
Qualidade de Software
(14450)

Getting Started

(adapted from lecture notes of the “DIT 635 - Software Quality and Testing” unit, 
delivered by Professor Gregory Gay, at the Chalmers and the University of Gothenburg, 2022)

1Nuno Pombo - Qualidade de Software, 2024/25



Today’s Goals

² Introduce the idea of “quality”

² Cover the basics of verification and validation
² Software testing myths

2



When is software ready for release?

3



Flawed Software Will Be Exploited

4



Flawed Software Will Be Exploited

5



Flawed Software Will Hurt People

In 2010, software faults were responsible for 26% of
medical device recalls.
“There is a reasonable probability that use of these
products will cause serious adverse health consequences
or death.”

-US Food and Drug Administration

6



When is software ready for release?

7



The short (and not so simple) answers...

² We release when we can’t find any bugs…
² We release when we have finished testing…
² We release when quality is high...

8



Software Quality

² We all want high-quality software.
§ We don’t all agree on the definition of quality.

² Quality encompasses both what the system does and
how it does it.
§ How quickly it runs.
§ How secure it is.
§ How available its services are.
§ How easily it scales to more users.

² Quality is hard to measure and assess objectively.

9



Quality Attributes

² Describe desired properties of the system.

² Developers prioritize attributes and design system that
meets chosen thresholds.

² Most relevant for this course: dependability
§ Ability to consistently offer correct functionality, even under
unforeseen or unsafe conditions.

10



Quality Attributes

² Performance
§ Ability to meet timing requirements. When events occur, the

system must respond quickly.
² Security

§ Ability to protect information from unauthorized access while
providing service to authorized users.

² Scalability
§ Ability to “grow” the system to process more concurrent

requests.

11



Quality Attributes

² Availability
§ Ability to carry out a task when needed, to minimize “downtime”,

and to recover from failures.
² Modifiability

§ Ability to enhance software by fixing issues, adding features, and
adapting to new environments.

² Testability
§ Ability to easily identify faults in a system.
§ Probability that a fault will result in a visible failure.

12



Quality Attributes

² Interoperability
§ Ability to exchange information with and provide functionality to

other systems.
² Usability

§ Ability to enable users to perform tasks and provide support to
users.

§ How easy it is to use the system, learn features, adapt to meet
user needs, and increase confidence and satisfaction in usage.

13



Other Quality Attributes

² Resilience

² Supportability
² Portability

² Development Efficiency

² Time to Deliver
² Tool Support

14



Quality Attributes

² These qualities often conflict.
§ Fewer subsystems improves performance, but hurts modifiability.
§ Redundant data helps availability, but lessens security.
§ Localizing safety-critical features ensures safety, but degrades

performance.

² Important to decide what is important, and set a
threshold on when it is “good enough”.

15



16

Quality Assurance

General Principles of QA:

² Know what you are doing

² Know what you should be doing

² Know how to measure the difference



When is Software Ready for Release?

Software is ready for release when you can argue that it is
dependable.
² Correct, reliable, safe, and robust.

² Shown through Verification and Validation.

17



18

Software 
System

Brilliant 
quality 
assurance 
engineer



Verification and Validation

Barry Boehm, inventor of the term “software engineering”,
describes them as:

² Verification:
§ “Are we building the product right?”

² Validation:
§ “Are we building the right product?”

19



20

Verification and Validation

Verification Validation



Verification and Validation

Activities that must be performed to consider the software
“done.”
² Verification: The process of proving that the software

conforms to its specified functional and non-functional
requirements.

² Validation: The process of proving that the software
meets the customer’s true requirements, needs, and
expectations.

21



Verification

² Is the implementation consistent with its specification?
§ Does the software work under conditions we set?
§ (usually based on requirements)

² Verification is an experiment.
§ Perform trials, evaluate results, gather evidence.

22



Verification

² Is a implementation consistent with a specification?

