
Qualidade de Software
(14450)

Automated Test Case Generation

(adapted from lecture notes of the “DIT 635 - Software Quality and Testing” unit,

delivered by Professor Gregory Gay, at the Chalmers and the University of Gothenburg, 2022 and “Using Genetic Algorithms to Automatically

Generate Unit Tests - Software Quality” dissertation by Manuel Magalhães, at Universidade da Beira Interior, 2024)

1
Nuno Pombo, e Manuel Magalhães - Qualidade de Software, 2024/25

Today’s Goals

✧ Introduce Search-Based Test Generation

▪ (a.k.a. : Fuzzing)

▪ Test Creation as a Search Problem

▪ Metaheuristic Search

▪ Fitness Functions

✧ Example - Generating Covering Arrays for Combinatorial

Interaction Testing

2

Automating Test Creation

✧ Testing is invaluable, but expensive.

▪ We test for *many* purposes.

▪ Near-infinite number of possible tests we could try.

▪ Hard to achieve meaningful volume.

3

Automation of Test Creation

✧ Relieve cost by automating test creation.

▪ Repetitive tasks that do not need human attention.

▪ Generate test input.

• Need to add assertions.

• Or just look for crashes.

4

Automation!

Tests are

generating!

Test Automation

✧ Test Automation is the development of software to

separate repetitive tasks from the creative aspects of

testing.

✧ Automation allows control over how and when tests are

executed.

▪ Control the environment and preconditions.

▪ Automatic comparison of predicted and actual output.

▪ Automatic hands-free re-execution of tests.

5

Manual vs Automation

✧ Scaling

▪ Manual generation can be an exhaustive and a time-consuming

process. It scales with the size of the project, which can hinder the

development speed of the software;

▪ Automated generation, being an automated process, can help reduce

the time needed to perform testing activities;

✧ Coverage and Mutation

• Automated generation of unit tests usually provides a higher capability

of achieving better coverage values than the manual approach;

• The ability to identify mutants in unit tests (identification of allocated

defects) is generally better in unit tests generated automatically;

6

Manual vs Automation

✧ Fault Detection

▪ Automated generation identifies more instances of real faults than the

manual generation;

▪ Allocated defects by mutation testing is not the same as defects

introduced during the project development, such as regression faults.

✧ Cost efficiency

• Automated generation, despite also using human resources, requires an

additional cost which is machine resources;

• The automated generation approach presents very low costs and

overall better cost efficiency in terms of testing time.

7

Test Creation as a Search Problem

✧ Do you have a goal in mind when testing?

▪ Make the program crash, achieve code coverage, cover all 2-

way interactions, …

✧ You are searching for a test suite that achieves that

goal.

▪ Algorithm samples possible test input to find those tests.

8

Test Creation as a Search Problem

✧ “I want to find all faults” cannot be measured.

✧ However, a lot of testing goals can be.

▪ Check whether properties satisfied (boolean)

▪ Measure code coverage (%)

▪ Count the number of crashes or exceptions thrown (#)

✧ If goal can be measured, search can be automated.

9

Search-Based Test Generation

✧ Make one or more guesses.

▪ Generate one or more individual test cases or full suites.

✧ Check suitableness to a specific goal.

▪ Score each test case or full suites.

✧ Search around a space of solutions

▪ Select a set of possible solutions according to a predefined goal.

✧ Try until time runs out or termination criteria is

reached.

▪ Alter the population based on strategy and try again!

10

Search Strategy

✧ The order that solutions are tried is the key to efficiently

finding a solution.

✧ A search follows some defined strategy.

▪ Called a “heuristic”.

✧ Heuristics are used to choose solutions and to ignore

solutions known to be unviable.

▪ Smarter than pure random guessing!

11

Heuristics - Graph Search

✧ Arrange nodes into a hierarchy.

▪ Breadth-first search looks at all nodes on

the same level.

▪ Depth-first search drops down hierarchy

until backtracking must occur.

✧ Attempt to estimate shortest path.

▪ A* search examines distance traveled and estimates optimal

next step.

▪ Requires domain-specific scoring function.

12

How Long Do We Spend Searching?

✧ Exhaustive search not viable due to computational and

temporal constraints.

✧ Search can be bound by a search budget.

