l

e
—
FACULDADE
ENGENHARIA

Departamento de
Informatica

Qualidade de Software
(14450)

Refactoring

(adapted from lecture notes of the “DIT 635 - Software Quality and Testing” unit,
delivered by Professor Gregory Gay, at the Chalmers and the University of Gothenburg, 2022)

Nuno Pombo - Qualidade de Software, 2024/25 1



Today’s Goals

< Cover the basics of refactoring

< Introduce the idea of “code smells”



The Software Lifecycle

§ 4
e Concept
2939

N

>
é

~
.

Requirements
Specification

Release and
Maintenance

Implementation
and Testing




The Real Lifecycle

Specification

)

Implementati

"N

N

Laaifial

.
1lial

Developme

L

It

A 4

Evolution

[ [/,

Operation

e =

/

/)|

|

Verification &
Validation

\

iy

\ 4

Servicing

A 4

Phaseout




Software Maintenance

® Fault Repairs
O Changes made in order to correct coding, design, or
requirements errors.
® Environmental Adaptations
O Changes made to accommodate changes to the hardware, OS
platform, or external systems.
® Functionality Addition
O New features are added to the system to meet new user
requirements.



Software Maintenance Effort

® Maintenance costs more than the initial development.
O 2/3rds of budget goes to maintenance on average.
O Up to four times the development cost to maintain critical
systems.

® General breakdown:
O 65% of effort goes to functionality addition

O 18% to environmental adaptation
O 17% to fault repair



Maintenance is Hard

It is harder to maintain than to write new code.

® Must understand code written by another developer, or
code that you wrote long ago.

® (Creates a "house of cards” effect.

® Developers tend to prioritize new development.

Smooth maintenance requires planning and design that
supports maintainability.



The Laws of Software Evolution

® Maintenance is an inevitable process.
o Requirements change as the environment changes.
o Changing the software causes environmental changes,
which leads to more requirement changes.

® As changes occur, the structure degrades.
o When changes are made, the structure becomes more
complex.
o To prevent this, resources must go into preventative
maintenance - refactoring to preserve and simplify the
structure without adding to functionality.



The Laws of Software Evolution

® The amount of change in each release is approximately

constant.

O The more functionality introduced, the more faults.

O A large functionality patch tends to be followed by a patch that
fixes faults without adding additional functionality. Small
functionality changes do not require a fault-correcting patch.

® Functionality must continually increase to maintain user
satisfaction.



The Laws of Software Evolution

® The quality of the system will decline unless updated to
work with changing environment.
® To improve quality, evolution must be treated as a

feedback system.
O Stakeholders must be continually involved in evolution, and
changes should be influenced by their needs.

10



Refactoring

® Process of revising the code or design to improve its
structure, reduce complexity, or otherwise
accommodate change.

® \When refactoring, you do not add functionality.
® Continuous process of improvement throughout the

evolution of the system.

11



Why Refactor?

Why fix what isn’t broken?

e Components have three purposes:

O To perform a service.
O To allow change.
O To be understood by developers reading it.

e Ifit does not do any of these, it is “broken”.
e Enables change and improves understandability.

12



Refactoring is an Iterative Process

® Refactoring should take place as an iterative cycle of

small transformations.

O Choose a small part of the system, redesign it, and make sure
it still works.
O Choose a new section of the system and refactor it.

® Refactoring requires unit tests.
O Make sure the code works before and after.

13



Choosing What to Refactor

® Refactor any piece of the system that:
O Seems to work,
O Butisn’t well designed,
O And now needs new functionality.

® There are stereotypical situations that indicate the need

for refactoring.
O These are called “bad smells”.

14



Code Smells

e Code is duplicated in multiple places.

e A method is too long.

Conditional statements control behavior based on an
object type.

Groups of data attributes are duplicated.

A class has poor cohesion or high coupling.

A method has too many parameters.

Speculative generality - adding functionality that “we
might need someday.”

15



More Code Smells

Changes must be made in several places.

Poor encapsulation of data that should be private.

If a weak subclass does not use inherited functionality.

If a class contains unused code.

If a class contains potentially unused attributes that
are only set in particular circumstances.

