
Qualidade de Software
(14450)

Exploratory Testing

(adapted from lecture notes of the “DIT 635 - Software Quality and Testing” unit,
delivered by Professor Gregory Gay, at the Chalmers and the University of Gothenburg, 2022)

1Nuno Pombo - Qualidade de Software, 2023/24

Today’s Goals

² Introduce Exploratory Testing
§ Human-driven testing of the project, to gain familiarity with the

system and conduct high-level testing.
§ Often focused on “tours” of the software features.

2

Exploratory Testing

² Testers check the system on-the-fly.
§ Guided by scenarios.
§ Often based on ideas noted before beginning.

² Testing as a thinking idea.
§ About discovery, investigation, and role-playing.
§ Tests end-to-end journeys through app.
§ Test design and execution done concurrently.

3

Automation vs Human-Driven

² Unit/System Testing heavily use automation.
§ Tests written as code.
§ Executed repeatedly, often on check-in.

² Exploratory/Acceptance Testing often human-driven
§ Humans interact with app.
§ Based on scenarios, without pre-planned input.
§ Some tool support, but not often repeated exactly.

4

Exploratory Testing

² Tester write down ideas to give direction, then create
tests “live”.
§ Tester chooses next action based on results seen.

² Can find subtle faults missed by formal testing.
§ Allows tester to better learn system functionality, and identify

new ways of using features.

5

Example

² Start with functionality
you know well (Login)

² Examine possible
options and list them.

² Use your findings to
plan the next steps.

² As you learn and
observe, more test
cases will emerge.

6

Some slides derived from https://www.softwaretestinghelp.com/what-is-exploratory-testing/

Session-Based Exploratory Testing

² Time-based method to structure exploratory testing.
§ Conducted with no e-mail, phone, messaging.
§ Short (60min), Normal (90m), Long (120m)

² Primary components:
§ Mission

• The purpose of the session.
• Provides focus for the tester.

§ Charter
• Individual testing goals to be completed in this session.
• Could be a list of features or scenarios.

7

Session Report Items

² Mission: Overall goal
§ “Analyze Login Feature on Website”

² Charter: Features and scenarios to focus on.
§ “Login as existing user with username and password”
§ “Login as existing user with Google account”
§ “Login as existing user with Facebook account”
§ “Enter incorrect username and password to verify validation

message”
§ “Block your username and verify the validation message”
§ “Use Forgot Password link to reset password”

8

Session Report Items

² Start and end time of session
² Duration of session
² Testing notes: journal of actions taken

§ Opened login page
• Verified default screen.
• Verified that existing and new user account links exist.

§ Opened existing user login
• Verified successful login with username, Google, and Facebook.
• Verified validation messages.

9

Session Report Items

² Fault Information: Describe each fault. File a bug
report, include tracker ID.

² Issues Information: If an issue prevents or complicates
testing, describe it.
§ Include data files (screenshots, recordings, files).

² Set-up Time: % of time required to set-up.
² Test Design and Execution Time: % of time spent

purely on testing

10

Session Debrief

² Short meeting between tester and manager to review the
findings.

² Track time spent testing, number of faults reported, time
spent on set-up, time spent on testing, time spent
analyzing issues, features covered.

² Allows time management and process observability.

11

Tips for Exploratory Testing

² Divide the application into modules or features, then try
to further divide.

² Make a checklist of all the features and put a check mark
when each is covered.

² Start with a basic scenario and then gradually enhance it
to add more features to test it.

12

Tips for Exploratory Testing

² Test all input fields.
² Check for all possible error messages.
² Test all negative scenarios.

§ Invalid input, mistakes in usage.
² Check the GUI against standards.
² Check the integration of the application with other

external applications.
² Check for complex business logic.
² Try to do the ethical hacking of the application.

13

Pair-Based Exploratory Testing

² Two people share a computer and test together.
§ One person uses the computer, the other suggests actions and

takes notes.
§ Can be used to train new developers or testers.

² Benefits of pair testing:
§ Increases focus.
§ Leads to more constructive ideas.
§ Avoids biased input selection.