▪ Limit for solution’s evaluations

▪ Time allotted to the search (number of minutes/seconds);

▪ Search iteration limit

✧ Optimization problem:

▪ Improve the solutions during the search;

▪ Find the best solution possible in the search space before time

runs out or search budget is reached.

13

Generation as Optimization Problem

✧ Search heuristic becomes important.

▪ If time bound: time to create, execute, and evaluate.

▪ If attempt bound: strategy used to choose next solution.

• Ignoring bad solutions, learning what makes a solution good.

▪ In practice, efficiency in both categories is desired.

14

Random Search

✧ Randomly formulate a solution.

▪ Unit testing: choose a class in the system, choose random

methods, call with random parameter values.

▪ System-level testing: choose an interface, choose random

functions from interface, call with random values.

✧ Keep trying until goal attained or budget expires.

15

Random Search

✧ Sometime viable:

▪ Extremely fast.

▪ Easy to implement, easy to understand.

▪ All inputs considered equal, so no designer bias.

✧ However…

16

Metaheuristic Search

✧ Random search is naive.

▪ Only possible to cover a

small % of full input space.

✧ Metaheuristic search adds

intelligence to random.

▪ Feedback and sampling

strategies.

▪ Still fast, able to learn

from bad guesses.

17

Mechanics of Optimization

18

AKA: How can I get a computer to search?

Fitness Function(s)Metaheuristic

Search-Based Test Generation

19

The Metaheuristic

(Sampling Strategy)

Genetic Algorithm

Simulated Annealing
Hill Climber

(...)

+

The Fitness Functions

(Feedback Strategies)

Distance to Coverage Goals

Count of Executions Thrown
Input or Output Diversity

(...)

=

(Goals)

Cause Crashes

Cover Code Structure,
Generate Covering

Array,

(...)

The Metaheuristic

✧ Decides how to select and revise solutions.

▪ Changes approach based on past guesses.

▪ Fitness functions give feedback to guide the metaheuristic for

better solutions.

▪ Population mechanisms choose new solutions and determine

how solutions evolve.

▪ Formulation of new sampling strategies during the search.

20

The Metaheuristic

✧ Decides how to select and revise solutions.

▪ Small adjustments (local search) or sampling from the whole

space (global search).

▪ One solution at a time or entire populations.

▪ Often based on natural phenomena (chromosomes evolution).

▪ Trade-off between speed, complexity, and understandability.

✧ Metaheuristic algorithms

▪ Hill Climber;

▪ Genetic Algorithms;

▪ Particle Swarm Optimization.

21

“Solutions”

✧ What is a solution?

▪ Test Case: Evolved in isolation from other test cases.

▪ Test Suite: A set of test cases, evolved together.

✧ Depends on how goal attainment measured.

▪ Code Coverage

• Test Case: Target one code section at a time.

• Test Suite: Target coverage of entire class/system.

▪ Mutation Analysis

• Test Case: Target the detection of individual faults.

• Test Suite: Target the detection of multiple faults of entire class/system.

▪ Code Correctness

• Test Case: Evaluate the behavior of individual instructions.

• Test Suite: Evaluate the behavior of individual test cases of entire

class/system.
22

Local Search

✧ Generate and score a potential solution.

✧ Attempt to improve by looking at its neighborhood.

▪ Make small, incremental improvements.

▪ Evaluate if solutions in the neighborhood are closer to the goal.

▪ Search is directioned to adjacent areas.

✧ Very fast, efficient if good initial guess.

▪ Get “stuck” if bad guess.

▪ Often include reset strategies as search tends to get stuck.

23

Exploring the Neighborhood

✧ Small changes to solution.

▪ For each call:

• Switch value of boolean, other values from an enumerated set,

bounded range of numeric choices.

▪ Full test case:

• Insert a new call.

• Delete or replace an existing call.

– Can replace by changing the function called or its parameters.

24

Hill Climbing

✧ Pick a initial solution at random.

✧ Examine the local neighborhood.

✧ Choose the best neighbor and “move” to it.

✧ Repeat until no better solution can be found.

▪ Climbs mountains in fitness function landscape.

▪ Restart when no improvement can be found.

25

Hill Climbing Strategies

✧ Steepest Ascent

▪ Examine all neighbors

▪ Pick one with highest improvement.

✧ Random Ascent

▪ Examine random neighbors.

▪ Choose first to show any improvement.

26

Simulated Annealing

✧ Choose a neighboring test case.