There are data classes containing only attributes,
getters, and setters, but nothing else - objects should

encapsulate data and behaviors.
O Unless that data is used by multiple classes.

16



Common Refactorings

(more at http://www.refactoring.com)

Composing Methods

Extract Method

Inline Method; Inline Temp
Introduce Explaining Variable

Split Temporary Variable

Remove Assignments to Parameters
Substitute Algorithm

Moving Features Between Objects

Move Method; Move Field
Extract Class

Inline Class

Hide Delegate

Remove Middleman
Introduce Foreign Method

Organizing Data

Replace Data Value with Object

Replace Array with Object
Duplicate Observed Data
Change Unidirectional Association to Bidirectional

Simplifying Conditional Expressions

Decompose Conditional

Consolidate Conditional Expression
Consolidate Duplicate Conditional Fragments
Replace Conditional with Polymorphism
Introduce Null Object

Introduce Assertion

Change Value to Reference; Change Reference to Value

Change Bidirectional Association to to Unidirectional

Making Method Calls Simpler

Rename Method

Add/Remove Parameter

Separate Query from Modifier
Parameterize Method

Replace Parameter with Explicit Methods
Preserve Whole Object

Replace Parameter with Method
Introduce Parameter Object

Remove Setting Method

Hide Method

Replace Constructor with Factory Method
Encapsulate Downcast

Replace Error Code with Exception
Replace Exception with Test

Dealing with Generalization

Pull Up Field; Method; Constructor Body

Push Down Method; Push Down Field

Extract Subclass; Extract Superclass; Interface
Collapse Hierarchy

Form Template Method

Replace Inheritance with Delegation (or vice versa)

Big Refactorings

Nature of the Game

Tease Apart Inheritance

Convert Procedural Design to Objects
Separate Domain from Presentation
Extract Hierarchy

17


http://www.refactoring.com/

Refactorings - Composing Methods

e If you have a complex code fragment that can exist
iIndependently, extract it into its own method.

e If you have a method that is extremely simple, inline it
iInto locations where it is used.

e If you assign values to a temporary variable more than
once, split it into additional temporary variables.

e If assignments are made to parameter variables in a
method, instead assign to a temporary variable.

e If an algorithm is hard to understand, swap it for a
version that is clearer.

18



Refactorings - Moving Features Between Objects

e If a method or field is used more by a calling class than
the class it is placed in, move it.

e If a class is doing more work than it should (or has low
cohesion), extract a subset of related methods into a
new class.

e If a class is doing too little, combine it with another.

e If a class delegates too many calls to a middleman
class, get rid of the middleman and call the client
directly.

e If an imported class needs an additional method, but
you can’'t modify it directly, create a method in the
client class with the imported object as a parameter.

19



Refactorings - Conditional Expressions & Data

e If your conditional statements are too complex, extract
methods from the if, then, and else conditions.

e If you have a sequence of conditional tests with the
same result or repeated conditions in each branch,
consolidate them into fewer conditional statements.

e If you have conditional statements to choose behavior
based on object type, instead use polymorphism.

e If you have an attribute that needs additional data or
operations, turn it into a new type of data object.

e If certain array values have special meaning, use a
class to store items instead.

20



Refactorings - Simplifying Method Calls and Generalization

e If a method both returns a value and changes the state
of a passed object, split into two methods and separate
the query from the modifier.

e If several methods do similar things - differentiated by
value - create one method that takes the value as a
parameter.

o If two classes have the same
attribute/method/constructor body, pull it up into the
parent. If an item is only used by some subclasses,
push it into the children.

e If a class has features only used situationally, extract
subclasses for those situations.

21



Example 1: Extract Method

< Before: Long method doing multiple things.

(amount) :
)
+ str(amount))

22



Example 1: Extract Method

<~ After: Break the method into smaller, well-named
methods.

< Explanation: Improves readability and reusability.

(amount):
+ str(amount))

(amount):

print_banner()

print_details(amount)

23



Example 2: Rename Variable

< Before: Unclear or misleading variable names.

24



Example 2: Rename Variable

< After: Replace with meaningful, descriptive names.

< Explanation: Enhances code readability
maintainability.

int distance = 0;

int time =
int total = distance + time;

and

25



Example 3: Inline Method

< Before: Method that is too simple and used only once.