14

Automating Exploratory Testing

² Use tools to streamline bug reporting and reproduction,
snapshots, preparation of executable test suites for
future use.

² A tool captures and records the activities performed by
the tester.
§ Called capture and replay tools.

15

Capture and Replay Tools

• Record input during
exploratory testing.

The “Capture”
• Capture can be replayed

to reproduce outcomes.
• Capture scripts can be

extended and altered to
form new test cases.

16

Automating Exploratory Testing

² Provides clear steps to reproduce failure.

² Can also judge performance.
² Often used in pair exploratory testing.

§ Second tester watches replay from first tester.
§ Second tester looks for ways to extend the tests.
§ First tester does the same with second tester’s replay.
§ Exchange again at the end to confirm results.

17

Example System

² Banking Webapp

² How would you perform exploratory testing?
§ Scenarios you would try?
§ Features you would focus on?

18

Using “Tours” in Exploratory Testing

² A tourist seeks to visit as many districts of a city as
possible within the time budget.
§ In software, the “city” is the system, and the “districts” are

aspects of the system.

² A tour is a plan for exploratory testing.
§ Includes a set of objectives, based on visiting different “districts”,

to focus on during testing.
§ Should take less than four hours.

19

Exploratory Tours

² Features split into “districts” based on type and how we
test.
§ Business = core functionality
§ Seedy = security aspects

² “Tours” related to each district.
§ Each prescribes a way of exploring
the software.

20

Business District

² Most important features.
§ The functionality that will get users to buy software.

² Tours focus on features that are used most often.
§ Guidebook Tour: Focuses on common user journeys, covered

in user manuals and tutorials.
§ Fed-Ex Tour: Focuses on how data is passed and transformed

between these features.

21

Guidebook Tour

² Cities advertise top attractions, and ensure they are
clean and safe.

² Software offers user manuals and tutorials, illustrating
step-by-step use of features.
§ Follow tutorials and execute each step.
§ Tests both functionality and accuracy of tutorials.
§ If software and tutorial do not match, report an issue.

22

Guidebook Variants

² “Blogger’s Tour”
§ Follow guides and scenarios from StackOverflow, blogs, books,

other tutorials.

² “Pundit’s Tour”
§ Create tests based on complaints.
§ Try to reproduce their issues.

² “Competitor’s Tour”
§ Perform tour on competing products and their guides.
§ Identify potential improvements to your system.

23

Fed-Ex Tour

² When a package is sent, it is handled by many people
and passes through many locations.
§ In software, data is passed, transformed, and passed again

before output appears.

² Examine how data is manipulated.
§ Validate data after operations.
§ Look at serialization/deserialization.
§ (ex: how does shopping site handle mailing addresses?)

24

Fed-Ex Tour Example

² Test Case Management System
§ Client app pulls “work

items” from a server
and displays it in GUI
for manipulation.

• Test cases, bug reports
§ Relies on server

connection for almost
all functionality.

§ Many clients can modify same work items concurrently.

25

Fed-Ex Tour Example

² Test Case Management System
² Must keep data items in sync between clients.

§ Bug 1: Modify name of test case, go back to view the plan. Must
manually refresh to see the updated name.

§ Bug 2: Modifying the name of a test plan while a second client
had it open would crash the app.

§ Bug 3: If a test plan is linked to a deleted CI build, the app will
crash when the plan is opened.

26

Historic District

² Historic districts contain important old buildings.

² In software, these are older features still in use.
² Tours verify that they still work and are fault-free.

§ Bad Neighborhood Tour: Ensure that faulty code now works,
and that fixes did not introduce new faults.

§ Museum Tour: Ensure that unchanged code still works as
intended.

27

Bad Neighborhood Tour

² Complex features may have had many faults fixed over
time.

² Focus on those features and ensure that:
§ Reported faults have actually been fixed.
§ New faults have not been introduced or uncovered.

² Also check related features for introduced faults.

28

Museum Tour

² Older features may not have been modified or retested
recently.

