l

e
—
FACULDADE
ENGENHARIA

Departamento de
Informatica

Qualidade de Software
(14450)

Quality Attributes and Measurement

(adapted from lecture notes of the “DIT 635 - Software Quality and Testing” unit,
delivered by Professor Gregory Gay, at the Chalmers and the University of Gothenburg, 2022)

Nuno Pombo - Qualidade de Software, 2024/25 1

Today’s Goals

<> Discuss software quality in more detail.
= Quality attributes
» Dependability, availability, performance, scalability, and security.

< How we build evidence that the system is good enough
to release.

<> How to assess whether each attribute is met.

Software Quality

< We all want high-quality software.
= We don't all agree on the definition of quality.

< Quality encompasses both what the system does and
how it does it.

= How quickly it runs.

= How secure itis.

= How available its services are.

= How easily it scales to more users.

< Quality is hard to measure and assess objectively.

Quality Attributes

<> Describe desired properties of the system.

<> Developers prioritize attributes and design system that
meets chosen thresholds.

<> Most relevant for this course: dependability

= Ability to consistently offer correct functionality, even under
unforeseen or unsafe conditions.

Quality Attributes

<- Performance

= Ability to meet timing requirements. When events occur, the
system must respond quickly.

< Security

= Ability to protect information from unauthorized access while
providing service to authorized users.

< Scalability

= Ability to “grow” the system to process more concurrent
requests.

Quality Attributes

< Availability

= Ability to carry out a task when needed, to minimize “downtime”,
and to recover from failures.

< Modifiability

= Ability to enhance software by fixing issues, adding features, and
adapting to new environments.

< Testability

= Ability to easily identify faults in a system.
= Probability that a fault will result in a visible failure.

Quality Attributes

<> Interoperability

= Ability to exchange information with and provide functionality to
other systems.

< Usability

= Ability to enable users to perform tasks and provide support to
users.

= How easy it is to use the system, learn features, adapt to meet
user needs, and increase confidence and satisfaction in usage.

Other Quality Attributes

< Resilience

< Supportability

< Portability

< Development Efficiency
< Time to Deliver

< Tool Support

Quality Attributes

< These qualities often conflict.

= Fewer subsystems improves performance, but hurts modifiability.

» Redundant data helps availability, but lessens security.

= Localizing safety-critical features ensures safety, but degrades
performance.

< Important to decide what is important, and set a
threshold on when it is “good enough”.

Our Focus

< Dependability
< Availability

< Performance
< Scalability

< Security

< (Others important - but not enough time for all!)

10

When is Software Ready for Release?

< Provide evidence that the system is dependable.

<> The goal of dependability is to establish four things about
the system:

= That it is correct.
= Thatitis reliable.

= Thatit is safe. (6)
o Reliable
= Thatis is robust. ~

11

Correctness

<> A program is correct if it is always consistent with its
specification.
<> Depends on quality and detail of requirements.

Easy to show with respect to a weak specification.
® Often impossible to prove with a detailed specification.

<> Correctness is rarely provably achieved.

12

Reliability

< Statistical approximation of correctness.

<> The likelihood of correct behavior from some period of
observed behavior.

= Time period, number of system executions

< Measured relative to a specification and usage profile
(expected pattern of interaction).

= Dependent on how the system is used by a type of user.

13

Dependence on Specifications

< Correctness and reliability:

= Success relative to the strength of the specification.

- Hard to meaningfully prove anything for strong spec.
= Severity of a failure is not considered.

« Some failures are worse than others.

< Safety revolves around a restricted specification.

<> Robustness revolves around everything not specified.

14

Safety

< Safety is the ability to avoid hazards.
» Hazard = defined undesirable situation.
= Generally serious problems.

<> Relies on a specification of hazards.

= Defines what the hazard is, how it will be avoided in the

software.
= We prove or show evidence that the hazard is avoided.

= Only concerned with hazards, so proofs often possible.

15

Robustness

< Software that is “correct” may fail when the assumptions
of its design are violated.

= How it fails matters.

< Software that “gracefully” fails is robust.

= Design the software to counteract unforeseen issues or perform
graceful degradation of services.

« Look at how a program could fail and handle those situations.
= Cannot be proved, but is a goal to aspire to.

16

Dependability Property Relations

Reliable, but not correct. Robust, but not safe.
Catastrophic failures can Catastrophic failures can
occCur. occur.

Reliable \ Correct

Robust

Correct, but not safe.
Specification is
inadequate

Safe, but not correct.
Annoying failures can
OoCcCur.

17

Measuring Dependability

< Must establish criteria for when the system is
dependable enough to release.

