 0.449$
В	0.928	
В	0	
В	0.658	11 9
А	0	$P(A) = \frac{11}{20} = 0.55$ $P(B) = \frac{1}{20} = 0.45$
А	0	20 20
А	0.387	
А	0.570	
В	0	

Classification Problem

- Given $\langle \mu_C, \sigma_C, P(C) \rangle$ for class A and B
- Compute P(A|x) and P(B|x)

• Use $P(C \mid x) = \frac{P(x \mid C) P(C)}{P(x)}, \text{ if } x \text{ is a discrete variable}$ $P(C \mid x) \approx \frac{f_C(x) P(C)}{P(x)}, \text{ if } x \text{ is a continuous variable}$ Probability density function $f_C(x) = \frac{1}{\sqrt{2\pi\sigma_C}} e^{\frac{-(x-\mu_C)^2}{2\sigma_C^2}}$

Classification Problem (example)

- Given the value of the "offers" attribute (0.78) find the class label of the of the "Communication" document (fifth row in the data table).
- Compute likelihoods

 $P(A \mid 0.78) \approx f_A(0.78) P(A) = 0.032 \times 0.55 = 0.018$ $P(B \mid 0.78) \approx f_B(0.78) P(B) = 0.725 \times 0.45 = 0.326$

• Normalize and get probabilities

$$P(A \mid 0.78) = \frac{0.018}{0.018 + 0.326} = 0.05$$
$$P(B \mid 0.78) = \frac{0.326}{0.018 + 0.326} = 0.95$$

• $P(B | 0.78) > P(A | 0.78) \Rightarrow$ The class of "Communication" is B

Classification Problem (multiple attributes)

• Independence assumption (Naïve Bayes assumption)

$$P(x_1, x_2, ..., x_n \mid C) = \prod_{i=1}^n P(x_i \mid C)$$

• Naïve Bayes classification algorithm

$$P(C \mid (x_1, x_2, ..., x_n)) \approx \prod_{i=1}^n f_C^i(x_i) \frac{P(C)}{P((x_1, x_2, ..., x_n))}$$

• Find the class of "Theatre" (0, 0, 0, 0, 0.967, 0.254) (data table on Slide 13)

 $P(A \mid (0, 0, 0, 0.976, 0.254) \approx \frac{f_A^1(0)f_A^2(0)f_A^3(0)f_A^4(0)f_A^5(0.976)f_A^6(0.254)P(A)}{P((0, 0, 0, 0, 0.976, 0.254))}$

 $P(A \mid (0, 0, 0, 0.976, 0.254) \approx 7.979 \times 0.5 \times 0.423 \times 1.478 \times 0.007 \times 1.978 \times 0.55 = 0.019$

 $P(B \mid (0, 0, 0, 0.976, 0.254) \approx 0.705 \times 7.979 \times 7.979 \times 0.486 \times 0.698 \times 1.604 \times 0.45 = 10.99$

$$P(A \mid (0, 0, 0, 0.976, 0.254) = \frac{0.019}{0.019 + 10.99} = 0.002 \quad P(B \mid (0, 0, 0, 0.976, 0.254) = \frac{10.99}{0.019 + 10.99} = 0.998$$

Clustering Problem

- Given the set of values and a predefined number of clusters (e.g. k = 2)
 - Assign a label (A or B) to each value, or
 - Find the cluster parameters $\langle \mu_A, \sigma_A, P(A) \rangle$ and $\langle \mu_B, \sigma_B, P(B) \rangle$
- *Expectation Maximization* (EM) is a popular algorithm used for this purpose
- EM is an *optimization approach*, which given some initial approximation of the cluster parameters *iteratively* performs two steps:
 - The "expectation" step computes the "expected" values of the cluster probabilities.
 - The "maximization" step computes the distribution parameters and their likelihood given the data.
- EM iterates until the parameters being optimized reach a fixpoint or the *log-likelihood function*, which measures the quality of clustering, reaches its (local) maximum.

$$L = \sum_{i=1}^{n} \log \sum_{C} P(x_i \mid C) P(C)$$

Expectation Maximization (EM)

- Given
 - set of values $x_1, x_2, ..., x_n$ of a normally distributed random variable
 - parameter *k* (predefined number of clusters)
 - set of initial cluster parameters $\mu_C, \sigma_C, P(C)$ (usually selected at random)
- Iterate through the following steps:
 - for each x_i and for each cluster *C* compute the probability that x_i belongs to *C*, $w_i = P(C | x_i) \approx f_C(x_i) P(C)$. Normalize w_i across all clusters.
 - P(C) is the sum of the weights W_i for cluster C (from the previous step)
 - Compute weighted mean and standard deviation

• Stop when the process converges, or the log-likelihood criterion function reaches it maximum $L = \sum_{i=1}^{n} \log \sum_{C} P(x_i | C) P(C) \approx \sum_{i=1}^{n} \log \sum_{C} w_i \quad (w_i \text{ before normalization})$

Expectation Maximization (example 1)

EM iterations with one attribute ("students" from data table on Slide 13)