² Verify that old code still works in the current system.
§ Check modification dates in repository, and ensure oldest

elements are retested.
§ Such elements often lack tests, are hard to modify, not tested up

to current standards.

29

Entertainment District

² Entertainment districts fill in the gaps in a vacation when
you want to relax.
§ In software, this represents supporting features that

aren’t part of critical functionality.
• Word processor: Making document look nice.

² Tours visit supporting features and ensures they
are properly intertwined with core features.
§ Supporting Actor: Features on-screen with core features
§ All-Nighter Tour: Run the software for a long time.

30

Supporting Actor Tour

² Many features might be linked to a core feature.
§ When we search for a product (core feature), we see “reviews”

and “similar items” (non-core features).

² Focus testing on features that share the screen with core
features.
§ Will be used often.
§ Make sure they can be accessed from the core feature.

31

Tourist District

² Captures the experience of being a tourist - visit
functions quickly and avoid deep inspection of individual
features.

² Souvenir Tour: Run quick tests on functions, examine
actions and identify gaps, plan round 2.

² Supermodel Tour: Test the GUI thoroughly, look for GUI
errors, inconsistencies, usability errors.

32

Supermodel Tour

² Ignore the functionality and focus on the GUI.

² As you try different functions:
§ Does GUI render properly

and quickly?
§ Are transitions clean?
§ Are colors and styles used

consistently?
§ Is GUI usable and accessible

by those with dyslexia or colorblindness?

33

Supermodel Tour Example

² Dynamics AX Client
§ Resource planning system acquired by Microsoft.
§ Shift from APIs to heavy GUI development.
§ Led to take-up of exploratory testing.

• Found MANY bugs missed by API tests.
• Many new scenarios and interactions not considered before.
• Testers learned that they knew very little about their own app.
• Now: exploratory testing before new features merged.

34

Supermodel Tour Example

² Actions that exposed DynamicAX issues:
§ Modify OS settings (brightness/contrast/resolution) and verify the

elements display properly.
§ Access remotely and look for flickering or bad rendering.
§ Run with multiple monitors.
§ Combine with Supporting Actor Tour:

• Open pop-up, but look for GUI issues around pop-up.

² Appearance faults often have major impact on user
perception of the program.

35

Supermodel Tour Example

² Windows Phone
§ Mobile OS
§ Always connected, supports mobile,

bluetooth, WiFi
§ Must consider memory, battery

life, CPU speed, bandwidth.
§ Anyone can release apps that can

cause potential issues on a
device.

36

Supermodel Tour Example

² Windows Phone
§ Set to an uncommon screen resolution.

• Navigated to different calendar views.
• When selecting a month, the month “view” was centered when it

should have been top-justified.
• Missing flag for screen resolution in this view.

§ Usability of Maps application.
• Device knows current location, but does not use it as default when

“Location A” field left blank.
• Not a bug, but fixing would improve user experience.

37

Supermodel Tour Example

² Windows Media Player
§ Media player.
§ Sync, burn, rip, play many

media types.
§ UI-centric application.

• Inputs are text, check boxes,
option icons, disc icons.

• Output is audio, video, dialog boxes.

38

Supermodel Tour Example

² Windows Media Player
§ Supermodel tour gave most

rapid results to testers.
§ Many typographical mistakes

found early in development.
• Look at text and read slowly.
• (count to two before going to the next word)
• These faults are not *serious*, but will harm your reputation if there

are many of them.

39

Hotel District

² Return to hotel to take a break.

² Focuses on secondary and supporting usage scenarios.
§ Software “at rest” can be very busy.
§ Rained Out Tour: Cancel running operations and see if

problems are caused.
§ Couch Potato Tour: Leave fields blank and use default values

to assess ability to process partial information.

40

Rained-Out Tour

² Look for operations that can be cancelled.
§ Cancel midway through, see if everything still works.

² Good for finding failures related to the program’s inability
to clean up after itself.
§ Open files, corrupted memory or state.

² Even if there is no cancel button, can click back button or
close entirely.

41

Rained-Out Tour Example

² Change the state of the software before cancelling.
§ E.g., open a form and enter information, then close it.
§ Opened a pop-up within a form, then closed the form while pop-

up was open.
• App crashed because pop-up was still open.