():
more_than_five_late_deliveries() -

(): —

self.number of late deliveries >

26



Example 3: Inline Method

< After: Inline the method directly into the caller.

< Explanation: Reduces unnecessary indirection.

():
self.number_of_late_deliveries >

27



Example 4: Replace Temp with Query

< Before: Temporary variable holds result of expression.

int basePrice = quantity x itemPrice; d =

(basePrice > )

basePrice *

basePrice *

28



Example 4: Replace Temp with Query

< After: Replace temp with method that directly returns the
result.

< Explanation: Makes the code cleaner and easier to
understand.

(get_base_price() > )

get_base_price() x

get_base_price() x

():
quantity *x itemPrice

29



Example 5: Extract Class

<> Before: Class doing too much (God class).

(self, name, office_area _code, office_number):
self.name = name

self.office_area code = office_area_code

self.office_number = office_number

(self):
+ self.offlice_area _code + + self.office_number




Example 5: Extract Class

< After: Split responsibilities into multiple classes.

< Explanation: Promotes Single Responsibility Principle (SRP).

(self, name, telephone_number):
self.name = name
self._telephone_number = telephone_number

(self):

self._telephone_number

(self, office_area_code, office_number):
self. office_area_code = office_area_code

self. _office_number = office_number

(self):
+ self. office_area_code + + self. office_number




Example 6: Replace Magic Number with Symbolic

Constant

< Before: Hard-coded numbers in code.

(salary >
tax = salary *

tax = salary *

2 * 3.14 * radius

32



Example 6: Replace Magic Number with Symbolic
Constant

< After: Replace with named constants.
< Explanation: Makes the code self-explanatory.
const TAX_THRESHOLD =

const HIGH_TAX_RATE =
const LOW_TAX_RATE =

(salary > TAX_THRESHOLD)
tax = salary *x HIGH_TAX_RATE;

tax = salary *x LOW_TAX_RATE;




Example 7: Move Method

< Before: Method more related to another class.

(self):
self._type.is_premium():

result =
self._days_overdrawn >

result += (self._days_overdrawn - 7) x

result

self._days_overdrawn x




Example 7: Move Method

< After: Move the method to appropriate class.

< Explanation: Improves code organization and relevance.

(self, days_overdrawn):
self.is_premium():
result =
days_overdrawn >

result += (days_overdrawn - 7) x

result

days_overdrawn x

(self):
self._type.overdraft_charge(self._days_overdrawn)




Example 8: Replace Conditional with Polymorphism

< Before: Complex conditional logic.

(self):
self.type

self.get_base_speed()
self.type ==

self.get_base_speed() - self.get_load_factor() * self.number_
self.type

self.is_nailed self.get_base_speed() * self.voltage

36



Example 8: Replace Conditional with Polymorphism

< After: Replace with polymorphic classes or strategies.

< Explanation: Simplifies logic and enhances flexibility.

(self):
self.type.get_speed(self)

)=
(self):
self.get_base_speed()

)i
(self):

self.get_base_speed() - self.get_load_factor() * self.number_of_c

( ):
(self):

self.is_nailed self.get_base_speed() *x self.voltage




Example 9: Decompose Conditional

< Before: Complex and nested conditional statements

date.before(SUMMER_START) date.after (SUMMER_END) :
charge = quantity * winter_rate + winter_service_charge

charge = quantity % summer_rate

38



Example 9: Decompose Conditional

< After: Break down into methods with clear names.

<> Explanation: Increases clarity and reduces code complexity.

is_summer(date):
charge = summer_charge(quantity)

charge = winter_charge(quantity)
Methods extracted:
(date):
(date.before(SUMMER_START)

(quantity):
quantity % summer_rate

(quantity):

date.after(SUMMER_END))

quantity % winter_rate + winter_service_charge




Example 10: Introduce Null Object

< Before: Null checks scattered throughout the code.

customer

plan = BillingPlan.basic()

plan = customer.plan

40



Example 10: Introduce Null Object

< After: Introduce a Null Object to represent absence of an
object.

< Explanation: Simplifies code by removing null checks.