² “Specification” and “implementation” are roles.
§ Usually source code and requirement specification.
§ But also…

• Detailed design and high-level architecture.
• Design and requirements.
• Test cases and requirements.
• Source code and user manuals.

23



Software Testing

² An investigation into system quality.

² Based on sequences of stimuli and 
observations.

§ Stimuli that the system must react to.
§ Observations of system reactions.
§ Verdicts on correctness. 

24

SUT

Test 
Input

Output

Test Oracle 
(Expected 

Output)

Verdict 
(Pass/Fail)



Validation

² Does the product work in the real world?
§ Does the software fulfill the users’ actual needs?

² Not the same as conforming to a specification.
§ If we specify two buttons and implement all behaviors related to

those buttons, we can achieve verification.
§ If the user expected a third button, we have not achieved

validation.

25



Verification and Validation

² Verification
§ Does the software work as intended?
§ Shows that software is dependable.

² Validation
§ Does the software meet the needs of your users?
§ Shows that software is useful.
§ This is much harder.

26



Verification and Validation

² Both are important.
§ A well-verified system might not meet the user’s needs.
§ A system can’t meet the user’s needs unless it is well-

constructed.

² This class largely focuses on verification.
§ Testing is the primary activity of verification.

27



Required Level of V&V

² Depends on:
§ Software Purpose: The more critical, the more important that it

is reliable.
§ User Expectations: Users may tolerate bugs because benefits

outweigh cost of failure recovery.
§ Marketing Environment: Competing products - features and

cost - and speed to market.

28



Basic Questions

1. When do verification and validation start and end?

2. How do we obtain acceptable quality at an acceptable
cost?

3. How can we assess readiness for release?

4. How can we control quality of successive releases?
5. How can the development process be improved to make

verification more effective?

29



When Does V&V Start?

² V&V can start as soon as the project starts.
§ Feasibility studies must consider quality assessment.
§ Requirements can be used to derive test cases.
§ Design can be verified against requirements.
§ Code can be verified against design and requirements.
§ Feedback can be sought from stakeholders at any time.

30



Static Verification

² Analysis of system artifacts to discover problems.
§ Proofs: Posing hypotheses and making arguments for their

validity using specifications, system models, etc.
§ Inspections: Manual “sanity check” on artifacts (e.g., source

code) by people or tools, searching for issues.

31



Advantages of Static Verification

² One error can hide other errors. Inspections not
impacted by program interactions.

² Incomplete systems can be inspected without special
code to run partial system.

² Inspection can assess quality attributes such as
maintainability, portability, code style, program
inefficiencies, etc.

32



Dynamic Verification

² Exercising and observing the system to argue that it
meets the requirements.
§ Testing: Formulating sets of input to demonstrate requirement

satisfaction or find faults.
§ Fuzzing: Generating semi-random input to locate crashes and

other anomalies.
§ Taint Analysis: Monitoring how faults spread by corrupting

system variables.

33



Advantages of Dynamic Verification

² Discovers problems from runtime interaction, timing
problems, or performance issues.

² Often cheaper than static verification.
§ Easier to automate.
§ However, cannot prove that properties are met - cannot try all

possible executions.

34



The Trade-Off Game

Software engineering is the process of designing,
constructing and maintaining the best software possible
given the available resources.

Always trading off between what we want, what we need,
and what we've got.
As a NASA engineer put it,

² “Better, faster, or cheaper - pick any two”

35



Perfect Verification

² Verification is an instance of the halting problem.
§ There is at least one program for which any technique cannot

obtain an answer in finite time.
§ Testing - cannot exhaustively try all inputs.
§ Must accept some degree of inaccuracy.

36



Verification Trade-Offs

We are interested in proving that a program demonstrates
property X
² Pessimistic Inaccuracy - not guaranteed 

to program even if the it possesses X. 

² Optimistic Inaccuracy - may accept 
program that does not possess X. 

² Property Complexity - if X is too difficult 
to check, substitute simpler property Y.

37



How Can We Assess Readiness?

² Finding all faults is nearly impossible.