§ After opening “User Setup” form, they left it open and switched to
a different module.

• Crash when they clicked Setup form’s cancel button.

42

Rained-Out Tour Example

² Reattempt scenario after cancelling.
§ New feature ensures that creates/updates/deletes for joined data

occur within a single operation.
§ Cancel changes by clicking “Restore” button on toolbar.
§ Changes discarded and replaced by values in database.
§ Reattempted to update same record, leading to crash.

43

Rained-Out Tour Example

² Test Case Management System
² Interrupted server requests and refresh actions can lead

to issues.
§ Bug 1: Canceled initial connection to project. No longer able to

manually connect to it.
§ Bug 2: Switching test suites during loading does not stop loading

of the original suite.
§ Bug 3: Clicking refresh button several times causes slowdown,

as each refresh is handled (not just the latest).

44

Rained-Out Tour Example

² Windows Phone
§ Search for contact

• Loaded > 4000 contacts. While searching, they changed the search
string.

• Changed filter clashed with original filter, incorrect results.
§ Bluetooth Connection

• If focus shifts while connecting to device, can try to connect again
• Multiple connection requests will be sent.
• Device functions once connected, but multiple failure notices come

back.

45

Couch Potato Tour

² Tester does least interaction possible.
§ Leave default values in place, leave input fields blank, try to

move forward without offering much data.
² Ensures software must execute code for processing

blank or partial information and defaults.
§ We try so many complicated scenarios that we can miss or

forget the defaults.

46

Seedy District

² Focused on attacking and breaking the system.
§ Saboteur Tour: Directly attack software via malformed input or

resource manipulation.
§ Antisocial Tour: Try unlikely input or perform actions in the

wrong order.
• (add 10000 songs instead of one, try to play an empty playlist,

order 0 or 10000000 pairs of shoes)

47

Saboteur Tour

² Force the software to act.

² Understand the resources it requires to successfully act.
² Remove of restrict those resources.

§ Use corrupt input data, limit network connectivity, allow too little
RAM, run many other apps at the same time.

² Think of ways to creatively disrupt operations and try
them out.

48

Saboteur Tour Example

² Test Case Management System
² Change or remove necessary resources.

§ Bug 1: System crashes if connection to data server is closed at
different points.

§ Bug 2: System crashes, restarts, crashes again, etc. if the config
file is corrupted.

§ Bug 3: System crashes if config file is too large.
• (also try making it read-only, changing file type, deleting)

49

Saboteur Tour Example

² Windows Phone
§ Contact lists linked to call history, speed dial, texts, etc.

• Delete linking database between contacts and speed dial.
• Contacts still on device, so phone thinks data is synced.
• However, speed dial is empty.

§ Airplane mode may not be accounted for.
• IM client loses connection when airplane mode turned on.
• However, does not realize it was disconnected.
• User can still attempt to use client when nothing will work.

50

Revisiting the Example System

² Banking Webapp

² How would you perform exploratory testing?
§ Scenarios you would try?
§ Features you would focus on?
§ Particular tours?

51

Key Points (1 of 2)

² Exploratory Testing
§ Tests are not created in advance.
§ Testers check the system on-the-fly,

• Often based on ideas noted before beginning.
§ Testing as a thinking idea.

• About discovery, investigation, and role-playing.
§ Test design and execution done concurrently.

• Often by directly using the software and its user interfaces

52

Key Points (2 of 2)

² Tours apply different focus areas to exploration
§ Business District: Core features
§ Historic District: Legacy code and old software versions
§ Entertainment District: Supporting functionality, long execution

sessions
§ Tourist District: Looks for gaps in the experience, iterative fast

rounds of exploration.
§ Hotel District: Focuses on supporting functionality
§ Seedy District: Attacks and misuse of software

53

Practice time – Office360 (Excel, Powerpoint, Word)

² How would you perform exploratory testing?
§ Scenarios you would try?
§ Features you would focus on?
§ Particular tours?

54

55

