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Reliable computer systems must handle malfunctioning components that give conflicting information 
to different parts of the system. This situation can be expressed abstractly in terms of a group of 
generals of the Byzantine army camped with their troops around an enemy city. Communicating only 
by messenger, the generals must agree upon a common battle plan. However, one or more of them 
may be traitors who will try to confuse the others. The problem is to find an algorithm to ensure that 
the loyal generals will reach agreement. It is shown that, using only oral messages, this problem is 
solvable if and only if more than two-thirds of the generals are loyal; so a single traitor can confound 
two loyal generals. With unforgeable written messages, the problem is solvable for any number of 
generals and possible traitors. Applications of the solutions to reliable computer systems are then 
discussed. 

Categories and Subject Descriptors: C.2.4. [Computer-Communication Networks]: Distributed 
Systems--network operating systems; D.4.4 [Operating Systems]: Communications Management-- 
network communication; D.4.5 [Operating Systems]: Reliability--fault tolerance 
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1. INTRODUCTION 

A re l iab le  c o m p u t e r  s y s t e m  m u s t  be  able  to cope wi th  the  fa i lure  of one  or more  
of i ts  c o m p o n e n t s .  A fai led c o m p o n e n t  m a y  exhib i t  a type  of b e h a v i o r  t h a t  is 
o f t en  o v e r l o o k e d - - n a m e l y ,  s end ing  conf l ic t ing  i n f o r m a t i o n  to d i f fe rent  pa r t s  of 
t he  sys tem.  T h e  p r o b l e m  of coping wi th  th i s  type  of fa i lure  is expressed  abs t r ac t l y  
as the  B y z a n t i n e  G e n e r a l s  P rob l em.  W e  devote  the  m a j o r  p a r t  of  the  pa pe r  to a 
d i scuss ion  of th i s  a b s t r a c t  p r o b l e m  a n d  conc lude  by  ind i ca t ing  how our  so lu t ions  

can  be used  in  i m p l e m e n t i n g  a re l iab le  c o m p u t e r  sys tem.  
W e  imag ine  t h a t  severa l  d iv is ions  of the  B y z a n t i n e  a r m y  are  c a m p e d  outs ide  

a n  e n e m y  city,  each  d iv is ion  c o m m a n d e d  by  i ts  ow n  general .  T h e  genera l s  can  
c o m m u n i c a t e  wi th  one  a n o t h e r  on ly  by  messenger .  Af te r  obse rv ing  the  enemy ,  
t h e y  m u s t  decide  u p o n  a c o m m o n  p l a n  of ac t ion.  However ,  some  of the  genera l s  
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may be traitors, trying to prevent the loyal generals from reaching agreement. 
The generals must have an algorithm to guarantee that 

A. All loyal generals decide upon the same plan of action. 

The loyal generals will all do what the algorithm says they should, but the 
traitors may do anything they wish. The algorithm must guarantee condition A 
regardless of what the traitors do. 

The loyal generals should not only reach agreement, but should agree upon a 
reasonable plan. We therefore also want to insure that 

B. A small number of traitors cannot cause the loyal generals to adopt a bad 
plan. 

Condition B is hard to formalize, since it requires saying precisely what a bad 
plan is, and we do not attempt to do so. Instead, we consider how the generals 
reach a decision. Each general observes the enemy and communicates his obser- 
vations to the others. Let v(i) be the information communicated by the ith 
general. Each general uses some method for combining the values v (1) . . . . .  v (n) 
into a single plan of action, where n is the number of generals. Condition A is 
achieved by having all generals use the same method for combining the infor- 
mation, and Condition B is achieved by using a robust method. For example, if 
the only decision to be made is whether to attack or retreat, then v(i) con be 
General i's opinion of which option is best, and the final decision can be based 
upon a majority vote among them. A small number of traitors can affect the 
decision only if the loyal generals were almost equally divided between the two 
possibilities, in which case neither decision could be called bad. 

While this approach may not be the only way to satisfy conditions A and B, it 
is the only one we know of. It assumes a method by which the generals 
communicate their values v (i) to one another. The obvious method is for the ith 
general to send v (i) by messenger to each other general. However, this does not 
work, because satisfying condition A requires that every loyal general obtain the 
same values v(1) . . . . .  v(n), and a traitorous general may send different values to 
different generals. For condition A to be satisfied, the following must be true: 

1. Every loyal general must obtain the same information v (1) . . . .  , v (n). 

Condition 1 implies that  a general cannot necessarily use a value of v(i) 
obtained directly from the ith general, since a traitorous ith general may send 
different values to different generals. This means that  unless we are careful, in 
meeting condition 1 we might introduce the possibility that the generals use a 
value of v (i) different from the one sent by the ith general--even though the ith 
general is loyal. We must not allow this to happen if condition B is to be met. For 
example, we cannot permit a few traitors to cause the loya~ generals to base their 
decision upon the values " r e t r e a t " , . . . ,  "retreat" if every loyal general sent the 
value "attack". We therefore have the following requirement for each i: 

2. If the ith general is loyal, then the value that  he sends must be used by every 
loyal general as the value of v (i). 
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We can rewrite condition I as the condition that  for every i (whether or not the 
ith general is loyal), 

1'. Any two loyal generals use the same value of v(i). 

Conditions 1' and 2 are both conditions on the single value sent by the ith 
general. We can therefore restrict our consideration to the problem of how a 
single general sends his value to the others. We phrase this in terms of a 
commanding general sending an order to his lieutenants, obtaining the following 
problem. 

Byzantine Generals Problem. A commanding general must send an order to 
his n - 1 lieutenant generals such that  

IC1. All loyal lieutenants obey the same order. 
IC2. If the commanding general is loyal, then every loyal lieutenant obeys the 

order he sends. 

Conditions IC1 and IC2 are called the interactive consistency conditions. Note 
that  if the commander is loyal, then IC1 follows from IC2. However, the com- 
mander need not be loyal. 

To solve our original problem, the ith general sends his value of v(i) by using 
a solution to the Byzantine Generals Problem to send the order "use v (i) as my 
value", with the other generals acting as the lieutenants. 

