
Qualidade de Software
(14450)

Structural and Mutation Testing

(adapted from lecture notes of the “DIT 635 - Software Quality and Testing” unit,
delivered by Professor Gregory Gay, at the Chalmers and the University of Gothenburg, 2022)

1Nuno Pombo - Qualidade de Software, 2023/24

Today’s Goals

² We’ll look at:
§ white box vs black box
§ role and kinds of white box testing
§ implementation - source, executable and sampling
§ code coverage testing

§ statement coverage
§ basic block coverage

§ mutation testing methods

2

Recall: Kinds of Tests
§ We divide these tests into:

§ Black box methods – cannot see the
software code (it may not exist yet!) –
can only base their tests on the
requirements or specifications

§ White box (aka glass box) methods –
can see the software’s code – can base
their tests on the software’s actual
architecture or code

Black Box
Testing

Methods

White Box
Testing

Methods

3

White Box vs. Black Box

Code Coverage
§Code coverage methods design tests to cover (execute) every method,
statement or instruction of the program at least once
Logic Path/Decision Point Coverage
§Logic path methods design tests to cover every path of execution in the
program at least once
Data & Data Flow Coverage
§Data coverage methods explicitly try to cover the data aspects of the
program code, rather than the control aspects
Fault-Based Testing (e.g. Mutation Testing)
§Mutation testing involves creating many slightly different versions of the code
by mutating (changing operations) in each version
§Used to check sufficiency of test suites in detecting faults

4

Kinds of White Box Testing

Completeness for Black Box Methods
§White box code coverage gives a measure of completeness
for open-ended black box methods

§ Example: Black box shotgun testing becomes a
systematic method if we use code coverage (all
statements executed at least once in the set of tests) as
the completion criterion

5

Role of White Box Testing

Finds a Different Kind of Errors
§Black box testing finds errors of omission – that is, something
that is specified that we have failed to do
§White box testing finds errors of commission – that is,
something that we have done, but incorrectly
Automation
§Because white box testing involves the program code itself,
which has a standard form, we can automate most of it

6

Role of White Box Testing

Code Injection
§Injection is not itself a test method, but refers to modifications of the source
or executable code being tested in order to make tests more effective
(possible because white box)

§ Example: Modify the program to log each statement’s line number to a
log file as it is executed, in order to check that every line is executed at
least once by a test suite (Produces a file of executed line numbers –
check every line there)

§Injection involves adding extra statements or instructions to execute that do
not change what the original program does but checks or logs additional
information about execution of the program (such as which statements have
been executed)
§Original code is not changed, instead a separate copy with modifications is
generated to run the tests on

7

White Box Testing & Code Injection

Applications of Code Injection

² Instrumentation Injection
§ Involves adding code to instrument the actions of the program at every

method, statement or instruction during testing, to keep track of
properties such as execution coverage

² Performance Instrumentation
§ Involves adding code to log the actual time or space used by each

method or statement of the program during execution
² Assertion Injection

§ Involves adding strict run-time assertion code to every method,
statement or instruction in the program during testing, to help localize
the cause of failures

² Fault Injection
§ Involves adding code to simulate run-time faults, to test fault handling

8

Three Levels of Implementation
§Although it is not a necessity, white box testing usually
involves validation of coverage using code injection
§This code injection can be implemented in three separate
ways:

1. At the source level
2. At the executable code level
3. At the execution sampling level

9

Implementation of White Box Code Injection

Three Levels of Implementation
1. At the source level
2. At the executable code level

3. At the execution sampling level

1 & 2: A copy of the program under test is altered to inject the
additional source or executable code to log coverage as the program
executes.

3: The original program under test is run but with regular timer
interrupts - at each interrupt, the current state and execution location
at interrupt time can be sampled and logged before continuing
execution.

