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Today’s Goals

² Some definitions and concepts:
§ Let’s get the language right.
§ What are the components of a test case?

² Testing stages:
§ Unit, System (Integration and Exploratory), and Acceptance

Testing

² Test planning considerations
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Verification

² Ensuring that an implementation conforms to its
specification.
§ AKA: Under these conditions, does the software work?

² Proper V&V produces dependable software.
§ Testing is the primary verification activity.
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Software Testing

² An investigation into system quality.

² Based on sequences of stimuli and 
observations.

§ Stimuli that the system must react to.
§ Observations of system reactions.
§ Verdicts on correctness. 
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Bugs? What are Those?

² Bug is an overloaded term.
§ Does it refer to the bad behavior observed?
§ Is it the source code mistake that led to that behavior?
§ Is it both or either?
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Faults and Failures

² Failure
§ An execution that yields an incorrect result.

² Fault
§ The problem that caused a failure.
§ Mistake in the code, omission from the code, misuse.

² When we observe a failure, we try to find the fault.
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Software Testing

² The main purpose of testing is to find faults:

“Testing is the process of trying to discover every
conceivable fault or weakness in a work product”
- Glenford Myers

² Tests must reflect normal system usage and extreme
boundary events.
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Testing Scenarios

² Verification:
§ Demonstrate that software meets the specification.
§ Tests tend to reflect “normal” usage.
§ Any lack of conformance is a fault.

² Resilience:
§ Show that software can handle rare/extreme situations.
§ Tests tend to reflect extreme usage.

• Large volume of data, null data, malformed data, attacks.
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Axiom of Testing

“Program testing can be used to show the
presence of bugs, but never their
absence.”

- Dijkstra
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Test Suite and Test Case

² A test suite is a collection of test cases.
§ Executed together.
§ Each test case should be independent.

² May have multiple suites in one project.
• Different types of tests, different resource/time needs.

² A test case consists of:
§ Initialization, Test Steps, Inputs, Oracles, Tear Down
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Anatomy of a Test Case

(I1          O1)          (I2           O2 )          (I3           O3)
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Test Inputs
How we “stimulate” the system.

Test Oracle
How we check the correctness of the 
resulting observation.

if On = Expected(On)
then… Pass
else… Fail



Anatomy of a Test Case

² Initialization
§ Any steps that must be taken before test execution.

² Test Steps
§ Interactions with the system, and comparisons between oracle 

and actual values.

² Tear Down
§ Any steps that must be taken after test execution.
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Test Input

² Any deliberate interactions with a software feature.
§ Generally, call a function through an interface.

§ Method Call

§ API Call

§ CLI Interaction

§ GUI Interaction

13



Test Input

² Environment manipulation
§ Set up a database with particular records
§ Set up simulated network environment
§ Create/delete files
§ Control available CPU/memory/disc space

² Timing
§ Before/at/after deadline
§ Varying frequency/volume of input
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Test Creation and Execution

² Can be human-driven
§ Exploratory testing, alpha/beta testing

² or automated
§ Tests written as code

• Testing frameworks (JUnit)
• Frameworks for manipulating interfaces (Selenium)

§ Capture/replay tools can re-execute UI-based tests (SWTBot for
Java)

§ Automated input generation (AFL, EvoSuite)
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Sources of Input

² Black Box (Functional) Test Design
² Use knowledge about how the system should act to

design test cases.
§ Requirements, comments, user manuals, intuition.

² Tests can be designed before code is written.
§ (test-driven development)
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Sources of Input

² White Box (Structural) Test Design
² Input chosen to exercise part of the code.
² Usually based on adequacy criteria:

§ Checklists based on program elements.
§ Branch Coverage - Make all conditional statements evaluate to

all outcomes (if-statements, switches, loops)

² Fill in the gaps in black-box test design.
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Test Oracle - Definition

² A predicate that determines whether a program is correct
or not.
§ Based on observations of the program.
§ Output, timing, speed, energy use, ...