▪ If better, select it. If not, select it at probability:
prob(score, newScore, time, temp) = e((score - newScore) * (time / temp))

▪ Governed by temperature function:
temp(time, maxTime) = (maxTime - time) / maxTime

✧ Initially, large jumps around search space.

▪ Stabilizes over time.

27

Global Search

✧ Generate multiple solutions.

✧ Evolve by examining whole search space.

✧ Typically based on natural processes.

▪ Swarm patterns, foraging behavior, evolution.

▪ Models of how populations interact and change.

28

Genetic Algorithms

✧ Over multiple generations, evolve a population.

▪ Good solutions persist and reproduce.

▪ The worst solutions are eliminated.

✧ Diversity is introduced by:

▪ Keeping the best solutions and some bad solutions.

▪ Creating “offspring” through crossover and mutation to introduce

genetic variety.

▪ Populations with only the best solutions are not desired due to the lack
of genetic diversity.

29

Genetic Algorithms - Population

✧ Set of individuals that represent possible solutions to a

goal.

▪ Individuals are constituted by genes which correspond to their

genetic information;

▪ In tests, the genes are the instructions.

✧ Population size remains static during the generations.

✧ Individuals are initialized randomly.

30

Genetic Algorithms - Selection

✧ Selection of the best individuals according to a goal.

✧ Fitness function aids this selection process.

✧ N-Individuals are chosen for the recombination process.

31

Genetic Algorithms - Crossover

✧ Exchange of information between individuals.

✧ Creation of two new solutions called “Offsprings".

✧ Crossover is based on probability.

▪ Each gene can or cannot be exchanged between parents.

✧ Advantages.

▪ Good information can be exchanged between parents.

• Exchange of new instructions for both tests.

• Offsprings can be closer to achieve the goal.

✧ Disadvantages.

▪ Risk of exchanging irrelevant or bad information between parents.

• Test cases obtaining the same instructions.

32

Genetic Algorithms - Crossover

✧ One Point Crossover

▪ Splice at crossover point.

✧ Uniform Crossover

▪ Flip coin at each line, second child gets other option.

✧ Discrete Recombination

▪ Flip coin at each line for both children.

33

A B C D

1 2 3 4

A B 3 4

1 2 C D

A B C D

1 2 3 4

A B C D

1 2 3 4

A

1 B

2 3

C

D

4

A

A B

2

3

C 4

4

Genetic Algorithms - Mutation

✧ Offsprings suffer mutation on their genes.

✧ Small changes on the individual’s genetic information.

▪ Add/delete/modify a function call;

▪ Change an input value.

✧ Creation of two new offsprings

✧ Mutation is also based on probability

▪ Each gene may or may not be altered.

✧ Advantages

▪ Introduction of genetic variety in the individual

• New instructions added or irrelevant instructions are removed.

✧ Disadvantages

▪ Removal of genetic diversity in the individual

• Same instructions added or removal of relevant instructions.
34

Genetic Algorithms - Mutation

✧ Bitwise

▪ Bit flip of a gene.

✧ Interchanging

▪ Two random genes are interchanged

✧ Reversing

▪ Random gene is chosen and all the remaining genes after it are

reversed between each other.

35

Genetic Algorithms - Individuals Representation

✧ Representation scheme is needed for the

individuals.

✧ The solutions have different nomenclatures

for their representation

▪ Phenotypes: solutions under the problem
context (how a tester sees it);

▪ Genotypes: encoding form under the

problem context (how a computer

understands it).

✧ The encoding scheme is limited to the
problem domain.

✧ The binary encoding scheme is commonly

used.

✧ Test case is the individual while genes are

the instructions or test suite is the individual
while genes are the test cases.

36

Genetic Algorithms - Termination Criteria

✧ Algorithms cannot run forever, so termination criteria

needs to be defined.

✧ Genetic algorithms define these criteria according to time

and solution’s evaluations

▪ Maximum number of generations;

▪ Time budget;

▪ Best fitness score stagnation;

▪ Maximum number of fitness evaluations.

37

Genetic Algorithms - Optimization

✧ Not everything is perfect under a genetic algorithm run.

✧ Genetic mechanisms are far from perfect.

✧ Optimization of genetic mechanisms and attributes is possible.

✧ Improving the genetic algorithm structure can lead to obtaining

better strategies and consecutively better solutions during the run.