Ite	eration	()]	1	4	2		3	2	4	4	5	(5
]	Data	И	, i	И	'i	И	V _i	W	i	И	, i	И	, i	И	V _i
i	X _i	А	В	А	В	А	В	А	В	А	В	А	В	А	В
1	0.67	1	0	0.99	0.01	1	0	1	0	1	0	1	0	1	0
2	0.19	1	0	0.4	0.6	0.35	0.65	0.29	0.71	0.26	0.74	0.23	0.77	0.21	0.79
3	0.11	0	1	0.41	0.59	0.29	0.71	0.19	0.81	0.13	0.87	0.1	0.9	0.09	0.91
4	0.15	0	1	0.39	0.61	0.31	0.69	0.23	0.77	0.18	0.82	0.15	0.85	0.13	0.87
5	0.63	1	0	0.99	0.01	1	0	1	0	1	0	1	0	1	0
Σ	$\sum W_i$	13	7	12.2	7.8	11.1	8.9	10.2	9.8	9.6	10.4	9.2	10.8	9.1	10.9
Clus	ster Prob.	0.65	0.35	0.61	0.39	0.56	0.44	0.51	0.49	0.48	0.52	0.46	0.54	0.45	0.55
	λ	0.35	0.19	0.40	0.14	0.44	0.11	0.49	0.10	0.52	0.09	0.54	0.09	0.55	0.09
	σ	0.35	0.14	0.34	0.12	0.33	0.10	0.32	0.09	0.31	0.09	0.30	0.09	0.29	0.09
Log-	likelihood	-2.92	2201	-1.29	9017	-0.09	9039	0.47	/888	0.69	7056	0.76	9124	0.79	2324

Expectation Maximization (results 1)

- Initial clustering (iteration 0):
 - A = {Anthropology, Art, Communication, Justice, English, Geography, History, Math, Languages, Philosophy, Physics, Political, Theatre}
 - **B** = {Biology, Chemistry, Computer, Economics, Music, **Psychology**, **Sociology**}
- Final clustering (iteration 6):
 - A = {Anthropology, Communication, Justice, Geography, Physics, **Psychology**, **Sociology**, Theatre}
 - **B** = {**Art**, Biology, Chemistry, Computer, Economics, **English**, **History**, **Math**, Music, **Languages**, **Philosophy**, **Political**}
- Log-likelihood graph (a threshold of 0.03 stops the algorithm at iteration 6)

Zdravko Markov and Daniel T. Larose, Data Mining the Web: Uncovering Patterns in Web Content, Structure, and Usage, Wiley, 2007. Slides for Chapter 1: Information Retrieval an Web Search

26

Expectation Maximization (example 2)

Two runs (random choice of initial distributions) of the multivariate EM algorithm (6 attributes)

	k-means	Run 1 (Log-likeliho	pod = 0.1334)	Run 2 (Log-likelihood = 4.8131)		
Document	labels	W_i (cluster A)	W_i (cluster B)	W_i (cluster A)	W_i (cluster B)	
Anthropology	А	1	0	0.99999	0.00001	
Art	В	0	1	0.9066	0.0934	
Biology	А	0.99995	0.00005	1	0	
Chemistry	А	1	0	1	0	
Communication	В	0	1	0.96278	0.03722	
Computer	А	1	0	1	0	
Justice	В	0.0118	0.9882	0.98363	0.01637	
Economics	А	0.70988	0.29012	0.99999	0.00001	
English	В	0	1	0.81042	0.18958	
Geography	А	1	0	0.99999	0.00001	
History	В	0.01348	0.98652	0	1	
Math	А	1	0	0.99999	0.00001	
Languages	В	0	1	0.71241	0.28759	
Music	В	0.01381	0.98619	0	1	
Philosophy	В	0	1	0	1	
Physics	А	0.06692	0.93308	0.99999	0.00001	
Political	А	1	0	1	0	
Psychology	А	0.0368	0.9632	0.99999	0.00001	
Sociology	А	0.00016	0.99984	0.99982	0.00018	
Theatre	В	0.0023	0.9977	0.98818	0.01182	

Collaborative Filtering

- Basic relations used in the description
 - "document contains term" (content-based document retrieval, clustering and classification)
 - "web user likes web page" or "person likes item" (*collaborative filtering, recommender systems*)
- Assume that we have *m* persons and *n* items (e.g. books, songs, movies, web pages etc.)
 - matrix $M(m \times n)$, where each row is a person, each column is an item
 - if person *i* likes item *j* then M(i, j) = 1, otherwise M(i, j) = 0
- Many cells in the matrix are empty, i.e. we don't know whether or not a person likes an item.
- The task of a collaborative filtering system is to predict the missing values by using the rest of the information in the matrix.

Collaborative Filtering (clustering approach)

- A straightforward approach to solve this problem is *clustering*
 - items are used as attributes to represent persons as vectors
 - person vectors are clustered (e.g. k-means or EM)
 - the missing values are taken from the cluster representation, where the person belongs
- Problems
 - highly sparse data (still can be handles by probabilistic approaches)
 - persons often appear in multiple clusters (people usually have multiple interests)
 - uses only the similarity between persons

Collaborative Filtering (EM-like algorithm)

- 1. Assign random cluster labels to persons and items
- 2. Take a person and an item at random:
 - compute the probability that the person belongs to the person clusters
 - compute the probability that the item belongs to the item clusters
 - compute the probability that the person likes the item
- 3. Esimate the maximal likelihood values of the above probabilities
- 4. If the parameter estimation is satisfactory terminate, else go to 2