
Test-Driven Development

in Python

1Nuno Pombo - Qualidade de Software, 2024/25

What is TDD?

• Test-Driven Development (TDD) is a software

development process where tests are written

before code. The process encourages writing

tests, then code to pass them.

• Key principles:

– Write tests first.

– Keep tests small and incremental.

2

Benefits of TDD

• Improves code quality

• Encourages better design

• Prevents bugs early

• Cleaner code through refactoring

3

TDD Workflow

• Write a test: start by writing a simple test that fails.

• Write code: write the minimal code to pass the

test.

• Refactor: improve the code, ensuring it passes the

test.

• Repeat: add new tests for additional functionality.

4

First Example: unittest Framework

• Example using unittest framework in Python:

import unittest

class TestExample(unittest.TestCase):

def test_addition(self):

self.assertEqual(1 + 1, 2)

if __name__ == '__main__':

unittest.main()

5

Writing a Failing Test

• Example of a failing test:

 def test_addition(self):

 self.assertEqual(add(2, 3), 5)

• The code for the add function hasn’t been written

yet, so the test will fail.

6

Write Minimum Code to Pass

• Now, write the function:

 def add(a, b):

 return a + b

• Run the test, and it should pass.

7

Refactor the Code

• After the test passes, check if the function can be

improved, such as adding error handling or

optimizing the code.

8

Advanced Testing Techniques

• Mocking: isolating parts of the code for more

focused testing.

• Parameterized tests: running the same tests with

different data sets.

• Continuous Integration (CI): automating testing in

the development cycle.

9

Best Practices

• Keep tests simple.

• Test one thing at a time.

• Run tests frequently.

• Aim for full code coverage.

10

Conclusion

• TDD ensures high-quality code through iterative

development. Practice writing tests first and enjoy

the benefits of clean, bug-resistant code.

11

12

	Slide 1: Test-Driven Development in Python
	Slide 2: What is TDD?
	Slide 3: Benefits of TDD
	Slide 4: TDD Workflow
	Slide 5: First Example: unittest Framework
	Slide 6: Writing a Failing Test
	Slide 7: Write Minimum Code to Pass
	Slide 8: Refactor the Code
	Slide 9: Advanced Testing Techniques
	Slide 10: Best Practices
	Slide 11: Conclusion
	Slide 12