✧ Optimization possibilities

▪ Population size: adapting the population size during the run;

▪ Selection: optimizing the selection of individuals to select better genetic

diversity;

▪ Crossover: adjusting the crossover rate or crossover process

considering the population evolution;

▪ Mutation: adjusting the mutation rate or mutation process considering

the fitness converging behavior.

38

Genetic Algorithms - Optimization

✧ Genetic parameters can be adjusted before and after the run;

✧ Techniques for parameter optimization

▪ Parameter Tuning: adjusting parameters before the run;

▪ Parameter Control: adjusting parameters during the run.

✧ Adjusting the parameters after every genetic algorithm run is expensive.

✧ Not all possibilities are able to be tested, so parameter control is

recommended.

✧ Types of parameter control

▪ Deterministic parameter control

• Adjusting parameter values without feedback from the generation.

▪ Adaptive parameter control

• Optimizing parameters with generation feedback.

▪ Self-Adaptive parameter control

• Adjusting self-encoded parameters in the chromosomes' representation scheme;

• Technique called “evolution of evolution”.

39

Genetic Algorithms - Quality

✧ A genetic algorithm quality can be evaluated according

to three performance measures:

▪ Efficiency: how much time the algorithm took to achieve a

solution.

• CPU or wall-clock time;

• Average Number of Evaluations to a Solution (AES): average

number of fitness evaluations in a genetic algorithm run.

▪ Effectiveness: how valuable a solution is to the predefined goal.

• Mean Best Fitness (MBF): average fitness values of the population
in a genetic algorithm run.

• Success Rate (SR): percentage of runs where a desired solution

was obtained.

40

Particle Swarm Optimization

✧ A swarm of agents each attempt to search for good test

cases.

✧ When another agent finds a better solution than the best

known “worldwide”, they tell everybody.

✧ Each agent mutates their solution based on their

knowledge of the best local solution and the best global

solution.

✧ Over time, the agents converge on the best solutions.

41

Particle Swarm Optimization

✧ Each agent has velocity and position.

• Position: Their current solution.

• Velocity: The amount of change to be made to the solution.

Bound by a maximum velocity.

▪ Vectors along all dimensions in the solution. (i.e., method

parameters).

✧ Each round, velocity and position are updated based on

current local and global knowledge.

42

Fitness Functions

✧ Fitness functions play a crucial role in search-based test

generation.

✧ Fitness functions must adhere to the following

requirements:

▪ Return continuous scores as to offer better feedback for the

metaheuristic algorithms.

▪ Return only numeric values in order to properly evaluate the

generation of test cases each time.

▪ Indication of how close the generation was to being optimal. It

should not indicate quality but a distance to optimal quality.

43

Fitness Functions

✧ Domain-based scoring functions that determine how

good a potential solution is.

▪ Should offer feedback:

• Percentage of goal attained.

• Better - information on how to improve solution.

▪ Can optimize more than one at once.

• Independently optimize functions;

• Combine into single score.

✧ Common fitness functions for testing

▪ Coverage of structural elements;

▪ Fault detection;

▪ Code correctness.

44

Example - Branch Coverage

✧ Goal: Attain Branch Coverage over the code.

▪ Tests reach branching point (i.e., if-statement) and execute all

possible outcomes.

✧ Fitness function (Attempt 1):

▪ Measure coverage and try to maximize % covered.

▪ Good: Measurable indicator of progress.

▪ Bad: No information on how to improve coverage.

45

Example - Branch Coverage

✧ Attempt 2: Distance-Based Function

✧ fitness = branch distance + approach level

▪ Approach level

• Number of branching points we need to execute to get to the target

branching point.

▪ Branch distance

• If other outcome is taken, how “close” was the target outcome?

• How much do we need to change program values to get the
outcome we wanted?

46

Example - Branch Coverage

if(x < 10){ // Branch 1

// Do something.

}else if (x == 10){ // Branch 2

// Do something else.

}

47

Approach Level

● If Branch 1 is true, approach

level = 1

● If Branch 1 is false, approach

level = 0

Branch Distance

● If x==10 evaluates to false,

branch distance = (abs(x-

10)+k).

● Closer x is to 10, closer the
branch distance.

Goal: Branch 2, True Outcome

Other Common Fitness Functions

✧ Number of methods called by test suite

✧ Number of crashes or exceptions thrown

✧ Diversity of input or output

✧ Detection of planted faults

✧ Amount of energy consumed

✧ Amount of data downloaded/uploaded

✧ … (anything that reflects what a good test is)

48

What Do I Do With These Inputs?