² Will respond with a pass or a fail verdict.

² Can be specific to one test or more general.
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Test Oracle Components

² Oracle Information
§ Embedded information used to judge the correctness of the

implementation, given the inputs.

² Oracle Procedure
§ Code that uses that information and relevant observations to

arrive at a verdict.
§ Often as simple as...

if (actual value != expected value) { fail (...); }
assertEquals(actual value, expected value);
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Oracles are Code

² Oracles must be developed.
§ Like the project, an oracle is built from the requirements.

• … and is subject to interpretation by the developer
• … and may contain faults

² A faulty oracle can be trouble.
§ May result in false positives - “pass” when there was a fault in

the system.
§ May result in false negatives - “fail” when there was not a fault in

the system.
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Expected-Value Oracles

² Simplest oracle - what exactly should happen?

int expected = 7;

int actual = max(3, 7);

assertEquals(expected, actual);

² Oracle written for a single test case, not reusable.
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Property-based Oracles

Rather than comparing actual values, use properties about
results to judge sequences.

Uses assertions, contracts, and other logical properties.
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@Test

public void propertiesOfSort (String[] input) {

// Tests

String[] sorted = quickSort(input);

assert(sorted.size >= 1, "This array can’t be empty.")

for (int item = 1; item < sorted.length; item++)

assert(sorted[item] > sorted[item - 1], “Items

should be sorted in ascending order”);

}



Properties

² Usually written at “function” level.
§ For a method or high-level API/UI function.
§ Properties based on behavior of that function.

² Work for any input to that function.
² Trade-off: limited by number of properties.

§ Faults missed even if specified properties are obeyed.
§ More properties = more expensive to write.
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Implicit Oracles

² Check properties expected of any program.
§ Crashes and exceptions.
§ Buffer overruns.
§ Deadlock.
§ Memory leaks.
§ Excessive energy usage or downloads.

² Faults that do not require expected output to detect.
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Testing Stages

² We interact with systems through interfaces.
§ APIs, GUIs, CLIs

² Systems built from subsystems.
§ With their own interfaces.

² Subsystems built from units.
§ Communication via method calls.
§ Set of methods is an interface.
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Testing Stages

² Unit Testing
§ Do the methods of a class work?

² System-level Testing
§ System (Integration) Testing

• (Subsystem-level) Do the collected units work?
• (System-level) Does high-level interaction through APIs/UIs work?

§ Exploratory Testing
• Does interaction through GUIs work?
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Testing Stages

² Acceptance Testing / AB Testing
§ Give product to a set of users to check whether it meets their

needs.
• Alpha/beta Testing - controlled pools of users, generally on their

own machine.
• Acceptance Testing - controlled pool of customers, in a controlled

environment, formal acceptance criteria
§ Can expose many faults.
§ Can be planned during requirements elicitation.
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Automation vs Human-Driven

² Unit/System Testing heavily use automation.
§ Tests written as code.
§ Executed repeatedly, often on check-in.

² Exploratory/Acceptance Testing often human-driven
§ Humans interact with app.
§ Based on scenarios, without pre-planned input.
§ Some tool support, but not often repeated exactly.
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The V-Model of Development
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Unit Testing

² Testing the smallest “unit” that can be tested.
§ Often, a class and its methods.

² Tested in isolation from all other units.
§ Mock the results from other classes.

² Test input = method calls.

² Test oracle = assertions on output/class variables.
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Unit Testing

² For a unit, tests should:
§ Test all “jobs” associated with the unit.

• Individual methods belonging to a class.
• Sequences of methods that can interact.

§ Set and check class variables.
• Examine how variables change after method calls.
• Put the variables into all possible states (types of values).
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Unit Testing

² Unit tests should cover:
§ Set and check class variables

• Can any methods change identifier, temperature, pressure?
§ Each “job” performed by the class.

• Single methods or method sequences.
• Vary the order methods are called.
• Each outcome of each “job” (error handling, return conditions).
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System (Integration) Testing

² After testing units, test their integration.
§ Integrate units in one subsystem.
§ Then integrate the subsystems.