= Correctness hard to prove conclusively.

» Robustness/Safety important, but do not demonstrate functional
correctness.

= Reliability is the basis for arguing dependability.
« Can be measured.
« Can be demonstrated through sufficient volume of testing.

18

What is Reliability?

<> Probability of failure-free operation for a specified time
in a specified environment for a given purpose.

= Depends on system and type of user.

< How well users think the system provides services they
require.

19

Improving Reliability

< Improved when faults in the most frequently-used
parts of the software are removed.

= Removing X% of faults = X% improvement in reliability.

* In one study, removing 60% of faults led to 3% improvement.
= Removing faults with serious consequences is the top priority.

20

Reliability is Measurable

< Reliability can be defined and measured.

<> Reliability requirements can be specified:

= Non-functional requirements define number of failures that are
acceptable during normal use or time in which system is allowed
to be unavailable.

= Functional requirements define how the software avoids,
detects, and tolerates failures.

21

How to Measure Reliability

<> Hardware metrics often aren’t suitable for software.

= Based on component failures and the need to repair or replace a
component once it has failed.

* |n hardware, the design is assumed to be correct.

< Software failures are always design failures.

= Often, the system is available even though a failure has
occurred.

= Metrics consider failure rates, uptime, and time between
failures.

22

Metric 1: Availability

<> Can the software carry out a task when needed?

= Encompasses reliability and repair.
» Does the system tend to show correct behavior?
« Can the system recover from an error?
< The ability to mask or repair faults such that cumulative
outages do not exceed a required value over a time
interval.

= Both a reliability measurement AND an independent quality
attribute.

23

Metric 1: Availability

< Measured as (uptime) / (total time observed)

= Takes repair and restart time into account.
= Does not consider incorrect computations.
= Only considers crashes/freezing.

= 0.9 = down for 144 minutes a day.

* 0.99 =14.4 minutes
 0.999 = 84 seconds
 0.9999 = 8.4 seconds

=

P Availability

2

»>
K

24

Availability

< Improvement requires understanding nature of failures that arise.

< Failures can be prevented, tolerated, removed, or forecasted.

= How are failures detected?

= How frequently do failures occur?

= What happens when a failure occurs?

= How long can the system be out of operation?

= When can failures occur safely?

= Can failures be prevented?

= What notifications are required when failure occurs?

Availability Considerations

< Time to repair is the time until the failure is no longer
observable.

= Can be hard to define. Stuxnet caused problems for months.
How does that impact availability?

< Software can remain partially available more easily than
hardware.

<> If code containing fault is executed, but system is able to
recover, there was no failure.

26

Metric 2: Probability of Failure on Demand (POFOD)

<> Likelihood that a request will result in a failure

< (failures/requests over observed period)
= POFOD = 0.001 means that 1 out of 1000 requests fail.

< Used in situations where a failure is serious.

* |Independent of frequency of requests.

= 1/1000 failure rate sounds risky, but if one failure per lifetime,
may be good.

27

Metric 3: Rate of Occurrence of Fault (ROCOF)

<> Frequency of occurrence of unexpected behavior.

< (number of failures / total time observed)

» ROCOF of 0.02 means 2 failures per 100 time units.
= Often given as “N failures per M seconds/minutes/hours”

<> Most appropriate metric when requests are made on a
regular basis (such as a shop).

28

Metric 4: Mean Time Between Failures (MTBF)

< Average length of time between observed failures.

= Only considers time where system operating.

= Requires the timestamp of each failure and the timestamp of
when the system resumed service.

< Used for systems with long user sessions, where
crashes can cause major iSsues.

= E.g., saving requires resource (disc/CPU/memory) consumption.

29

Probabilistic Availability

<> (alternate definition)

< Probability that system will provide a service within
required bounds over a specified time interval.

= Availability = MTBF / (MTBF + MTTR)

« MTBF: Mean time between failures.
« MTTR: Mean time to repair

30

Reliability Metrics

< Availability: (uptime) / (total time observed)

< POFQOD: (failures/ requests over period)

< ROCOF: (failures / total time observed)

< MTBF: Average time between observed failures.

< MTTR: Average time to recover from failure.

31

Reliability Examples

< Provide software with 10000 requests.

= Wrong result on 35 requests, crash on 5 requests.
= What is the POFOD?

* 40/10000 = 0.0004

* Run the software for 144 hours
(6 million requests). Software failed on 6 requests.
What is the ROCOF? The POFOD?

« ROCOF =6/144 =1/24 =0.04
« POFOD = 6/6000000 = (10-%)

32

Reliability Examples

<> You advertise a piece of software with a ROCOF of
0.001 failures per hour.