10

Implementation of White Box Testing

Implementing Code Injection by Source Modification
§Create a copy of the program with new statements inserted to
log coverage

11

Source Level Implementation

12

Executable Code Level Implementation

13

Executable Code Level Implementation

Testing Tools
§Obviously implementing these strategies by hand
programming would be tedious and time consuming
§White box coverage testing is almost always supported by
tools to implement the necessary code injections
§Often test analysis and selection of test cases for white box
testing can also be done automatically by modern tools

14

White Box Tools

Code Coverage Methods
§Two kinds: statement analysis (flow independent), decision
analysis (flow dependent)
§Statement analysis methods

§ statement coverage
§ basic block coverage

§Decision analysis methods
§ decision coverage
§ condition coverage
§ loop coverage
§ path coverage

15

Code Coverage Testing

Code Coverage Methods
§Two kinds: statement analysis (flow independent), decision
analysis (flow dependent)
§Statement analysis methods

§ statement coverage
§ basic block coverage

§Decision analysis methods
§ decision coverage
§ condition coverage
§ loop coverage
§ path coverage

16

Code Coverage Testing

Statement Coverage Method
§Causes every statement in the program to be executed at
least once, giving us confidence that every statement is at least
capable of executing correctly
§System: Make a test case for each statement in the program,
independent of the others

§ Test must simply cause the statement to be run, ignoring its
actions and sub-statements (but still must check that result of
test is correct)

§Completion criterion: A test case for every statement
§ Can be checked by instrumentation injection to track statement

execution coverage

17

Statement Coverage

Example: Statement Coverage

18

Statement Coverage Tests
§We blindly make one test for each statement, analyzing which
inputs are needed to cause the statement to be executed
§Create test case for each unique set of inputs

19

Example: Statement Coverage

Statement Coverage Tests

20

Example: Statement Coverage

Basic Block Analysis Method
§Causes every basic block (indivisible sequence of
statements) to be executed at least once - (usually) generates
fewer tests
§System: Identify basic blocks by sequence analysis, design
test case for each basic block

§ Sequence of statements in a row, ignoring sub-statements,
such that if first is executed then following are all executed

§Completion criterion: A test case for every basic block
§ Can be checked by instrumentation injection to track statement

execution coverage

21

Basic Block Coverage

22

Example: Basic Block Analysis

Basic Block Coverage Tests
§We make one test for each block, analyzing which inputs are
needed to cause the block to be entered
§Create test case for each unique set of inputs

23

Example: Basic Block Analysis

Basic Block Coverage Tests

24

Example: Basic Block Analysis

Decision (Branch) Coverage Method

§ Causes every decision (if, switch, while,
etc.) in the program to be made both ways
(or every possible way for switch)

§ System: Design a test case to exercise each
decision in the program each way (true /
false)

§ Completion criterion: A test case for each
side of each decision

25

Example: Decision Coverage

26

int x, y;
x = c.readInt ();
y = c.readInt ();

1 if (y == 0)
("y is zero");c.println

else
2 if (x == 0)

("x is zero");c.println
else
{

i++)for (int i = 1; i <=x ;
{

3 if (i % y == 0)
c.println (i);

}
}

Example: Decision Coverage

27

• We make one test for each side of each decision

Decision x input y input
1 true 0 0
1 false 0 1

2 true 0 1
2 false 1 1

3 true 1 1
3 false 2 3

Condition Coverage

28

• Like decision coverage, but causes every condition
expression to be exercised both ways (true / false)

• A condition is any true / false subexpression in a decision

Example:

if ((x == 1 || y > 2) && z < 3)

Requires separate condition coverage tests for each of:

x == 1 true / false

y > 2 true / false

z < 3 true / false

• More effective than simple decision coverage since exercises
the different entry preconditions for each branch selected

Loop Coverage

29

§ Most programs do their real work in do, while and for loops

§ This method makes tests to exercise each loop in the program
in four different states :

§ execute body zero times (do not enter loop)
§ execute body once (i.e., do not repeat)
§ execute body twice (i.e., repeat once)
§ execute body many times

§ Usually used as an enhancement of a statement, block,
decision or condition coverage method

§ System: Devise test cases to exercise each loop with zero, one,
two and many repetitions