✧ If looking for crashes, just run generated input.

✧ If you need to judge correctness, add assertions.

▪ General properties, not specific output.

• No: assertEquals(output, 2)

• Yes: assertTrue(output % 2 == 0)

49

Automated Program Repair

✧ Produce patches for common bug types.

✧ Many bugs can be fixed with just a few changes to the

source code - inserting new code, and deleting or

moving existing code.

▪ Add null values check.

▪ Change conditional expression.

▪ Move a line within a try-catch block.

50

Generate and Validate

✧ Genetic programming - solutions represent sequences

of edits to the source code.

✧ Generate and validate approach:

▪ Fitness function: how many tests pass?

▪ Patches that pass more tests create new population:

• Mutation: Change one edit into another.

• Crossover: Merge edits from two parent patches.

51

Risks of Automation

✧ Structural coverage is important.

▪ Unless we execute a statement, we’re unlikely to detect a fault in

that statement.

✧ More important: how we execute the code.

▪ Humans incorporate context from a project.

▪ “Context” is difficult for automation to derive.

▪ One-size-fits-all approaches.

✧ Assessment of code correctness is difficult

▪ Difficulty to assess which structural elements to execute;

▪ Hard assessment of assertions inputs;

▪ Automated generation of test oracles is still under research.

52

Limitations of Automation

✧Automation produces different tests than humans.

▪ “shortest-path” approach to attaining coverage.

▪ Apply input different from what humans would try.

▪ Execute sequences of calls that a human might not try.

✧ Automation can be very effective, but more work is

needed to improve it.

53

54

	Slide 1: Qualidade de Software (14450) Automated Test Case Generation (adapted from lecture notes of the “DIT 635 - Software Quality and Testing” unit, delivered by Professor Gregory Gay, at the Chalmers and the University of Gothenburg, 2022 and “Us
	Slide 2: Today’s Goals
	Slide 3: Automating Test Creation
	Slide 4: Automation of Test Creation
	Slide 5: Test Automation
	Slide 6: Manual vs Automation
	Slide 7: Manual vs Automation
	Slide 8: Test Creation as a Search Problem
	Slide 9: Test Creation as a Search Problem
	Slide 10: Search-Based Test Generation
	Slide 11: Search Strategy
	Slide 12: Heuristics - Graph Search
	Slide 13: How Long Do We Spend Searching?
	Slide 14: Generation as Optimization Problem
	Slide 15: Random Search
	Slide 16: Random Search
	Slide 17: Metaheuristic Search
	Slide 18: Mechanics of Optimization
	Slide 19: Search-Based Test Generation
	Slide 20: The Metaheuristic
	Slide 21: The Metaheuristic
	Slide 22: “Solutions”
	Slide 23: Local Search
	Slide 24: Exploring the Neighborhood
	Slide 25: Hill Climbing
	Slide 26: Hill Climbing Strategies
	Slide 27: Simulated Annealing
	Slide 28: Global Search
	Slide 29: Genetic Algorithms
	Slide 30: Genetic Algorithms - Population
	Slide 31: Genetic Algorithms - Selection
	Slide 32: Genetic Algorithms - Crossover
	Slide 33: Genetic Algorithms - Crossover
	Slide 34: Genetic Algorithms - Mutation
	Slide 35: Genetic Algorithms - Mutation
	Slide 36: Genetic Algorithms - Individuals Representation
	Slide 37: Genetic Algorithms - Termination Criteria
	Slide 38: Genetic Algorithms - Optimization
	Slide 39: Genetic Algorithms - Optimization
	Slide 40: Genetic Algorithms - Quality
	Slide 41: Particle Swarm Optimization
	Slide 42: Particle Swarm Optimization
	Slide 43: Fitness Functions
	Slide 44: Fitness Functions
	Slide 45: Example - Branch Coverage
	Slide 46: Example - Branch Coverage
	Slide 47: Example - Branch Coverage
	Slide 48: Other Common Fitness Functions
	Slide 49: What Do I Do With These Inputs?
	Slide 50: Automated Program Repair
	Slide 51: Generate and Validate
	Slide 52: Risks of Automation
	Slide 53: Limitations of Automation
	Slide 54

