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Selenium

• Selenium is a widely-used open-source framework 

for automating web applications 

• It provides a suite of tools that allow developers 

and testers to simulate user interactions with web 

browsers

• Valuable for functional and regression testing in 

web development
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Components

• Selenium WebDriver: A core component that allows for 

programmatically controlling a web browser. WebDriver supports 

multiple browsers (e.g., Chrome, Firefox, Safari, Edge) and 

programming languages (e.g., Java, Python, C#, JavaScript), making it 

versatile for cross-browser testing

• Selenium IDE: An integrated development environment for Selenium 

tests, available as a browser extension. It enables users to record and 

playback tests, making it suitable for quick test case development and 

for testers with minimal programming skills.

• Selenium Grid: Facilitates running tests on multiple machines with 

different browsers and operating systems concurrently. It's used for 

distributed test execution, enabling parallel testing and speeding up the 

testing process
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Use Cases

• Functional Testing: Automating user interactions to 

ensure the application works as expected (e.g., form 

submissions, navigation)

• Regression Testing: Ensuring new changes do not break 

existing functionalities

• Cross-Browser Testing: Verifying that a web application 

behaves consistently across different browsers

• Performance Testing: When integrated with tools like 

JMeter or Locust, Selenium can help measure web 

application performance under load
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Step 1: Install Selenium

• Use the following command to install Selenium:

pip install selenium
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Step 2: Download WebDriver

• Download a WebDriver for the browser you want 

to automate (e.g., ChromeDriver): link

• Extract and note the path.
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https://sites.google.com/a/chromium.org/chromedriver/


Step 3: Basic Python Script

• Import Selenium and initialize the WebDriver:

from selenium import webdriver

driver = webdriver.Chrome(executable_path='path_to_chromedriver')

7



Step 4: Open a Web Page

• Open a website, such as UBI:

driver.get("https://www.ubi.pt")
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Step 5: Interact with the Web Page

• Locate elements and interact with them:

search_box = driver.find_element_by_name(NAME)

search_box.send_keys('Selenium Python')

search_box.submit()
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Step 6: Close the Browser

• Finally, close the browser using:

driver.quit()
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Exercise

Create a Python script that automates the following tasks 

using Selenium:

1. Visit a website.

2. Search for a specific term.

3. Print the title of the resulting page to the console.

4. Extract and print the first paragraph of the article.

5. Take a screenshot of the resulting page and save it to your local 

system.

6. Interact with multiple elements (e.g., clicking on links or filling out 

forms).

7. Close the browser.
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