
Testing with Selenium &

Python

1Nuno Pombo - Qualidade de Software, 2024/25



Selenium

• Selenium is a widely-used open-source framework 

for automating web applications 

• It provides a suite of tools that allow developers 

and testers to simulate user interactions with web 

browsers

• Valuable for functional and regression testing in 

web development

2



Components

• Selenium WebDriver: A core component that allows for 

programmatically controlling a web browser. WebDriver supports 

multiple browsers (e.g., Chrome, Firefox, Safari, Edge) and 

programming languages (e.g., Java, Python, C#, JavaScript), making it 

versatile for cross-browser testing

• Selenium IDE: An integrated development environment for Selenium 

tests, available as a browser extension. It enables users to record and 

playback tests, making it suitable for quick test case development and 

for testers with minimal programming skills.

• Selenium Grid: Facilitates running tests on multiple machines with 

different browsers and operating systems concurrently. It's used for 

distributed test execution, enabling parallel testing and speeding up the 

testing process

3



Use Cases

• Functional Testing: Automating user interactions to 

ensure the application works as expected (e.g., form 

submissions, navigation)

• Regression Testing: Ensuring new changes do not break 

existing functionalities

• Cross-Browser Testing: Verifying that a web application 

behaves consistently across different browsers

• Performance Testing: When integrated with tools like 

JMeter or Locust, Selenium can help measure web 

application performance under load

4



Step 1: Install Selenium

• Use the following command to install Selenium:

pip install selenium

5



Step 2: Download WebDriver

• Download a WebDriver for the browser you want 

to automate (e.g., ChromeDriver): link

• Extract and note the path.

6

https://sites.google.com/a/chromium.org/chromedriver/


Step 3: Basic Python Script

• Import Selenium and initialize the WebDriver:

from selenium import webdriver

driver = webdriver.Chrome(executable_path='path_to_chromedriver')

7



Step 4: Open a Web Page

• Open a website, such as UBI:

driver.get("https://www.ubi.pt")

8



Step 5: Interact with the Web Page

• Locate elements and interact with them:

search_box = driver.find_element_by_name(NAME)

search_box.send_keys('Selenium Python')

search_box.submit()

9



Step 6: Close the Browser

• Finally, close the browser using:

driver.quit()

10



Exercise

Create a Python script that automates the following tasks 

using Selenium:

1. Visit a website.

2. Search for a specific term.

3. Print the title of the resulting page to the console.

4. Extract and print the first paragraph of the article.

5. Take a screenshot of the resulting page and save it to your local 

system.

6. Interact with multiple elements (e.g., clicking on links or filling out 

forms).

7. Close the browser.

11



12


	Slide 1: Testing with Selenium & Python
	Slide 2: Selenium
	Slide 3: Components
	Slide 4: Use Cases
	Slide 5: Step 1: Install Selenium
	Slide 6: Step 2: Download WebDriver
	Slide 7: Step 3: Basic Python Script
	Slide 8: Step 4: Open a Web Page
	Slide 9: Step 5: Interact with the Web Page
	Slide 10: Step 6: Close the Browser
	Slide 11: Exercise
	Slide 12

