
Qualidade de Software
(14450)

System Testing

(adapted from lecture notes of the “DIT 635 - Software Quality and Testing” unit, 
delivered by Professor Gregory Gay, at the Chalmers and the University of Gothenburg, 2022)

1Nuno Pombo - Qualidade de Software, 2023/24



Today’s Goals

² Discuss testing at the system level.
§ System (Integration) Testing versus Unit Testing.

² Understand how interactions can create faults.

² Introduce process for creating System Tests.

§ Identify a Independently Testable Function
§ Identify Choices
§ Identify Representative Values
§ Generate Test Case Specifications
§ Generate Concrete Test Cases

² Examine how to select system tests to increase likelihood of detecting
interaction faults.
§ Category-Partition Method
§ Combinatorial Interaction Testing

2



Unit Testing

² Testing the smallest “unit” that can be tested.
§ Often, a class and its methods.

² Tested in isolation from all other units.
§ Mock the results from other classes.

² Test input = method calls.

² Test oracle = assertions on output/class variables.

3



Unit Testing

² For a unit, tests should:
§ Test all “jobs” associated with the unit.

• Individual methods belonging to a class.
• Sequences of methods that can interact.

§ Set and check value of all class variables.
• Examine how variables change after method calls.
• Put the variables into all possible states (types of values).

4



5

Unit Testing



6

Unit Testing - Advantages

² Unit testing increases confidence in changing/ maintaining code. If
good unit tests are written and if they are run every time any code is
changed, we will be able to promptly catch any defects introduced
due to the change. Also, if codes are already made less
interdependent to make unit testing possible, the unintended impact
of changes to any code is less.

² Codes are more reusable. In order to make unit testing possible,
codes need to be modular. This means that codes are easier to
reuse.

² Unit testing are more reliable than ‘developer tests’.



7

Unit Testing - Advantages

² The effort required to find and fix defects found during
unit testing is very less in comparison to the effort
required to fix defects found during system testing or
acceptance testing.

² The cost (time, effort, destruction, humiliation) of fixing a
defect detected during unit testing is lesser in
comparison to that of defects detected at higher levels.

² Debugging is easy. When a test fails, only the latest
changes need to be debugged. With testing at higher
levels, changes made over the span of several
days/weeks/months need to be scanned.



System Testing

² After testing units, test their integration.
§ Integrate units in one subsystem.
§ Then integrate the subsystems.

² Test through a defined interface.
§ Focus on showing that functionality accessed through interfaces

is correct.
§ Subsystems: “Top-Level” Class, API
§ System: API, GUI, CLI, …

8



System Testing - Example

9



System Testing

Subsystem made up classes of A, B, and C. We have
performed unit testing...
² Classes work together to perform subsystem functions.

² Tests applied to the interface of the subsystem they form.

² Errors in combined behavior not caught by unit testing.

10



System Testing

² Functional tests at the system level are used to ensure
that the behaviour of the system adheres to the
requirements specification. All functional requirements
for the system must be achievable by the system.

² Functional tests are black box in nature. The focus is on
the inputs and proper outputs for each function.

² This is the only phase of testing which tests both
functional and non-functional requirements of the system
(e.g. usability, performance, security, reliability, stress
and load, …).

11



Unit vs System Testing

² Unit tests focus on a single class.
§ Simple functionality, more freedom.
§ Few method calls.

² System tests bring many classes together.
§ Focus on testing through an interface.
§ One interface call triggers many internal calls.

• Slower test execution.
§ May have complex input and setup.

12



System Testing and Requirements

² Tests can be written early in the project.
§ Requirements discuss high-level functionality.
§ Can create tests using the requirements.

² Creating tests supports requirement refinement.
² Tests can be made concrete once code is built.

13



Interface Types

² Parameter Interfaces
§ Data passed from through method parameters.
§ Subsystem may have interface class that calls into underlying

classes.

² Procedural Interfaces
§ Interface surfaces a set of functions that can be called by other

components or users (API, CLI, GUI).
§ Integrates lower-level components and controls access.

14



Interface Types

² Shared Memory Interfaces
§ A block of memory is shared between (sub)systems.

• Data placed by one (sub)system and retrieved by another.
§ Common if system architected around data repository.

² Message-Passing Interfaces
§ One (sub)system requests a service by passing a message to

another.
• A return message indicates the results.

§ Common in parallel systems, client-server systems.

15



Interface Errors

² Interface Misuse
§ Malformed data, order, number of parameters.

² Interface Misunderstanding
§ Incorrect assumptions made about called component.
§ A binary search called with an unordered array.