2. IMPOSSIBILITY RESULTS 

The Byzantine Generals Problem seems deceptively simple. Its difficulty is 
indicated by the surprising fact that if the generals can send only oral messages, 
then no solution will work unless more than two-thirds of the generals are loyal. 
In particular, with only three generals, no solution can work in the presence of a 
single traitor. An oral message is one whose contents are completely under the 
control of the sender, so a traitorous sender can transmit any possible message. 
Such a message corresponds to the type of message that  computers normally 
send to one another. In Section 4 we consider signed, written messages, for which 
this is not true. 

We now show that  with oral messages no solution for three generals can handle 
a single traitor. For simplicity, we consider the case in which the only possible 
decisions are "attack" or "retreat". Let us first examine the scenario pictured in 
Figure 1 in which the commander is loyal and sends an "attack" order, but 
Lieutenant 2 is a traitor and reports to Lieutenant 1 that  he received a "retreat" 
order. For IC2 to be satisfied, Lieutenant 1 must obey the order to attack. 

Now consider another scenario, shown in Figure 2, in which the commander is 
a traitor and sends an "attack" order to Lieutenant 1 and a "retreat" order to 
Lieutenant 2. Lieutenant 1 does not know who the traitor is, and he cannot tell 
what message the commander actually sent to Lieutenant 2. Hence, the scenarios 
in these two pictures appear exactly the same to Lieutenant 1. If the traitor lies 
consistently, then there is no way for Lieutenant 1 to distinguish between these 
two situations, so he must obey the "attack" order in both of them. Hence, 
whenever Lieutenant 1 receives an "attack" order from the commander, he must 
obey it. 
ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982. 
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f , ,  t ,  

"he said 'retreat'" 

Fig. 1. Lieutenant 2 a traitor. 

y/ 
"he said 'retreat'" 

Fig. 2. The commander  a traitor. 

However, a similar argument shows that if Lieutenant 2 receives a "retreat" 
order from the commander then he must obey it even if Lieutenant 1 tells him 
that  the commander said "attack". Therefore, in the scenario of Figure 2, 
Lieutenant 2 must obey the "retreat" order while Lieutenant 1 obeys the "attack" 
order, thereby violating condition IC1. Hence, no solution exists for three generals 
that works in the presence of a single traitor. 

This argument may appear convincing, but we strongly advise the reader to be 
very suspicious of such nonrigorous reasoning. Although this result is indeed 
correct, we have seen equally plausible "proofs" of invalid results. We know of no 
area in computer science or mathematics in which informal reasoning is more 
likely to lead to errors than in the study of this type of algorithm. For a rigorous 
proof of the impossibility of a three-general solution that can handle a single 
traitor, we refer the reader to [3]. 

Using this result, we can show that  no solution with fewer than 3m + 1 generals 
can cope with m traitorsJ The proof is by contradiction--we assume such a 

' More precisely, no such solution exists for three or more generals, since the problem is trivial for two 

generals. 
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solution for a group of 3m or fewer and use it to construct a three-general solution 
to the Byzantine Generals Problem that  works with one traitor, which we know 
to be impossible. To avoid confusion between the two algorithms, we call the 
generals of the assumed solution Albanian generals, and those of the constructed 
solution Byzantine generals. Thus, starting from an algorithm that allows 3m or 
fewer Albanian generals to cope with m traitors, we construct a solution that  
allows three Byzantine generals to handle a single traitor. 

The three-general solution is obtained by having each of the Byzantine generals 
simulate approximately one-third of the Albanian generals, so that  each Byzan- 
tine general is simulating at most m Albanian generals. The Byzantine com- 
mander simulates the Albanian commander plus at most m - 1 Albanian 
lieutenants, and each of the two Byzantine lieutenants simulates at most m 
Albanian lieutenants. Since only one Byzantine general can be a traitor, and he 
simulates at most m Albanians, at most m of the Albanian generals are traitors. 
Hence, the assumed solution guarantees that  IC1 and IC2 hold for the Albanian 
generals. By IC1, all the Albanian lieutenants being simulated by a loyal Byzan- 
tine lieutenant obey the same order, which is the order he is to obey. It is easy to 
check that  conditions IC1 and IC2 of the Albanian generals solution imply the 
corresponding conditions for the Byzantine generals, so we have constructed the 
required impossible solution. 

One might think that  the difficulty in solving the Byzantine Generals Problem 
stems from the requirement of reaching exact agreement. We now demonstrate 
that  this is not the case by showing that  reaching approximate agreement is just 
as hard as reaching exact agreement. Let us assume that  instead of trying to agree 
on a precise battle plan, the generals must agree only upon an approximate time 
of attack. More precisely, we assume that  the commander orders the time of the 
attack, and we require the following two conditions to hold: 

IC1 '. All loyal lieutenants attack within 10 minutes of one another. 
IC2'. If the commanding general is loyal, then every loyal lieutenant attacks 

within 10 minutes of the time given in the commander's order. 

(We assume that  the orders are given and processed the day before the attack 
and that  the time at which an order is received is irrelevant--only the attack 
time given in the order matters.} 

Like the Byzantine Generals Problem, this problem is unsolvable unless more 
than two-thirds of the generals are loyal. We prove this by first showing that  if 
there were a solution for three generals that coped with one traitor, then we could 
construct a three-general solution to the Byzantine Generals Problem that  also 
worked in the presence of one traitor. Suppose the commander wishes to send an 
"attack" or "retreat" order. He orders an attack by sending an attack time of 1:00 
and orders a retreat by sending an attack time of 2:00, using the assumed 
algorithm. Each lieutenant uses the following procedure to obtain his order. 

(1) After receiving the attack time from the commander, a lieutenant does one 
of the following: 

(a) If the time is 1:10 or earlier, then attack. 
(b) If the time is 1:50 or later, then retreat. 
(c) Otherwise, continue to step (2). 
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(2) Ask the other lieutenant what decision he reached in step (1). 

(a) If the other lieutenant reached a decision, then make the same decision 
he did. 

(b) Otherwise, retreat. 

It follows from IC2' that if the commander is loyal, then a loyal lieutenant will 
obtain the correct order in step (1), so IC2 is satisfied. If the commander is loyal, 
then IC1 follows from IC2, so we need only prove IC1 under the assumption that 
the commander is a traitor. Since there is at most one traitor, this means that 
both lieutenants are loyal. It follows from ICI '  that  if one lieutenant decides to 
attack in step (1), then the other cannot decide to retreat in step (1). Hence, 
either they will both come to the same decision in step (1) or at least one of them 
will defer his decision until step (2). In this case, it is easy to see that they both 
arrive at the same decision, so IC1 is satisfied. We have therefore constructed a 
three-general solution to the Byzantine Generals Problem that handles one 
traitor, which is impossible. Hence, we cannot have a three-general algorithm 
that  maintains ICI '  and IC2' in the presence of a traitor. 