§ Completion criterion: A test for each of these cases for each
loop

Example: Loop Coverage

30

int x, y;
X = c.readInt ();
Y = c.readInt ();

if (y == 0)
c.println ("y is zero");

else if (x== 0)
("x is zero");c.println

else
{

i<=x ; i++)for (int i=1;
{

if (i % y == 0)
c.println(i);

}
}

Loop Body x y

zero times N/A

Once 1 1
Twice 2 1

many times 10 1

Execution Paths

31

§ An execution path is a sequence of executed statements
starting at the entry to the unit (usually the first statement) and
ending at the exit from the unit (usually the last statement)

§ Two paths are independent if there is at least one statement
on one path which is not executed on the other

§ Path analysis (also know as cyclomatic complexity analysis)
identifies all the independent paths through a unit

Execution Path Analysis

32

• It is easiest to do path analysis if we look at the execution
flow graph of the program or unit

• The flow graph simply shows program control flow
between basic blocks

if-then-else do-while switch

Path Coverage Testing

33

§ Advantages

§ Covers all basic blocks (does all of basic block testing)

§ Covers all conditions (does all of decision/condition testing)

§ Does all of both, but with fewer tests!

§ Automatable (actually, in practice requires automation)

§ Disadvantages

§ Does not take data complexity into account at all

Path Coverage Testing – Disadvantages

34

§ Example: These fragments should be tested the same way, since they
actually implement the same solution - but the one on the left gets five tests,
whereas the one on the right gets only one

//
switch (n) {

case

case

case

case

case

1:
s = “One”;
break;
2:
s = “Two”;
break;
3:
s = “Three”;
break;
4:
s = “Four”;
break;
5:
s = “Five”;
break;

}

“Five”};

//
String numbers[] =

{“One”, “Two”,
“Three”, “Four”,

s = numbers[n];

White Box Data Coverage

35

§ Data flow coverage is concerned with variable definitions and
uses along execution paths

§ A variable is defined if it is assigned a new value during a
statement execution

§ A variable definition in one statement is alive in another if
there is a path between the two statements that does not
redefine the variable

§ There are two types of variable uses
§ A P-use of a variable is a predicate use (e.g. if statement)
§ A C-use of a variable is a computation use or any other

use (e.g. I/O statements)

Example: Definition, P-Use, C-Use of Variables

find (int list[], int n, int key)static int
{

result =

int lo = 0;
int hi = n - 1;
int -1;

lo)while (hi >=
{

if (result !=
break;

else
{

final int mid = (lo + hi) / 2;
if (list[mid] == key)

result = mid;
else if (list[mid] > key)

else
hi = mid - 1;
// list[mid] < key
lo = mid + 1;

}
}

return result;
}

<- Definition of result

-1) <- P-Use of result

<- Definition of result

36

Example: Definition, P-Use, C-Use of Variables

find (int list[], int n, int key)static int
{

result =

int lo = 0;
int hi = n - 1;
int -1;

lo)while (hi >=
{

if (result != -1)
break;

else
{

final int mid = (lo + hi) / 2;
if (list[mid] == key)

result = mid;
else if (list[mid] > key)

else
hi = mid - 1;
// list[mid] < key
lo = mid + 1;

}
}

return result;
} 37

<- Definition of hi

<- C-Use of hi

<- P-Use of hi

<- Definition of hi

§ There are a variety of different testing strategies related to data
flow:

§ All-Uses coverage: test all uses of each definition

§ All-Defs coverage: test each definition at least once
§ All C-Uses/Some P-Uses coverage: test all computation

uses. If no computation uses for a given definition then
test at least one predicate use

§ All P-Uses/Some C-Uses coverage: test all predicate
uses. If no predicate uses for a given definition then test
at least one computation use

§ All P-Uses coverage: Test each predicate use

White Box Data Coverage

38

White Box Data Coverage

39

§ We have covered definitions of data, uses of data, and testing
strategies for data flow coverage.

§ System: Identify definitions (and uses) of variables and testing
strategy. Design a set of test cases that cover the testing
strategy.

§ Completion criterion: Depends on the test strategy. For
example, in All-Defs we are done when we have a test case for
each variable definition.