² Test input through a defined interface.
§ Focus on showing that functionality accessed through interfaces

is correct.
§ Subsystems: “Top-Level” Class, API
§ System: API, GUI, CLI, …
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System Testing

Subsystem made up classes of A, B, and C. We have
performed unit testing...
² Classes work together to perform subsystem functions.

² Tests applied to the interface of the subsystem they form.

² Errors in combined behavior not caught by unit testing.
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Interface Errors

² Interface Misuse
§ Malformed data, order, number of parameters.

² Interface Misunderstanding
§ Incorrect assumptions made about called component.
§ A binary search called with an unordered array.

² Timing Errors
§ Producer of data and consumer of data access data in the wrong

order.
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GUI Testing

² Tests designed to reflect end-to-end user journeys.
§ From opening to closing.
§ Often based on scenarios.

² GUI Testing
§ Deliberate tests, specific input.
§ May be automated or human-executed.

² Exploratory Testing
§ Open-ended, human-driven exploration.
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Exploratory Testing

² Tests are not created in advance.

² Testers check the system on-the-fly.
§ Guided by scenarios.
§ Often based on ideas noted before beginning.

² Testing as a thinking idea.
§ About discovery, investigation, and role-playing.
§ Tests end-to-end journeys through app.
§ Test design and execution done concurrently.
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Exploratory Testing

² Tester write down ideas to give direction, then create
critical, practical, and useful tests.
§ Requires minimal planning. Tester chooses next action based on

result of current action.

² Can find subtle faults missed by formal testing.
§ Allows tester to better learn system functionality, and identify

new ways of using features.
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Testing Percentages

² Unit tests verify behavior of a single class.
§ 70% of your tests.

² System tests verify class interactions.
§ 20% of your tests.

² GUI tests verify end-to-end journeys.
§ 10% of your tests.
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Testing

² 70/20/10 recommended.

² Unit tests execute quickly, relatively simple.
² System tests more complex, require more setup, slower

to execute.

² UI tests very slow, may require humans.
² Well-tested units reduce likelihood of integration issues,

making high levels of testing easier.
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Acceptance Testing

Once the system is internally tested, it should be placed in
the hands of users for feedback.
² Users must ultimately approve the system.
² Many faults do not emerge until the system is used in the

wild.
§ Alternative operating environments.
§ More eyes on the system.
§ Wide variety of usage types.
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Acceptance Testing Types

² Alpha Testing
§ A small group of users work closely with development team to

test the software.
² Beta Testing

§ A release of the software is made available to a larger group of
interested users.

² Formal Acceptance Testing
§ Customers decide whether or not the system is ready to be

released.
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Acceptance Testing Stages

² Define acceptance criteria
§ Work with customers to define how validation will be conducted,

and the conditions that will determine acceptance.
² Plan acceptance testing

§ Decide resources, time, and budget for acceptance testing.
Establish a schedule. Define order that features should be
tested. Define risks to testing process.
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Acceptance Testing Stages

² Derive acceptance tests.
§ Design tests to check whether or not the system is acceptable.

Test both functional and non-functional characteristics of the
system.

² Run acceptance tests
§ Users complete the set of tests. Should take place in the same

environment that they will use the software. Some training may
be required.
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Acceptance Testing Stages

² Negotiate test results
§ It is unlikely that all of the tests will pass the first time. Developer

and customer negotiate to decide if the system is good enough
or if it needs more work.

² Reject or accept the system
§ Developers and customer must meet to decide whether the

system is ready to be released.
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Test Plans

² Plan for how we will test the system.
§ What is being tested (units, subsystems, features).
§ When it will be tested (required stage of completion).
§ How it will be tested (what scenarios do we run?).
§ Where we are testing it (types of environments).
§ Why we are testing it (what purpose do tests serve?).
§ Who will be responsible for writing test cases (assign

responsibility to team members).
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Why Make a Test Plan?