The method of having one general simulate m others can now be used to prove 
that  no solution with fewer than 3rn + 1 generals can cope with m traitors. The 
proof is similar to the one for the original Byzantine Generals Problem and is left 
to the reader. 

3. A SOLUTION WITH ORAL MESSAGES 

We showed above that for a solution to the Byzantine Generals Problem using 
oral messages to cope with rn traitors, there must be at least 3m + 1 generals. We 
now give a solution that  works for 3m + 1 or more generals. However, we first 
specify exactly what we mean by "oral messages". Each general is supposed to 
execute some algorithm that involves sending messages to the other generals, and 
we assume that a loyal general correctly executes his algorithm. The definition of 
an oral message is embodied in the following assumptions which we make for the 
generals' message system: 

A1. Every message that is sent is delivered correctly. 
A2. The receiver of a message knows who sent it. 
A3. The absence of a message can be detected. 

Assumptions A1 and A2 prevent a traitor from interfering with the communi- 
cation between two other generals, since by A1 he cannot interfere with the 
messages they do send, and by A2 he cannot confuse their intercourse by 
introducing spurious messages. Assumption A3 will foil a traitor who tries to 
prevent a decision by simply not sending messages. The practical implementation 
of these assumptions is discussed in Section 6. 

The algorithms in this section and in the following one require that each 
general be able to send messages directly to every other general. In Section 5, we 
describe algorithms which do not have this requirement. 

A traitorous commander may decide not to send any order. Since the lieuten- 
ants must obey some order, they need some default order to obey in this case. We 
let R E T R E A T  be this default order. 
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We inductively define the Oral Message algorithms OM(m),  for all nonnegative 
integers m, by which a commander  sends an order to n - 1 lieutenants. We show 
tha t  OM(m) solves the Byzantine Generals Problem for 3m + 1 or more generals 
in the presence of at most  m traitors. We find it more convenient to describe this 
algorithm in terms of the lieutenants "obtaining a value" ra ther  than  "obeying an 

order". 
The  algorithm assumes a function m a j o r i t y  with the proper ty  tha t  if a majori ty 

of the values vi equal v, then m a j o r i t y  (Vl,.. •, v , -D equals v. (Actually, it assumes 
a sequence of such funct ions- -one  for each n.) There  are two natural  choices for 

the value of m a j o r i t y ( v 1 ,  . . . ,  v,-1): 

1. The  majori ty  value among the vi if it exists, otherwise the value R E T R E A T ;  
2. The  median of the vi, assuming tha t  they come from an ordered set. 

The  following algori thm requires only the aforementioned proper ty  of m a j o r i t y .  

Algor i thm OM(0). 

(1) The commander sends his value to every lieutenant. 
(2) Each lieutenant uses the value he receives from the commander, or uses the value 

RETREAT if he receives no value. 

Algor i thm OM(m) ,  m > O. 

(1) The commander sends his value to every lieutenant. 
(2) For each i, let vi be the value Lieutenant i receives from the commander, or else be 

RETREAT if he re :eives no value. Lieutenant i acts as the commander in Algorithm 
OM(m - 1) to send the value vi to each of the n - 2 other lieutenants. 

(3) For each i, and each j ~ i, let vj be the value Lieutenant i received from Lieutenant j 
in step (2) (using Algorithm OM(m - 1)), or else RETREAT if he received no such 
value. Lieutenant i uses the value majority (vl . . . . .  v,-1 ). 

To unders tand how this algorithm works, we consider the case m = 1, n = 4. 
Figure 3 illustrates the messages received by Lieutenant  2 when the commander  
sends the value v and Lieutenant  3 is a traitor. In the first step of OM(1), the 
commander  sends v to all three lieutenants. In  the second step, Lieutenant  1 
sends the value v to Lieutenant  2, using the trivial algorithm OM(0). Also in the 
second step, the trai torous Lieutenant  3 sends Lieutenant  2 some other  value x. 
In step 3, Lieutenant  2 then has v~ = v2 = v and v3 = x, so he obtains the correct 

value v = m a j o r i t y ( v ,  v, x ) .  
Next, we see what  happens  if the commander  is a traitor. Figure 4 shows the 

values received by the l ieutenants if a trai torous commander  sends three arbitrary 
values x, y, and z to the three lieutenants. Each  l ieutenant obtains v~ = x, v2 = y, 
and v3 = z, so they all obtain the same value m a j o r i t y ( x ,  y,  z )  in step (3), 
regardless of whether  or not any of the three values x, y, and z are equal. 

The  recursive algorithm OM(m) invokes n - 1 separate executions of the 
algori thm OM(m - 1), each of which invokes n - 2 executions of OM(m - 2), etc. 
This  means  that,  for m > 1, a l ieutenant sends many  separate messages to each 
other  lieutenant. There  must  be some way to distinguish among these different 
messages. The  reader can verify tha t  all ambiguity is removed if each l ieutenant 
i prefixes the number  i to the value vi tha t  he sends in step (2). As the recursion 
"unfolds," the algorithm OM(m - k) will be called (n - 1) . . .  (n - k) times to 
send a value prefixed by a sequence of k l ieutenants '  numbers.  
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To prove  the correctness  of  the a lgor i thm OM{m) for a rb i t ra ry  m, we first 
p rove  the following lemma.  

LEMMA 1. For  any  m a n d  k, A lgor i t hm  O M  (m ) satisf ies IC2 i f  there are more 
than  2k + m genera ls  a n d  at  mos t  k traitors. 

PROOF. T h e  proof  is by  induction on m. IC2 only specifies wha t  mus t  happen  
if the  c o m m a n d e r  is loyal. Using A1, it is easy to see tha t  the  trivial a lgor i thm 
OM(0) works  if the  c o m m a n d e r  is loyal, so the  l e m m a  is t rue  for m = 0. We now 
assume it  is t rue  for m - 1, m > 0, and  prove  it for m. 