² Timing Errors
§ Producer of data and consumer of data access data in the wrong

order.

16



Testing Percentages

² Unit tests verify behavior of a single class.
§ 70% of your tests.

² System tests verify class interactions.
§ 20% of your tests.

² GUI tests verify end-to-end journeys.
§ 10% of your tests.

17



Testing

² 70/20/10 recommended.

² Unit tests execute quickly, relatively simple.
² System tests more complex, require more setup, slower

to execute.

² UI tests very slow, may require humans.
² Well-tested units reduce likelihood of integration issues,

making high levels of testing easier.

18



Creating System-Level Tests

19



Independently Testable Functionality

² A well-defined function that can be tested in
(relative) isolation.
§ Based on the “verbs” - what can we do with this system?
§ The high-level functionality offered by an interface.
§ UI - look for user-visible functions.

• Web Forum: Sorted user list can be accessed.
• Accessing the list is a testable functionality.
• Sorting the list is not (low-level, unit testing target)

20

Identify an Independently 
Testable Function



Units and “Functionality”

² Many tests written in terms of “units” of code.
² An independently testable function is a capability of the

software.
§ Can be at class, subsystem, or system level.
§ Defined by an interface.

21

Identify an Independently 
Testable Function



Identify Input Choices

² What choices do we make when using a function?
§ Anything we control that can change the outcome.

² What are the inputs to that feature?
² What configuration choices can we make?

² Are there environmental factors we can vary?
§ Networking environment, file existence, file content, database

connection, database contents, disk utilization, …

22

Identify Choices



Ex: Register for Website

² What are the inputs to that feature?
• (first name, last name, date of birth, e-mail)

² Website is part of product line with different database options.
• (database type)

² Consider implicit environmental factors.
• (database connection, user already in database)

23

Identify Choices



Parameter Characteristics

² Identify choices by understanding how parameters are
used by the function.

² Type information is helpful.
§ firstName is string, database contains UserRecords.

² … but context is important.
§ Reject registration if in database.
§ … or database is full.
§ … or database connection down.

24

Identify Choices



Parameter Context

² Input parameter split into multiple “choices” based on
contextual use.
§ “Database” is an implicit input for User Registration, but it leads

to more than one choice.
§ “Database Connection Status”, “User Record in Database”,

“Percent of Database Filled” influence function outcome.
• The Database “input” results in three input choices when we

design test cases.

25

Identify Choices



Examples

Class Registration System

What are some independently testable functions?

26

• Register for class
• Drop class
• Transfer credits from another university 
• Apply for degree

Identify an Independently 
Testable Function



Example - Register for a Class

What are the choices we make when we design a test 
case?

27

• Course number to add
• Student record
• What about a course database? Student record 

database?
• What else influences the outcome?

Identify Choices



Example - Register for a Class

² Student Record is an implicit input choice.

² How is it used?
§ Have you already taken the course?
§ Do you meet the prerequisites?
§ What university are you registered at?
§ Can you take classes at the university the course is offered at?

28

Identify Choices



Example - Register for a Class

² Potential Test Choices:
§ Course to Add
§ Does course exist?
§ Does student record exist?
§ Has student taken the course?
§ Which university is student registered at?
§ Is course at a valid university for the student?
§ Can student record be retrieved from database?
§ Does the course exist?
§ Does student meet the prerequisites?

29

Identify Choices



Identifying Representative Values

² We know the functions.
² We have a set of choices.
² What values should we try?

§ For some choices, finite set.
§ For many, near-infinite set.

² What about exhaustively trying all options?

30

Identify Representative 
Input Values



Exhaustive Testing

Take the arithmetic function for the calculator:

add(int a, int b)

² How long would it take to exhaustively test this function?

31

Identify Representative 
Input Values



Not all Inputs are Created Equal

² Many inputs lead to same outcome.

² Some inputs better at revealing faults.
§ We can’t know which in advance.
§ Tests with different input better than tests with similar input.

32

Test Input Data

Test Output Results

Program

I

O

Identify Representative 
Input Values



Input Partitioning

² Consider possible values for a variable.

² Faults sparse in space of all inputs, but dense in parts
where they appear.
§ Similar input to failing input also likely to fail.

² Try input from partitions, hit dense fault space.

33

Identify Representative 
Input Values



Equivalence Class

² Divide the input domain into equivalence classes.
§ Inputs from a group interchangeable (trigger same outcome,

result in the same behavior, etc.).
§ If one input reveals a fault, others in this class (probably) will too.

In one input does not reveal a fault, the other ones (probably) will
not either.

