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What is TDD?

• Test-Driven Development (TDD) is a software 

development process where tests are written 

before code. The process encourages writing 

tests, then code to pass them.

• Key principles:

– Write tests first.

– Keep tests small and incremental.
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Benefits of TDD

• Improves code quality

• Encourages better design

• Prevents bugs early

• Cleaner code through refactoring
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TDD Workflow

• Write a test: start by writing a simple test that fails.

• Write code: write the minimal code to pass the

test.

• Refactor: improve the code, ensuring it passes the

test.

• Repeat: add new tests for additional functionality.
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First Example: unittest Framework

• Example using unittest framework in Python:

import unittest

class TestExample(unittest.TestCase):

def test_addition(self):

self.assertEqual(1 + 1, 2)

if __name__ == '__main__':

unittest.main()
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Writing a Failing Test

• Example of a failing test:

 def test_addition(self):

 self.assertEqual(add(2, 3), 5)

• The code for the add function hasn’t been written

yet, so the test will fail.
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Write Minimum Code to Pass

• Now, write the function:

 def add(a, b):

  return a + b

• Run the test, and it should pass.
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Refactor the Code

• After the test passes, check if the function can be 

improved, such as adding error handling or 

optimizing the code.
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Advanced Testing Techniques

• Mocking: isolating parts of the code for more

focused testing.

• Parameterized tests: running the same tests with

different data sets.

• Continuous Integration (CI): automating testing in

the development cycle.
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Best Practices

• Keep tests simple.

• Test one thing at a time.

• Run tests frequently.

• Aim for full code coverage.
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Conclusion

• TDD ensures high-quality code through iterative 

development. Practice writing tests first and enjoy 

the benefits of clean, bug-resistant code.
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