(self):
self.plan = BillingPlan.basic()

customer = customer NullCustomer()
plan = customer.plan

41



Example 11: Replace Inheritance with Composition

<> Before: Inheritance leads to rigid and brittle code.

(self, name, salary):
self.name = name
self.salary = salary

( b
(self, name, salary, commission):

.__init__(name, salary)

self.commission = commission




Example 11: Replace Inheritance with Composition

< After: Use composition instead of inheritance.

< Explanation: Improves flexibility and reusability.

(self, name, salary):

name = name
salary = salary

(self, employee, commission):
employee = employee

commission = commission




Example 12: Consolidate Duplicate Conditional
Fragments

< Before: Duplicate code within conditional branches.

is_special_deal():

total = price *
send()

total = price x
send()




Example 12: Consolidate Duplicate Conditional
Fragments

<> After: Consolidate duplicate code outside the conditional.

< Explanation: Reduces redundancy and enhances
maintainability.

is_special_deal():

total = price *

total = price *

send()

45



Dangers of Refactoring

e Code that used to be well commented, well tested,
and fully reviewed might not be any of these things
after refactoring.

e You might have inserted faults into code that
previously worked.

o This is why unit tests are important. If the new
code is broken, revert back to the old code.

e \What if the new design is not better?

46



“l Don’t Have Time”




“l Don’t Have Time”

e Most common excuse for not refactoring.

e Refactoring incurs an up-front cost.
O Developers don’t want to do it.
O Neither do managers - they lose time and get “nothing” (no new
features)

e Small companies (start-ups) avoid it.

o “We can'’t afford it.” “We don’t need it.”
e So do large companies.

o “We'd rather add new features.”

o “No one gets promoted for refactoring.”

48



“l Don’t Have Time”

e Refactoring is the key to effective evolution.
o Enables rapid addition of new features, with fewer
faults (up to a 500% ROI).
o Good for programmer morale.

e Refactoring is an investment in a company’s prime
asset - its code base.

e Many start-ups use cutting-edge tech and agile
processes that evolve rapidly. So should the code.

e Some of the most successful companies (Google)
reward and require refactoring.

49



Practice#1: Identify the code smell and suggest a
possible refactoring

50



Practice#1: Solution (Rename Variable)

(radius):

* radius x radius




Practice#2: Identify the code smell and suggest a
possible refactoring

(order):
total =
item order[ 1j-
total += item[ 1 % item[
total += orderl ]

total += orderl
total




Practice#2: Solution (Extract Method)

(order):
total = sum(item_total(item)
total += orderl[
total += orderl[

total

(item):

item[ ] x item[




Practice#3: Identify the code smell and suggest a
possible refactoring

(order):
order|[ 1}
send_expedited(order)

notify_customer(order)

send_standard(order)
notify_customer(order)




Practice#3: Solution (Consolidate Duplicate Conditional
Fragments)

(order):
order([ 1)
send_expedited(order)

send_standard(order)

notify_customer(order)




Practice#4: Identify the code smell and suggest a
possible refactoring

(self, employee_type, salary):

self.employee_type = employee_type
self.salary = salary

(self):
self.employee_type ==
self.salary x
self.employee_type ==
self.salary x
self.employee_type ==
self.salary x




Practice#4: Solution (Replace
Polymorphism)

(self, salary):
self.salary = salary

(self):
NotImplementedError (

) :
(self):
self.salary x

):
(self):
self.salary *

) :
(self):
self.salary *

Conditional

with




Practice#5: Identify the code smell and suggest a
possible refactoring

(self, color, wing_span):
self.color = color
self.wing_span = wing_span

( ):
(self, color, wing_span, swimming_speed):
super().__init__(color, wing_span)

self.swimming_speed = swimming_speed

(self):




Practice#5: Solution (Replace
Composition)

(self, color, wing_span):
self.color = color
self.wing_span = wing_span

(self, swimming_speed):

self.swimming_speed = swimming_speed

(self):

(self, bird, swimming_ability):
self.bird = bird
self.swimming_ability = swimming_ability

Inheritance

with




—

= O WHERE:=
w"ﬁ“éﬁ‘cé WHEN Wy

—1 B 1 WHEN

WHAT = W ﬁEVI\\IIH AT
WHAT .. =
2WHEREZHOW

<