What is it for?
§Mutation testing is a white box method for checking the
adequacy of test suites
§As you have already discovered, creating a test suite can be
an expensive and time consuming effort
§No matter what test method is used, discovering if test suites
are adequate to uncover faults is itself an even more difficult
task
§Mutation testing offers an almost completely automated way to
check the adequacy of a set of tests in uncovering faults in the
software

40

Mutation Testing

How does it work?
§In order to test the adequacy of a test suite, we first run the
software on the suite and fix any problems until we are satisfied
that the software passes the tests
§We then save the results of the tests in a file or set of files to
serve as the correct output to compare to

41

Mutation Testing

How does it work?
§We then use mutation of the source code to create a set of
mutants, each of which is a program slightly diferente from the
original
§For each mutant, we run the test suite on the mutante and
compare the results to the saved results from the original

§ If the results differ, then the mutant has been “killed”
(detected) by the test suite

§ If the results do not differ, then the test suite is
inadequate to detect the mutant, and a new test must be
added to the suite to “kill” that mutant

42

Mutation Testing

Systematic Approach
§In order for mutation testing to be systematic, there must be a
system and a completion criterion for creating mutants
§The system for mutation normally specifies simple syntactic
changes to the program source representing errors in the code
§Each mutant has exactly one change in it
§We are done when every possible single change mutant of the
system has been generated and tested

43

Systematic Mutation

Systematic Approach
§Example systematic mutations are:

§ value mutations (changing constants, subscripts or
parameters by adding or subtracting one, etc.)

§ decision mutations (inverting or otherwise modifying the
sense of each decision condition in the program)

§ statement mutations (deleting or exchanging individual
statements in the program)

44

Systematic Mutation

Value Mutation Example
§System: Mutate the value of each constant in the program to
be off by one (or more generally, each integer expression)
§Completion criterion: One mutant for each constant in the
program

§Note that there are many other possible value mutations:
§ constants modified in some other way, e.g. off by -1
§ all integer expressions modified (not just constants), e.g.,

x changed to x+1, etc.

45

Example #1: Value Mutation

Example #1: Value Mutation

46

Example #1: Value Mutation

47

Example #1: Value Mutation

48

Example #1: Value Mutation

49

Example #1: Value Mutation

50

Decision Mutation Example
§System: Invert the sense of each decision condition in the
program
(e.g., change > to <, == to !=, and so on)
§Completion criterion: One mutant for each decision condition
in the program

51

Example #2: Decision Mutation

Example #2: Decision Mutation

52

Example #2: Decision Mutation

53

Example #2: Decision Mutation

54

Statement Mutation Example
§System: Delete each statement in the program
§Completion criterion: One mutant for each statement

§Note that there are many other possible statement mutations:
§ interchanging adjacent statements
§ shuffling sequences of statements
§ doubling statements
§ many more

55

Example #3: Statement Mutation

56

Example #3: Statement Mutation

Some Final Observations
§In practice, simple statement coverage tests are often
sufficient to “kill” most kinds of mutants. The adequacy of suite
can be measured as: (# mutants killed) / (total mutants)

§If we do mutation testing on acceptance, functionality
coverage, input/output coverage or other black box test suites,
on the other hand, we are likely to find many mutants not
“killed” by the tests

§Since most projects use primarily black box techniques,
automated mutation testing can be a very valuable help in
making test suites more effective

Mutation Testing in Practice

57

Key Points (1 of 2)

²White box testing includes: code coverage, logic
path/decision point coverage, data & data flow coverage,
fault-based testing (e.g. mutation testing)

²White box methods often involve code injection to
instrument execution using source modification,
executable code modification or run time sampling

² Today we started to look at one class of code coverage
methods: Statement analysis methods (statement, basic
block coverage)

58

Key Points (2 of 2)

²Mutation Testing is a white box method for automatically
checking test suites for completeness

²Mutations are simple, syntactic variants of programs that
can be generated automatically

² Typical mutations are value mutations, decision
mutations, statement mutations

59

60