² Instead, decide when to stop V&V.
² Need to establish criteria for acceptance.

§ How good is “good enough”?

² Measure dependability and other quality attributes and
set threshold to meet.

38



Product Readiness

² Put it in the hands of human users.

² Alpha/Beta Testing
§ Small group of users using the product, reporting feedback and

failures.
§ Use this to judge product readiness.
§ Make use of dependability metrics for quantitative judgement

(metric > threshold).
§ Make use of surveys as a qualitative judgement.

39



Ensuring Quality of Successive Releases

² V&V do not end with the release of the software.
§ Software evolves - new features, environmental adaptations, bug

fixes.
§ Need to test code, retest old code, track changes.
§ When code changes, rerun tests to ensure tested elements still

works.
§ Retain tests that exposed faults to ensure they do not return.

40



Improving the Development Process

² Try to learn from your mistakes in the next project.
§ Collect data during development.

• Fault information, bug reports, project metrics (complexity, #
classes, # lines of code, test coverage, etc.).

§ Classify faults into categories.
§ Look for common mistakes.
§ Learn how to avoid such mistakes.
§ Share information within your organization.

41



Software Testing Myths

42

Myth Fact

Quality Control = Testing. Testing is just one component of software quality 
control, which includes other activities such as 
Reviews.

The objective of Testing 
is to ensure a 100% 
defect- free product.

The objective of testing is to uncover as many defects 
as possible while ensuring that the software meets the 
requirements. Identifying and getting rid of all defects is 
impossible.

Testing is easy. Testing can be difficult and challenging (sometimes, 
even more so than coding).

Anyone can test. Testing is a rigorous discipline and requires many kinds 
of skills.

Automated testing 
eliminates the need for 
manual testing.

100% test automation cannot be achieved. Manual 
Testing, to some level, is always necessary.



Testing Requires Writing Code

² Testing cannot wait for the system to be complete.
§ The component to be tested must be isolated from the rest

of the system, instantiated, and driven using method
invocations.

§ Untested dependencies must be stubbed out with reliable
substitutions.

§ The deployment environment must be simulated by a
controllable harness.

43



Test scaffolding

² Test scaffolding is a set of programs written to support
test automation.
§ Not part of the product
§ Often temporary

² Allows for: 
§ Testing before all components complete.
§ Testing independent components.
§ Control over testing environment. 

44



Test scaffolding

² A driver is a substitute for a main or calling program.
§ Test cases are drivers.

² A harness is a substitute for all or part of the
deployment environment.

² A stub (or mock object) is a substitute for system
functionality that has not been completed.

² Support for recording and managing test execution.

45



Scaffolding

² Stubs and drivers are code written as replacements
other parts of the system.
§ May be required if pieces of the system do not exist.

² Scaffolding allows greater control over test execution
and greater observability to judge test results.
§ Ability to simulate dependencies and test components

in isolation.
§ Ability to set up specialized testing scenarios.
§ Ability to replace part of the program with a version

more suited to testing.

46



Generic vs Specific Scaffolding

² Simplest driver - one that runs a single specific test case. 

² More complex: 
§ Common scaffolding for a set of similar tests cases,
§ Scaffolding that can run multiple test suites for the same

software (i.e., load a spreadsheet of inputs and run then).
§ Scaffolding that can vary a number of parameters (product

family, OS, language).
² Balance of quality, scope, and cost. 

47



Key Points (1 of 2)

² Quality attributes describe desired properties of the
system under development.
§ Dependability, scalability, performance, availability, security,

maintainability, testability, ...

² Developers must prioritize quality attributes and design a
system that meets chosen thresholds.

² Quality is often subjective. Choose a definition, and offer
objective thresholds.

48



Key Points (2 of 2)

² Software should be dependable and useful before it is
released into the world.

² Verification is the process of demonstrating that an
implementation meets its specification.
§ This is the primary means of making software dependable (and

demonstrating dependability).
§ Testing is most common form of verification.

49



50