In  s tep (1), the loyal c o m m a n d e r  sends a value v to all n - 1 l ieutenants.  In  
s tep (2), each  loyal l ieu tenant  applies O M ( m  - 1) with n - 1 generals. Since by  
hypothes is  n > 2k + m, we have  n - 1 > 2k + (m - 1), so we can apply  the  
induct ion hypothes is  to conclude t ha t  every  loyal l ieu tenant  gets vj = v for each  
loyal L ieu tenan t  j .  Since there  are a t  mos t  k trai tors,  and n - 1 > 2k + (m - 1) 
_> 2k, a major i ty  of  the  n - 1 l ieutenants  are loyal. Hence,  each  loyal l ieutenant  
has  vi = v for a major i ty  of  the  n - 1 values  i, so he  obtains  majority(v1 . . . .  , 
v,-1)  = v in s tep (3), proving IC2. [] 

T h e  following t h e o r e m  asser ts  t ha t  Algor i thm OM(m)  solves the  Byzant ine  
Genera ls  Problem.  

THEOREM 1. For  any  m, A lgor i t hm  O M  (m ) satisf ies condi t ions IC1 a n d  IC2 
i f  there are more  than  3m genera ls  a n d  at  mos t  m traitors. 

PROOF. T h e  proof  is by  induction on m. I f  there  are no traitors,  t hen  it is easy 
to see t ha t  OM(0) satisfies IC1 and IC2. We therefore  assume tha t  the t heo rem 
is t rue  for O M ( m  - 1) and  prove  it for OM(m) ,  m > 0. 

We first consider the  case in which the  c o m m a n d e r  is loyal. By  taking k equal  
to m in L e m m a  1, we see t ha t  OM(m)  satisfies IC2. IC1 follows f rom IC2 if the  
c o m m a n d e r  is loyal, so we need only verify IC1 in the  case t ha t  the c o m m a n d e r  
is a trai tor .  

T h e r e  are a t  mos t  m trai tors,  and the c o m m a n d e r  is one of them,  so a t  mos t  
m - 1 of  the l ieutenants  are traitors.  Since there  are more  t han  3m generals, 
there  are more  t han  3m - 1 l ieutenants,  and 3m - 1 > 3(m - 1). We m a y  
therefore  apply  the  induction hypothes is  to conclude t ha t  O M ( m  - 1) satisfies 
condit ions IC1 and IC2. Hence,  for  each  j ,  any  two loyal l ieutenants  get the same 
value for vj in s tep (3). (This follows f rom IC2 if one of the  two l ieutenants  is 
L ieu tenan t  j ,  and  f rom IC1 Otherwise.) Hence,  any  two loyal l ieutenants  get the  
same  vector  of values  vl . . . . .  Vn-~, and therefore  obtain  the same value major-  
i ty(vl  . . . . .  Vn-1) in s tep (3), proving IC1. [] 

4. A SOLUTION WITH SIGNED MESSAGES 

As we saw f rom the scenario of  Figures i and 2, it is the t ra i tors '  abil i ty to lie t ha t  
makes  the  Byzant ine  Genera ls  P rob lem so difficult. T h e  p rob lem becomes  easier 
to solve if we can restr ict  t ha t  ability. One way to do this is to allow the generals  
to send unforgeable  signed messages.  More  precisely, we add to A1-A3 the  
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following assumption: 

A4 (a) A loyal general 's signature cannot  be forged, and any alteration of the 
contents  of his signed messages can be detected. 

(b) Anyone can verify the authent ic i ty  of a general 's signature. 

Note  tha t  we make no assumptions about  a t rai torous general 's signature. In 
particular,  we allow his signature to be forged by another  traitor,  thereby  
permit t ing collusion among the traitors. 

Now tha t  we have introduced signed messages, our  previous argument  tha t  
four generals are required to cope with one trai tor  no longer holds. In fact, a 
three-general  solution does exist. We now give an algorithm tha t  copes with m 
trai tors  for any number  of generals. (The problem is vacuous if there  are fewer 
than  m + 2 generals.) 

In our  algorithm, the commander  sends a signed order  to each of his l ieutenants.  
Each  l ieutenant  then  adds his signature to tha t  order  and sends it to the other  
l ieutenants,  who add their  signatures and send it to others, and so on. This  means 
tha t  a l ieutenant  must  effectively receive one signed message, make several copies 
of it, and sign and send those copies. It  does not  ma t t e r  how these copies are 
obtained; a single message might  be photocopied,  or else each message might  
consist of a stack of identical messages which are signed and distr ibuted as 
required. 

Our algori thm assumes a function choice  which is applied to a set of orders to 
/obtain a single one. The  only requirements  we make for this function are 

/ 

1. If  the set V consists of the single e lement  v, then  c h o i c e ( V )  = v. 
2. choice(Q) = R E T R E A T ,  where O is the empty  set. 

Note  tha t  one possible definition is to let cho i ce (V)  be the median e lement  of 
V--assuming tha t  there  is an ordering of the elements. 

In the following algorithm, we let x : i denote the value x signed by General  i. 
Thus,  v : j :  i denotes the value v signed by j ,  and then  tha t  value v : j  signed by i. 
We let  General  0 be the commander .  In this algorithm, each l ieutenant  i maintains 
a set Vi, containng the set of properly signed orders he has received so far. (If the 
commander  is loyal, then  this set should never  contain more than  a single 
element.) Do not  confuse Vi, the set of orders  he has received, with the set of 
messages tha t  he has received. The re  may  be many  different messages with the 
same order. 

Algorithm S M  (rn). 

Initially Vi = 0. 

(1) The commander signs and sends his value to every lieutenant. 
(2) For each i: 

(A) If Lieutenant i receives a message of the form v: 0 from the commander and he 
has not yet received any order, then 

(i) he lets V/equal (v); 
(ii) he sends the message v: 0 : i to every other lieutenant. 
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~ ' :0  

" a t t a c k "  : 0 : 1 

" r e t r e a t "  : 0 : 2 

Fig. 5. Algorithm SM(1); the commander  a traitor. 

(B) If Lieutenant i receives a message of the form v : 0 :jl : - . .  : Jk and v is not in the set 
Vi, then 

(i) he adds v to Vi; 
(ii) if k < m, then he sends the message v:0 :jl : - . .  :jk : i to every lieutenant other 

than jl . . . . .  jk. 
(3) For each i: When Lieutenant i will receive no more messages, he obeys the order 

choice( Vi). 