² Partitioning based on intuition, experience, and common
sense.

34

Identify Representative 
Input Values



Example

substr(string str, int index)

What are some possible partitions?

35

● index < 0
● index = 0
● index > 0
● str with length < index
● str with length = index
● str with length > index 
● ...

Identify Representative 
Input Values



Choosing Input Partitions

² Equivalent output events.

² Ranges of numbers or values.
² Membership in a logical group.

² Time-dependent equivalence classes.

² Equivalent operating environments.
² Data structures.

² Partition boundary conditions.

36

Identify Representative 
Input Values



Look for Equivalent Outcomes

² Look at the outcomes and group input by the outcomes
they trigger.

² Example: getEmployeeStatus(employeeID)
§ Outcomes include: Manager, Developer, Marketer, Lawyer,

Employee Does Not Exist, Malformed ID
§ Abstract values for choice employeeID.

• Can potentially break down further.

37

Identify Representative 
Input Values



Look for Ranges of Values

² Divide based on data type and how variable used.
§ Ex: Integer input. Intended to be 5-digit:

• < 10000, 10000-99999, >= 100000
• Other options: < 0, 0, max int
• Can you pass it something non-numeric? Null pointer?

² Try “expected” values and potential error cases.

38

Identify Representative 
Input Values



Look for Membership in a Group

Consider the following inputs to a program:

² A floor layout
² A country name.

² All can be partitioned into groups.
§ Apartment vs Business, Europe vs Asia, etc.

² Many groups can be subdivided further.
² Look for context that an input is used in.

39

Identify Representative 
Input Values



Timing Partitions

² Timing and duration of an input may be as important as
the value.
§ Timing often implicit input.

• Trigger an electrical pulse 5ms before a deadline, 1ms before the
deadline, exactly at the deadline, and 1ms after the deadline.

• Close program before, during, and after the program is writing to (or
reading from) a disc.

40

Identify Representative 
Input Values



Operating Environments

² Environment may affect behavior of the program.

² Environmental factors can be partitioned.
§ Memory may affect the program.
§ Processor speed and architecture.
§ Client-Server Environment

• No clients, some clients, many clients
• Network latency
• Communication protocols (SSH vs HTTPS)

41

Identify Representative 
Input Values



Data Structures 

² Data structures are prone to certain types of errors.

² For arrays or lists:
§ Only a single value.
§ Different sizes and number filled.
§ Order of elements: access first, middle, and last elements.

42

Identify Representative 
Input Values



Input Partition Example

What are the input partitions for:
max(int a, int b) returns (int c)

43

We could consider a or b in isolation:
a < 0, a = 0, a > 0
Consider combinations of a and b that change 
outcome:
a > b, a < b, a = b

Identify Representative 
Input Values



Revisit the Roadmap

For each testing choice for a function, we want to:
1. Partition each choice into representative values.
2. Choose a value for each choice to form a test specification.
3. Assigning concrete values from each partition.

44



Forming Specification

Function insertPostalCode(int N, list A).

² Choice: int N
§ 5-digit integer between 10000 and 99999
§ Representative Values: <10000, 10000-99999, >100000

² Choice: list A
§ list of length 1-10
§ Representative Values: Empty List, List of Length 1, List

Length 2-10, List of Length > 10

45

Generate Test Case 
Specifications



Forming Specifications

Choose concrete values for each combination of input partitions:
insertPostalCode(int N, list A)

46

Generate Test Case 
Specifications



Generate Test Cases

substr(string str, int index)

Specification: 
str: length >=2, contains special characters
index: value > 0

Test Case:
str = “ABCC!\n\t7”
index= 5

47

Generate Test 
Cases



Boundary Values

² Errors tend to occur at the boundary of a partition.
² Remember to select inputs from those boundaries.

48

Generate Test 
Cases



² Boundary value testing focuses on the boundaries between
equivalence classes, simply because that is where so many
defects hide. The defects can be in the requirements or in the
code.

² Method
§ Identify the equivalence classes.
§ Identify the boundaries of each equivalence class.
§ Create test cases for each boundary value by choosing one point on the

boundary, one point just below the boundary, and one point just above
the boundary.

49

Boundary Values Generate Test 
Cases



Boundary Values

50

Generate Test 
Cases



Example - Set Microservice

² Microservice related to Sets:
§ void insert(Set set, Object obj)
§ Boolean find(Set set, Object obj)
§ void delete(Set set, Object obj)

² For each function, identify choices.
² For each choice, identify representative values.

² Create test specifications with expected outcomes. 

51



Example - Set Microservice

void insert(Set set, Object obj)

² What are our choices?