However, it takes 3 hours (on average) to get the system up again after
a failure.

= What is availability per year?

Failures per year:

approximately 8760 hours per year (24*365)
0.001 * 8760 = 8.76 failures per year
Availability

8.76 * 3 =26.28 hours of downtime per year.
Availability = 0.997 ((8760 - 26.28)/8760)

33

Additional Examples

< Want availability of at least 99%, POFOD of less than
0.1, and ROCOF of less than 2 failures per 8 hours.

= After 7 full days, 972 requests were made.
= Product failed 64 times (37 crashes, 27 bad output).
= Average of 2 minutes to restart after each failure.

<> What is the availability, POFOD, and ROCOF?
< Can we calculate MTBF?
<> Is the product ready to ship? If not, why not?

34

Additional Examples

< Want availability of at least 99%, POFOD of less than
0.1, and ROCOF of less than 2 failures per 8 hours.

= After 7 full days, 972 requests were made.
= Product failed 64 times (37 crashes, 27 bad output).
= Average of 2 minutes to restart after each failure.

< ROCOF: 64/168 hours

= =(0.38/hour
= =3.04/8 hour work day

35

Additional Examples

< Want availability of at least 99%, POFOD of less than
0.1, and ROCOF of less than 2 failures per 8 hours.

= After 7 full days, 972 requests were made.
= Product failed 64 times (37 crashes, 27 bad output).
= Average of 2 minutes to restart after each failure.

< POFOD: 64/972 = 0.066

< Availability: Down for (37*2) = 74 minutes / 168 hrs
= =74/10089 minutes = 0.7% of the time = 99.3%

36

Additional Examples

<- Can we calculate MTBF?

= No - need timestamps. We know how long they were down (on
average), but not when each crash occurred.

<> Is the product ready to ship?
= No. Availability/POFOD are good, but ROCOF is too high.

37

Reliability Economics

<> May be cheaper to accept unreliability and pay for failure
costs.

<> Depends on social/political factors and system.

= Reputation for unreliability may hurt more than cost of improving
reliability.

= Cost of failure depends on risks of failure.

« Health risks or equipment failure risk requires high reliability.
« Minor annoyances can be tolerated.

38

Performance

< Ability to meet timing requirements.

<> Characterize pattern of input events and responses

= Requests served per minute.
= Variation in output time.

<> Driving factor in software design.

= Often at expense of other quality attributes.
= All systems have performance requirements.

39

Performance Measurements

< Latency: The time between the arrival of the stimulus and
the system’s response to it.

< Response Jitter: The allowable variation in latency.

< Throughput: Usually number of transactions the system
can process in a unit of time.

<> Deadlines in processing: Points where processing must
have reached a particular stage.

< Number of events not processed because the system
was too busy to respond.

40

Measurements - Latency

< Time it takes to complete an interaction.

< Responsiveness: how quickly system responds to
routine tasks.

= Key consideration: user productivity.
= How responsive is the user’s device? The system?
= Measured probabilistically (... 95% of the time)

» Under a load of 350 update transactions per minute, 90% of
“‘open account” requests should return a reply to the calling
program within 10 seconds.

41

Measurements - Latency

< Turnaround time = time to complete larger tasks.

Can task be completed in available time?
Impact on system while running?
Can partial results be produced?

Ex: Assuming a daily throughput of 850,000 requests, the
process should take no longer than 4 hours, including writing
results to a database.

Ex: It must be possible to resynchronize monitoring stations and
reset database within 5 minutes.

42

Measurements - Response Jitter

<> Response time is non-deterministic.

= |f non-determinism can be controlled, this is OK.
* 10s +- 1s, great!
* 10s +- 10 minutes, bad!

< Defines how much variation is allowed.

= Places boundaries on when task can be completed.
» |f boundaries violated, quality is compromised.

= Ex: “All writes to the database must be completed within 120 to
150 ms.”

43

Measurements - Throughput

< The workload a system can handle in a time period.

= Shorter the processing time, higher the throughput.

= As load increases (and throughput rises), response time for
individual transactions tends to increase.

» With 10 concurrent users, request takes 2s.
« With 100 users, request takes 4s.

44

Measurements - Throughput

<> Possible to end up in situation where throughput goals
conflict with response time goals.

= With 10 users, each can perform 20 request per minute
(throughput: 200/m).

= With 100 users, each can perform 12 per minute (throughput:
1200/m - but at cost to response time).

45

Measurements - Deadlines

< Some tasks must take place as scheduled.

<> If times are missed, the system will falil.

* |n a car, fuel must ignite when cylinder is in position.