Note  tha t  in step (2), Lieutenant  i ignores any message containing an order v tha t  

is already in the set Vi. 
We have not  specified how a l ieutenant determines in step (3) tha t  he will 

receive no more messages. By  induction on k, one easily shows tha t  for each 
sequence of l ieutenants j l ,  • • •, jk with k __ m, a l ieutenant can receive at most  
one message of the form v : 0 : j l :  . . .  :jk in step (2). I f  we require tha t  Lieutenant  
Jk either send such a message or else send a message reporting tha t  he will not  
send such a message, then  it is easy to decide when all messages have been 
received. (By assumption A3, a l ieutenant  can determine if a trai torous l ieutenant 
jk sends nei ther  of those two messages.) Alternatively, t ime-out  can be used to 
determine when no more messages will arrive. The  use of t ime-out  is discussed in 

Section 6. 
Note  tha t  in step (2), Lieutenant  i ignores any messages tha t  do not  have the 

proper  form of a value followed by a string of signatures. If  packets of identical 
messages are used to avoid having to copy messages, this means  tha t  he throws 
away any packet  tha t  does not  consist of a sufficient number  of identical, properly 
signed messages. (There should be (n - k - 2)(n - k - 3) . . -  (n - m - 2) copies 
of the message if it has  been signed by k lieutenants.) 

Figure 5 illustrates Algori thm SM(1) for the case of three generals when the 
commander  is a traitor. The  commander  sends an "a t tack"  order to one l ieutenant 
and a "re t reat"  order to the other. Bo th  l ieutenants receive the two orders in step 
(2), so after step (2) V1 -- V2 ffi {"attack",  "retreat"},  and they  both obey the 
order choice{ {"attack",  "retreat"} ). Observe tha t  here, unlike the situation in 
Figure 2, the l ieutenants know the commander  is a trai tor because his signature 
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appears  on two different orders, and A4 states tha t  only he could have generated 
those signatures. 

In Algori thm SM(m), a l ieutenant  signs his name to acknowledge his receipt  of 
an order. If  he is the ruth l ieutenant  to add his signature to the order, then tha t  
signature is not  relayed to anyone else by its recipient, so it is superfluous. (More 
precisely, assumption A2 makes it unnecessary.) In particular, the l ieutenants 
need not  sign their  messages in SM(1). 

We now prove the correctness of our algorithm. 

THEOREM 2. For any m, Algorithm SM(m)  solves the Byzantine Generals 
Problem if  there are at most m traitors. 

PROOF. We first prove IC2. If  the commander  is loyal, then  he sends his signed 
order  v: 0 to every l ieutenant  in step (1). Every  loyal l ieutenant  will therefore 
receive the order  v in step (2)(A). Moreover,  since no t rai torous l ieutenant  can 
forge any other  message of the form v' :0, a loyal l ieutenant  can receive no 
additional order  in step (2)(B). Hence, for each loyal Lieutenant  i, the  set Vi 
obtained in step (2) consists of the single order  v, which he will obey in step (3) 
by proper ty  1 of the choice function. This  proves IC2. 

Since IC1 follows from IC2 if the commander  is loyal, to prove IC1 we need 
only consider the case in which the commander  is a traitor. Two loyal l ieutenants 
i and j obey the same order  in step (3) if the sets of orders Vi and Vj tha t  they 
receive in step (2) are the same. Therefore,  to prove IC1 it suffices to prove that,  
if i puts  an order  v into Vi in step (2), t h e n j  must  put  the same order v into V1 in 
step (2). To  do this, we must  show tha t  j receives a properly signed message 
containing tha t  order. If i receives the order  v in step (2)(A), then  he sends it to 
j in step (2)(A)(ii); s o j  receives it (by A1). If i adds the order  to Vi in step (2)(B), 
then  he must  receive a first message of the form v : 0 : j l  : . . .  : j~. I f j  is one of the 
fl,  then  by A4 he must  already have received the order  v. If  not, we consider two 
cases: 

1. k < m. In this case, i sends the message v : 0 : j l :  . . .  :jk:i to j ;  s o j  must  
receive the order  v. 

2. k = m. Since the commander  is a traitor, at  most  m - 1 of the l ieutenants  
are traitors. Hence,  at least one of the l ieutenants  j l  . . . .  , jm is loyal. This  loyal 
l ieutenant  must  have sent j the value v when he first received it, so j must  
therefore  receive tha t  value. 

This  completes the proof. [] 

5. MISSING COMMUNICATION PATHS 

Thus  far, we have assumed tha t  a general can send messages directly to every 
other  general. We now remove this assumption. Instead, we suppose tha t  physical 
barriers place some restrictions on who can send messages to whom. We consider 
the generals to form the nodes of a simple, 2 finite undirected graph G, where an 
arc between two nodes indicates tha t  those two generals can send messages 

2 A s imple  graph is one in which there  is a t  mos t  one arc joining any two nodes, and every arc connects  
two dis t inc t  nodes. 
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f 

J 

Fig. 6. A 3-regular graph. Fig. 7. A graph tha t  is not  3-regular. 

direct ly to one another .  We now extend Algor i thms OM(m) and SM(m),  which 
a s sumed  G to be comple te ly  connected,  to more  general  graphs.  

T o  extend our  oral message  a lgor i thm OM(m),  we need the  following definition, 
where  two generals  are said to be neighbors if they  are joined by  an arc. 

Definition 1. 

(a) A set  of nodes (il, . . . ,  ip} is said to be a regular set of  neighbors of a node 
/ i f  

(i) each  ij is a ne ighbor  of  i, and 
(ii) for any  general  k different f rom i, there  exist pa ths  yj,k f rom ij to k not  passing 

th rough  i such t ha t  any  two different pa ths  Yi,k have  no node in c o m m o n  
o ther  t han  k. 

(b) T h e  graph  G is said to be p-regular if every node has  a regular  set  of  
neighbors  consisting o f p  distinct nodes. 

Figure 6 shows an  example  of  a s imple 3-regular graph. Figure 7 shows an 
example  of  a g raph  tha t  is not  3-regular because the central  node has  no regular  
set  of  neighbors  containing three  nodes. 