52

Identify an Independently 
Testable Function

Identify Choices

● Parameter: set
○ Choice 1: Number of items in the set

● Parameter: obj
○ Choice 2: Is obj already in the set?
○ Choice 3: Type of obj (e.g., valid, invalid, null)



Example - Set Microservice

void insert(Set set, Object obj)

Parameter: set

² Choice: Number of items in the set

§ Representative Values:
• Empty Set
• Set with 1 item
• Set with 10 items
• Set with 10000 items

53

Identify Representative 
Input Values

Parameter: obj
• Choice: Is obj already in the set?

• Representative Values:
• obj already in set
• obj not in set

• Choice: Type of obj
• Representative Values:

• Valid obj
• Null obj



Example - Set Microservice

54



Internal Interaction

² Low-level functions are expected to interact.
§ Usually this is planned!
§ Sometimes unplanned interactions break the system.
§ We want to select tests that thoroughly test interactions.

55



Triggering Interactions

² Interactions result from combining values of individual
choices.
§ Inadvertent interactions cause unexpected behavior
§ (ex. incorrect output, timing)

² Want to detect, manage, and resolve inadvertent
interactions.

56



Fire and Flood Control

² FireControl activates sprinklers when fire detected.

² FloodControl cuts water supply when water detected on floor.

² Interaction means building burns down.

57



WordPress Plug-Ins

² Weather and emoji plug-ins tested independently. 

² Their interaction results in unexpected behavior. 

58



Feature Interactions

59



Selecting Test Specifications

² We want to select interesting specifications.

² Category-Partition Method
§ Apply constraints to reduce the number of specifications.

² Combinatorial Interaction Testing
§ Identify a subset that covers all interactions between pairs of

choices.

60



Category-Partition Method

Creates a set of test specifications.

² Choices, representative values, and constraints.
§ Choices: What you can control when testing.
§ Representative Values: Logical options for each choice.
§ Constraints: Limit certain combinations of values.

² Apply more constraints to further limit set.

61



Identify Choices

² Examine parameters of function.
§ Direct input, environmental parameters (i.e., databases), and
configuration options.

² Identify characteristics of each parameter.
§ What aspects influence outcome? (the choices)

² Choices are also called categories if you look up
category-partition method.

62



Example: Computer Configurations

² Web shop that sells custom computers.
² A configuration is a set of options for a model.

§ Some combinations are invalid (i.e., display port monitor with
HDMI video output).

² Function: checkConfiguration(model,configuration)
§ What are the parameters?
§ What are the choices to be made for each parameter?

63



Example: Computer Configuration

² Model: Identifies a product and determines constraints on available
components. Identified by a model number. Characterized by a set of
slots. Slots may be required (must be filled) or optional (may be left
empty).

² Configuration: Set of <slot, component> pairs. Must correspond to the 
required and optional slots of the model. Available components and a 
default for each slot are determined by the model. Slots may be empty 
(may be default for optional slots). Components can be compatible or 
incompatible with a model or with each other.

64



Example: Configuration Choices

² Parameter: Model
§ Model number
§ Number of required slots (must have a component)
§ Number of optional slots (component or empty)

² Parameter: Configuration
§ Selected configuration valid for model?
§ Number [required/optional] slots with non-empty selections.
§ Selected components for [required/optional] slots OK?

² Parameter: Product Database
§ Number of models in database
§ Number of components in database

65



Identify Representative Values

² Many values can be selected for each choice.

² Partition each choice into types of values.
§ Consider all outcomes of function.
§ Consider logical ranges or groupings.

² A test specification is a selection of values for all choices.
§ Concrete test case fills values for each abstract selection.

66



Values for Each Choice

Parameter: Model

² Choice: Model number

§ malformed
§ not in database
§ valid

² Choice: Number of required slots

§ 0
§ 1
§ many

² Choice: Number of optional slots

§ 0
§ 1
§ many

67

Parameter: Configuration

● Choice: Configuration Matches Model
○ complete correspondence
○ omitted slots in configuration
○ extra slots in configuration
○ mismatched number of required and optional slots

● Choice: Number of empty required slots that are empty
○ all required slots filled
○ some required slots empty
○ all required slots empty

● Choice: Number of optional slots that are empty
○ all optional slots filled
○ some optional slots empty
○ all optional slots empty

● Choice: Selected components for required slots
○ all valid
○ some kept at default
○ >= 1 incompatible with slot
○ >= 1 incompatible with another component
○ >= 1 not in database

● Choice: Selected components for optional slots
○ all valid
○ some kept at default
○ >= 1 incompatible with slot
○ >= 1 incompatible with another component
○ >= 1 not in database

Parameter: Product Database

• Choice: Number of models in database
0
1
many

• Number of components in database
0
1
many



Generate Test Case Specifications

² Test specification = selection of values for choices.
² Constraints limit number of specifications.