² Guides development team.
§ Rulebook for planning test cases.

² Helps people outside the team understand the testing
process.

² Documents rationale for scope of testing, how we judge
results, why we chose a strategy.
§ Can be reused when making decisions in future projects.
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Analyze the Product

² Must understand the product before you can test it.
§ What are the needs of the users?
§ Who will use the product?
§ What will it be used for?
§ What are the dependencies of the product?

² Review requirements and documentation.
² Interview stakeholders and developers.

² Perform a product walkthrough (if code is running).
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Analyze the Product

² Banking Website
§ What features do we want to see?
§ Account creation, deletion, manipulation.
§ Fund transfers
§ Fund withdrawal
§ Check deposit
§ …? 
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Develop the Test Strategy

² Document defining:
§ Test Objectives (and how to achieve them)
§ Testing Effort and Cost
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Testing Scope

² What are you planning to test?
§ Software, hardware, middleware, ...

² … AND… What are you NOT going to test?
§ Gives project members a clear understanding about what you

are responsible for.

² Must take into account:
§ Requirements, budget, skills of your testing team
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Testing Scope

² Banking website
§ Requirements specified only for functionality and the external

interface.
• These are in-scope.

§ No requirements for database or client hardware.
§ No quality requirements (performance, availability).

• These are out-of-scope.
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Identify Testing Types

² Which should we apply?
§ Consider the project domain.

² Which can we skip or limit to save money?
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For the banking site:
● System Testing

○ Focus on verifying access points and 
interfaces.

○ Functionality likely spread over multiple 
classes, many features interact

● Exploratory Testing
Could limit:
● Unit Testing (focus on integration/interfaces 

over individual classes)
Can skip:
● Acceptance Testing



Create Test Logistics

² Who will write and execute test cases?
§ What types of testers do you need?

• Skills needed for the targeted domain
§ What is the budget for testing?

• How many people can you hire to test?

² When will each testing activity occur?
§ When to design and when to execute tests.
§ Pair with appropriate stage of development.

• Unit development -> unit testing -> system testing -> ...
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Define Test Objectives

² What are the goals of the testing process?
§ What features, system elements need to be tested?
§ What quality attributes do we need to demonstrate?
§ For each feature or quality, what scenarios do we want to walk

through?

² Does not include a list of specific tests
§ But, at a high level, should detail scenarios we plan to examine

by writing one or more test cases.
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Define Test Objectives
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Define Test Criteria

² When have we completed our testing objectives?
§ For qualities, set appropriate thresholds.

• Availability, ROCOF, throughput, etc.
§ For functionality, commonly defined using:

• Run Rate: Number of Tests Executed / Number Specified
• Pass Rate: Number of Passing Tests / Number Executed
• Often aim for 100% run rate and a high pass rate (> 95%)
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Resource Planning

² Summarize resources that you have.
§ Allows estimation and adjustment of testing scope, objectives,

and exit criteria.

² Human Resources: Managers, testers, developers who
assist in testing, system administration.

² System Resources: Servers, testing tools, network
resources, physical hardware.
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Plan Test Environment

² Where will you execute test cases?
§ Software and hardware execution environment
§ Often defined as part of continuous integration.

² Need to account for:
§ Requirements on both server and client-side.
§ Different networking conditions (bandwidth, load).
§ Different client or server-side hardware.
§ Different numbers of concurrent users.
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Schedule Estimation

² Break testing plans into individual tasks, each with an
effort estimation (in person-hours)
§ Create test specification, 170 person-hours
§ Write unit tests, 80 person-hours
§ Write API tests, 50 person-hours
§ Perform test execution, 1 person-hour (per suite execution)
§ Write test report, 10 person-hours
§ …
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We Have Learned

² What is testing?
² Testing terminology and definitions.

§ Input, oracles
§ Faults, failures

² Testing stages include unit testing, system testing,
exploratory/GUI testing, and acceptance testing.

² Test planning needs to consider resources, time, scope,
environment.
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