We extend OM(m)  to an a lgor i thm tha t  solves the Byzant ine  Generals  P rob lem 
in the  presence  of rn t ra i tors  if the  graph  G of generals is 3m-regular.  (Note tha t  
a 3m-regular  g raph  mus t  contain a t  least  3m + 1 nodes.} For  allpositive integers 
m and p ,  we define the a lgor i thm OM(m, p)  as follows when  the graph  G of 
generals  i sp- regular .  (OM(m,p)  is not  defined if G is notp-regular . )  T h e  definition 
uses induction on m. 

Algorithm OM (rn, p). 

(0) Choose a regular set N of neighbors of the commander consisting o fp  lieutenants. 
(1) The commander sends his value to every lieutenant in N. 
(2) For each i in N, let vi be the value Lieutenant i receives from the commander, or else 

RETREAT if he receives no value. Lieutenant i sends vi to every other lieutenant k as 
follows: 
(A) If m = 1, then by sending the value along the path yi, k whose existence is 

guaranteed by part (a) (ii) of Definition 1. 
(B) If rn > 1, then by acting as the commander in the algorithm OM(m - 1, p - 1), 

with the graph of generals obtained by removing the original commander from G. 

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982. 



The Byzantine Generals Problem 395 

(3) For each k, and each i in N with i ~ k, let vi be the value Lieutenant k received from 
Lieutenant i in step (2), or RETREAT if he received no value. Lieutenant k uses the 
value majority(vi . . . . . .  vi,), where N = {il . . . . .  ip}. 

Note  tha t  removing a single node from a p-regular  graph leaves a (p - 1)- 
regular graph. Hence, one can apply the algori thm OM(m - 1, p - 1) in step 
(2)(B). 

We now prove tha t  OM(m, 3m) solves the Byzantine Generals Problem if there  
are at  most  m traitors. The  proof  is similar to the proof  for the algori thm OM(m) 
and will just  be sketched. I t  begins with the following extension of Lemma 1. 

LEMMA 2. For  any m > 0 a n d  any  p >_ 2k + m, A lgor i thm O M  (m, p)  satisf ies 
IC2 i f  there are at  mos t  k traitors. 

PROOF. For  m -- 1, observe tha t  a l ieutenant  obtains the value majority(v1, 
. . . ,  vp), where each vi is a value sent to him by the commander  along a pa th  
disjoint f rom the pa th  used to send the other  values to him. Since there  are at 
most  k trai tors and p __ 2k + 1, more than  half  of those paths  are composed 
entirely of loyal l ieutenants.  Hence, if the commander  is loyal, then  a major i ty  of 
the values vi will equal the value he sent, which implies tha t  IC2 is satisfied. 

Now assume the lemma for m - 1, m > 1. If  the commander  is loyal, then  each 
of the p l ieutenants  in N gets the correct  value. Since p > 2k, a major i ty  of them 
are loyal, and by the induction hypothesis  each of them sends the correct  value 
to every loyal l ieutenant.  Hence,  each loyal l ieutenant  gets a major i ty  of correct  
values, thereby  obtaining the correct  value in step (3). [] 

The  correctness of Algorithm OM(m, 3m) is an immediate  consequence of the 
following result. 

THEOREM 3. For  any  m > 0 a n d  any  p >_ 3m, Algor i t hm  OM(m,  p) solves the 
B y z a n t i n e  Generals  Prob lem i f  there are at mos t  m traitors. 

PROOF. By  Lemma  2, letting k = m, we see tha t  OM(m, p )  satisfies IC2. If  the 
commander  is loyal, then  IC1 follows from IC2, so we need only prove IC1 under  
the assumption tha t  the commander  is a traitor. To  do this, we prove tha t  every 
loyal l ieutenant  gets the same set of values vi in step (3). If  m = 1, then  this 
follows because all the  lieutenants,  including those in N, are loyal and the paths  
~/i,k do not  pass through the commander.  For  m > 1, a simple induction argument  
can be applied, s i ncep  _ 3m implies t h a t p  - 1 _ 3(m - 1). [] 

Our extension of Algorithm OM(m) requires tha t  the graph G be 3m-regular, 
which is a ra ther  strong connectivi ty hypothesis.  3 In fact, if there  are only 3m + 
1 generals (the minimum number  required),  then  3m-regularity means complete 
connectivity,  and Algorithm OM(m, 3m) reduces to Algorithm OM(m). In con- 
trast,  Algorithm SM(m) is easily extended to allow the weakest  possible connec- 
t ivity hypothesis.  Let  us first consider how much connectivi ty is needed for the 
Byzant ine Generals Problem to be solvable. IC2 requires tha t  a loyal l ieutenant  
obey a loyal commander .  This  is clearly impossible if the commander  cannot  
communicate  with the lieutenant.  In particular, if every message from the 

3 A recent algorithm of Dolev [2] requires less connectivity. 
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commander to the lieutenant must be relayed by traitors, then there is no way to 
guarantee that the lieutenant gets the commander's order. Similarly, IC1 cannot 
be guaranteed if there are two lieutenants who can only communicate with one 
another via traitorous intermediaries. 

The weakest connectivity hypothesis for which the Byzantine Generals Prob- 
lem is solvable is that the subgraph formed by the loyal generals be connected. 
We show that  under this hypothesis, the algorithm SM(n - 2) is a solution, where 
n is the number of generals--regardless of the number of traitors. Of course, we 
must modify the algorithm so that  generals only send messages to where they 
can be sent. More precisely, in step (1), the commander sends his signed order 
only to his neighboring lieutenants; and in step (2)(B), Lieutenant i only sends 
the message to every neighboring lieutenant not among the jr. 

We prove the following more general result, where the diameter of a graph is 
the smallest number d such that  any two nodes are connected by a path 
containing at most d arcs. 

THEOREM 4. For any m and d, if there are at most m traitors and the 
subgraph of loyal generals has diameter d, then Algorithm SM(m + d - 1) (with 
the above modification) solves the Byzantine Generals Problem. 

PROOF. The proof is quite similar to that  of Theorem 2 and is just sketched 
here. To prove IC2, observe that by hypothesis there is a path from the loyal 
commander to a lieutenant i going through d - 1 or fewer loyal lieutenants. 
Those lieutenants will correctly relay the order until it reaches i. As before, 
assumption A4 prevents a traitor from forging a different order. 