§ Eliminate impossible pairings.
§ Remove unnecessary options.
§ Choose a subset to turn into concrete tests.

68

1944 tests (all 
combinations)

678 Tests

40 Tests!



Values for Each Choice

Parameter: Model

² Choice: Model number

§ malformed
§ not in database
§ valid

² Choice: Number of required slots

§ 0
§ 1
§ many

² Choice: Number of optional slots

§ 0
§ 1
§ many

69

Parameter: Configuration

● Choice: Configuration Matches Model
○ complete correspondence
○ omitted slots in configuration
○ extra slots in configuration
○ mismatched number of required and optional slots

● Choice: Number of empty required slots that are empty
○ all required slots filled
○ some required slots empty
○ all required slots empty

● Choice: Number of optional slots that are empty
○ all optional slots filled
○ some optional slots empty
○ all optional slots empty

● Choice: Selected components for required slots
○ all valid
○ some kept at default
○ >= 1 incompatible with slot
○ >= 1 incompatible with another component
○ >= 1 not in database

● Choice: Selected components for optional slots
○ all valid
○ some kept at default
○ >= 1 incompatible with slot
○ >= 1 incompatible with another component
○ >= 1 not in database

Parameter: Product Database

• Choice: Number of models in database
0
1
many

• Number of components in database
0
1
many

● Seven choices with three values, one with four values, two with five values.
○ 37 x 52 x 4 = 218700 test specifications

● Not all combinations correspond to reasonable specifications.



Constraints Between Values

² IF-CONSTRAINT
§ This value only needs to be used under certain conditions (if X

is true, use value Y)

² ERROR
§ Value causes error regardless of values of other choices.

² SINGLE
§ Only a single test with this value is needed.
§ Corner cases that should give “good” outcome.

70



Example - Substring

substr(string str, int index)

Choice: Str length Choice: index

length = 0 value < 0

length = 1 value = 0

length >= 2 value = 1

Choice: Str contents value > 1

contains letters and numbers

contains special characters

empty
71

property zeroLen, TRUE if length = 0

if !zeroLen

ERROR

if !zeroLen

if zeroLen

SINGLE



Combinatorial Interaction Testing

² Cover all k-way interactions (k < N).
§ Typically 2-way (pairwise) or 3-way.

² Set of all combinations grows exponentially.
² Set of pairwise combinations grows logarithmically.

§ (last slide) 432 combinations.
§ Possible to cover all pairs in 16 tests.

72



Example - Paragraph Effects

73

2 * 2 * 3 = 12 
combinations



Example - Paragraph Effects

74



Example - Paragraph Effects

² Goal of CIT is to produce covering array.
§ Set of configurations that covers all K-way combinations.

• (2-way here).
§ Cover in 6 test specifications.

75



Constraints

² Remove all ERROR/SINGLE cases before CIT.
§ Error output, one-time corner cases

² Constraints on value combinations specified:
§ OMIT(Text-Only, *, *, Full Size, *)
§ OMIT(*, *, *, Full Size, Minimal)

² Further reduces number of test specifications.

76



CIT Tools

² Pairwise Independent Combinatorial Testing (Microsoft):
https://github.com/microsoft/pict

² Automated Combinatorial Testing for Software (NIST):
https://csrc.nist.gov/projects/automated-combinatorial-
testing-for-software

² .. Many more: http://www.pairwise.org/tools.asp

77

https://github.com/microsoft/pict
https://csrc.nist.gov/projects/automated-combinatorial-testing-for-software
https://csrc.nist.gov/projects/automated-combinatorial-testing-for-software
http://www.pairwise.org/tools.asp


Key Points (1 of 2)

² Unit testing focus on a single class.

² System tests focus on high-level functionality, integrating
low-level components through a UI/API.
§ Identify an independently testable function.
§ Identify choices that influence function outcome.
§ Partition choices into representative values.
§ Form specifications by choosing a value for each choice.
§ Turn specifications into concrete test cases.

78



Key Points (2 of 2)

² Process for deriving system-level tests often results in
too many test specifications.

² Two methods that identify important interactions:
§ Category-Partition Method: Use constraints to eliminate

unnecessary tests.
§ Combinatorial Interaction Testing: Identify important pairs of

input values.

79



80