» Places a deadline on when the fuel must ignite.

<~ Deadlines can be used to place boundaries on when

events must complete.

46

Measurements - Missed Events

< If the system is busy, input may be ignored.

= Or, queued until too late to matter.

<> Can track how many input events are ignored because
the system is too slow to respond.

= Set upper bound on how many events can be missed in a
defined timeframe.

47

Scalability

<> Ability to process increasing number of requests.

= While meeting performance requirements.

<> Horizontal scalability (“scaling out”)

= Adding more resources to logical units.
« Adding another server to a cluster.
+ “elasticity” (add or remove VMs from a pool)

<> Vertical scalability (“scaling up”)

= Adding more resources to a physical unit.
« Adding memory to a single computer.

48

Scalability

<> How can we effectively utilize additional resources?

< Requires that additional resources:
= Result in performance improvement.
= Did not require undue effort to add.
* Did not disrupt operations.
< The system must be designed to scale

» (i.e., designed for concurrency).

49

Assessing Scalability

< Ability to address more requests is often part of
performance assessment.

<> Assessing scalability directly measures impact of adding
or removing resources.
<> Response measures reflect:

= Changes to performance.
= Changes to availability.
» |Load assigned to existing and new resources.

50

Security

<> Ability to protect data and information from unauthorized
access...

= ... while still providing access to people and systems that
are authorized.

<> Can we protect software from attacks?

= Unauthorized access attempts.
= Attempts to deny service to legitimate users.

51

Security

< Processes that allow owners of resources to control
access.

= Who: Actors (systems or users).
= Resources are sensitive elements,
operations, and data of the system.
= Policies define legitimate access

Actors

Mechanisms

Policies

Resources

to resourced.
= Enforced by security mechanisms
used by actors to gain access to resources.

52

Security Characterization (CIA)

< Confidentiality

= Data and services protected from unauthorized access.
» A hacker cannot access your tax returns on an IRS server.
< Integrity
= Data/services not subject to unauthorized manipulation.
* Your grade has not changed since assigned.

< Avalilability

= The system will be available for legitimate use.
« A DDOS attack will not prevent your purchase.

53

Supporting CIA

< Authentication: Verifies identities of all parties.

< Nonrepudiation: Guarantees that sender cannot deny
sending, and recipient cannot deny receiving.

< Authorization: Grants privilege of performing a task.

54

Security Approaches

<> Achieving security relies on:

= Detecting attacks.

= Resisting attacks.

= Reacting to attacks.

= Recovering from attacks.

<> Objects being protected are:

= Data at rest.
= Data in transit.
= Computational processes.

95

Security is Risk Management

< Not simply secure/not secure.

= All systems will be compromised.
= Try to avoid attack, prevent damage, and quickly recover.

= Balance risks against cost of guarding against them.
= Set realistic expectations!

iDENTIFY

ASSESS l ANALYZE

™ RiSK <

MANAGEMENT
il N A

REDUCE f CONTROL
TRANSFER

Assessing Security

< Measure of system’s ability to protect data from
unauthorized access while still providing service to
authorized users.

< Assess how well system responds to attack.

= Stimuli are attacks from external systems/users or
demonstrations of policies (log-in, authorization).

= Responses: auditing, logging, reporting, analyzing.

Y

Assessing Security

<> No universal metrics for measuring “security”.

< Present specific attack types and specify how system
responds.

< Response assessed by appropriate metrics.

= Time to identify attacker.
= Amount of data protected.
= Time to stop attack.

58

Key Points (1 of 3)

< Dependability is one of the most important software
characteristics.

= Aim for correctness, reliability, safety, robustness.
= Often assessed using reliability.

< Reliability depends on the pattern of usage of the
software. Different users will interact differently.

< Reliability measured using ROCOF, POFOD, Availability,
MTBF

59

Key Points (2 of 3)

<> Availability is the ability of the system to be available for
use, especially after a failure.

<> Performance is about management of resources in the
face of demand to achieve acceptable timing.

= Usually measured in terms of throughput and latency.

< Scalability is the ability to “grow” the system to process
an increasing number of requests.

= While still meeting performance requirements.

60

Key Points (3 of 3)

<> Security is the ability to protect data and information
from unauthorized access...

® ... while still providing access to people and systems that are
authorized.

<> Security is not “measured”, but requires defining attacks
and actions to prevent or reduce impact of risk, then
assessing those actions.

61

—

= O WHERE:=
w"ﬁ“éﬁ‘cé WHEN Wy

—1 B 1 WHEN

WHAT = W ﬁEVI\\IIH AT
WHAT .. =
2WHEREZHOW

<