To prove IC1, we assume the commander is a traitor and must show that any 
order received by a loyal lieutenant i is also received by a loyal lieutenant j. 
Suppose i receives an order v : 0 :j~ : . . -  :jk not signed by j. If k < m, then i will 
send it to every neighbor who has not already received that  order, and it will be 
relayed t o j  within d - 1 more steps. If k _> m, then one of the first m signers must 
be loyal and must have sent it to all of his neighbors, whereupon it will be relayed 
by loyal generals and will reach j within d - 1 steps. [] 

COROLLARY. If the graph of loyal generals is connected, then SM(n - 2) (as 
modified above) solves the Byzantine Generals Problem for n generals. 

PROOF. Let d be the diameter of the graph of loyal generals. Since the diameter 
of a connected graph is less than the number of nodes, there must be more than 
d loyal generals and fewer than n - d traitors. The result follows from the 
theorem by letting m = n - d - 1. [] 

Theorem 4 assumes that the subgraph of loyal generals is connected. Its proof 
is easily extended to show that  even if this is not the case, if there are at most m 
traitors, then the algorithm SM(m + d - 1) has the following two properties: 

1. Any two loyal generals connected by a path of length at most d passing 
through only loyal generals will obey the same order. 

2. If the commander is loyal, then any loyal lieutenant connected to him by a 
path of length at most m + d passing only through loyal generals will obey his 
order. 
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6. RELIABLE SYSTEMS 

Other than using intrinsically reliable circuit components, the only way we know 
to implement a reliable computer system is to use several different "processors" 
to compute the same result, and then to perform a majority vote on their outputs 
to obtain a single value. (The voting may be performed within the system, or 
externally by the users of the output.) This is true whether one is implementing 
a reliable computer using redundant circuitry to protect against the failure of 
individual chips, or a ballistic missile defense system using redundant computing 
sites to protect against the destruction of individual sites by a nuclear attack. 
The only difference is in the size of the replicated "processor". 

The use of majority voting to achieve reliability is based upon the assumption 
that  all the nonfaulty processors will produce the same output. This is true so 
long as they all use the same input. However, any single input datum comes from 
a single physical component--for example, from some other circuit in the reliable 
computer, or from some radar site in the missile defense system--and a malfunc- 
tioning component can give different values to different processors. Moreover, 
different processors can get different values even from a nonfaulty input unit if 
they read the value while it is changing. For example, if two processors read a 
clock while it is advancing, then one may get the old time and the other the new 
time. This can only be prevented by synchronizing the reads with the advancing 
of the clock. 

In order for majority voting to yield a reliable system, the following two 
conditions should be satisfied: 

1. All nonfaulty processors must use the same input value (so they produce the 
same output). 

2. If the input unit is nonfaulty, then all nonfaulty processes use the value it 
provides as input (so they produce the correct output). 

These are just our interactive consistency conditions IC1 and IC2, where the 
"commander" is the unit generating the input, the "lieutenants" are the proces- 
sors, and "loyal" means nonfaulty. 

It is tempting to try to circumvent the problem with a "hardware" solution. 
For example, one might try to insure that  all processors obtain the same input 
value by having them all read it from the same wire. However, a faulty input unit 
could send a marginal signal along the wire--a signal that can be interpreted by 
some processors as a 0 and by others as a 1. There is no way to guarantee that 
different processors will get the same value from a possibly faulty input device 
except by having the processors communicate among themselves to solve the 
Byzantine Generals Problem. 

Of course, a faulty input device may provide meaningless input values. All that 
a Byzantine Generals solution can do is guarantee that  all processors use the 
same input value. If the input is an important one, then there should be several 
separate input devices providing redundant values. For example, there should be 
redundant radars as well as redundant processing sites in a missile defense 
system. However, redundant inputs cannot achieve reliability; it is still necessary 
to insure that  the nonfaulty processors use the redundant data to produce the 
same output. 
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In case the input device is nonfaulty but gives different values because it is 
read while its value is changing, we still want the nonfaulty processors to obtain 
a reasonable input value. It can be shown that, if the functions majority and 
choice are taken to be the median functions, then our algorithms have the 
property that the value obtained by the nonfaulty processors lies within the range 
of values provided by the input unit. Thus, the nonfaulty processors will obtain 
a reasonable value so long as the input unit produces a reasonable range of values. 

We have given several solutions, but they have been stated in terms of 
Byzantine generals rather than in terms of computing systems. We now examine 
how these solutions can be applied to reliable computing systems. Of course, 
there is no problem implementing a "general's" algorithm with a processor. The 
problems lie in implementing a message passing system that meets assumptions 
A1-A3 (assumptions A1-A4 for Algorithm SM(m)). We now consider these 
assumptions in order. 

A1. Assumption A1 states that  every message sent by a nonfaulty processor is 
delivered correctly. In real systems, communication lines can fail. For the oral 
message algorithms OM(m) and OM(m, p), the failure of the communication line 
joining two processors is indistinguishable from the failure of one of the proces- 
sors. Hence, we can only guarantee that  these algorithms will work in the presence 
of up to m failures, be they processor or communication line failures. (Of course, 
the failure of several communication lines attached to the same processor is 
equivalent to a single processor failure.) If we assume that  a failed communication 
line cannot result in the forgery of a signed message--an assumption which we 
will see below is quite reasonable, then our signed message algorithm SM(m) is 
insensitive to communication line failure. More precisely, Theorem 4 remains 
valid even with communication line failure. A failed communication line has the 
same effect as simply removing the communication line--it  lowers the connectiv- 
ity of the processor graph. 

A2. Assumption A2 states that  a processor can determine the originator of any 
message that  it received. What is actually necessary is that a faulty processor not 
be able to impersonate a nonfaulty one. In practice, this means that  interprocess 
communication be over fixed lines rather than through some message switching 
network. (If a switching network is used, then faulty network nodes must be 
considered, and the Byzantine Generals Problem appears again.) Note that 
assumption A2 is not needed if A4 is assumed and all messages are signed, since 
impersonation of another processor would imply forging its messages. 

A3. Assumption A3 requires that the absence of a message can be detected. 
The absence of a message can only be detected by its failure to arrive within 
some fixed length of t ime-- in  other words, by the use of some time-out conven- 
tion. The use of time-out to satisfy A3 requires two assumptions: 

1. There is a fixed maximum time needed for the generation and transmission of 
a message. 

2. The sender and receiver have clocks that  are synchronized to within some 
fixed maximum error. 

The need for the first assumption is fairly obvious, since the receiver must know 
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how long he needs to wait for the message to arrive. (The generation time is how 
long it takes the processor to send the message after receiving all the input 
necessary to generate it.) The need for the second assumption is less obvious. 
However, it can be shown that  either this assumption or an equivalent one is 
necessary to solve the Byzantine Generals Problem. More precisely, suppose that 
we allow algorithms in which the generals take action only in the following 
circumstances: 

1. At some fixed initial time (the same for all generals). 
2. Upon the receipt of a message. 
3. When a randomly chosen length of time has elapsed. (I.e., a general can set a 

timer to a random value and act when the timer goes off.) 

{This yields the most general class of algorithms we can envision which does not 
allow the construction of synchronized clocks.) It can be shown that no such 
algorithm can solve the Byzantine Generals Problem if messages can be trans- 
mitted arbitrarily quickly, even if there is an upper bound on message transmis- 
sion delay. Moreover, no solution is possible even if we restrict the traitors so 
that  the only incorrect behavior they are permitted is the failure to send a 
message. The proof of this result is beyond the scope of this pa, Jer. Note that 
placing a lower as well as an upper bound on transmission delay ahows processors 
to implement clocks by sending messages back and forth. 

The above two assumptions make it easy to detect unsent messages. Let/z be 
the maximum message generation and transmission delay, and assume the 
nonfaulty processors have clocks that differ from one another by at most T at any 
time. Then any message that  a nonfaulty process should begin to generate by 
time T on its clock will arrive at its destination by time T + # + T on the receiver's 
clock. Hence, if the receiver has not received the message by that time, then it 
may assume that it was not sent. (If it arrives later, then the sender must be 
faulty, so the correctness of our algorithms does not depend upon the message 
being sent.) By fLxing the time at which the input processor sends its value, one 
can calculate until what time on its own clock a processor must wait for each 
message. For example, in Algorithm SM(m) a processor must wait until time To 
+ k(# + ~) for any message having k signatures, where To is the time (on his 
clock) at which the commander starts executing the algorithm. 

No two clocks run at precisely the same rate, so no matter  how accurately the 
processors' clocks are synchronized initially, they will eventually drift arbitrarily 
far apart unless they are periodically resynchronlzed. We therefore have the 
problem of keeping the processors' clocks all synchronized to within some fixed 
amount, even if some of the processors are faulty. This is as difficult a problem 
as the Byzantine Generals Problem itself. Solutions to the clock synchroniza'~ion 
problem exist which are closely related to our Byzantine Generals solutions. They 
will be described in a future paper. 

A4. Assumption A4 requires that processors be able to sign their messages in 
such a way that  a nonfaulty processor's signature cannot be forged. A signature 
is a piece of redundant information Si(M) generated by process i from a data 
item M. A message signed by i consists of a pair (M, Si(M)). To meet parts (a) 
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and (b) of A4, the function Si must have the following two properties: 

(a) If processor i is nonfaulty, then no faulty processor can generate Si(M). 
(b) Given M and X, any process can determine i fX equals Si(M). 

Property (a) can never be guaranteed, since Si(M) is just a data item, and a 
faulty processor could generate any data item. However, we can make the 
probability of its violation as small as we wish, thereby making the system as 
reliable as we wish. How this is done depends upon the type of faults we expect 
to encounter. There are two cases of interest: 

1. Random Malfunction. By making Si a suitably "randomizing" function, we 
can make the probability that  a random malfunction in a processor generates a 
correct signature essentially equal to the probability of its doing so through a 
random choice procedure--that is, the reciprocal of the number of possible 
signatures. The following is one method for doing this. Assume that  messages are 
encoded as positive integers less than P, where P is a power of two. Let Si(M) 
equal M * Ki mod P, where Ki is a randomly chosen odd number less than P. 
Letting K [  1 be the unique number less than P such that Ki * K i  1 - 1 mod P, a 
process can check that  X = Si (M) by testing that  M = X * K~ 1 mod P. If another 
processor does not have Ki in its memory, then the probability of its generating 
the correct signature M * Ki for a single (nonzero) message M should be l/P: its 
probability of doing so by random choice. (Note that  if the processor could obtain 
Ki by some simple procedure, then there might be a larger probability of a faulty 
processor j forging i's signature by substituting Ki for K/when trying to compute 
Sj(M).) 

2. Malicious Intelligence. If the faulty processor is being guided by a malicious 
intelligence--for example, if it is a perfectly good processor being operated by a 
human who is trying to disrupt the system--then the construction of the signature 
function Si becomes a cryptography problem. We refer the reader to [1] and [4] 
for a discussion of how this problem can be solved. 

Note that  it is easy to generate the signature Si (M) if the process has already 
seen that  signature. Hence, it is important that  the same message never have to 
be signed twice. This means that, when using SM(m) repeatedly to distribute a 
sequence of values, sequence numbers should be appended to the values to 
guarantee uniqueness. 

7. CONCLUSION 

We have presented several solutions to the Byzantine Generals Problem, under 
various hypotheses, and shown how they can be used in implementing reliable 
computer systems. These solutions are expensive in both the amount of time and 
the number of messages required. Algorithms OM(m) and SM(m) both require 
message paths of length up to m 4- 1. In other words, each lieutenant may have 
to wait for messages that  originated at the commander and were then relayed via 
m other lieutenants. Fischer and Lynch have shown that  this must be true for 
any solution that  can cope with m traitors, so our solutions are optimal in that 
respect. Our algorithms for a graph that  is not completely connected require 
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message paths of length up to rn + d, where d is the diameter of the subgraph of 
loyal generals. We suspect that this is also optimal. 

Algorithms OM(m) and SM(m) involve sending up to (n - 1)(n - 2) . . .  
(n - m - 1) messages. The number of separate messages required can certainly 
be reduced by combining messages. It may also be possible to reduce the amount 
of information transferred, but this has not been studied in detail. However, we 
expect that  a large number of messages will still be required. 

Achieving reliability in the face of arbitrary malfunctioning is a difficult 
problem, and its solution seems to be inherently expensive. The only way to 
reduce the cost is to make assumptions about the type of failure that may occur. 
For example, it is often assumed that a computer may fail to respond but will 
never respond incorrectly. However, when extremely high reliability is required, 
such assumptions cannot be made, and the full expense of a Byzantine Generals 
solution is required. 
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