
Unit Testing with JUnit

1Nuno Pombo, Qualidade de Software, 2023/24

Why unit testing?

• Unit testing: Looking for errors in a subsystem in isolation.
– Generally a "subsystem" means a particular class or object.
– The Java library JUnit helps us to easily perform unit
testing.

• The basic idea:
– For a given class Foo, create another class FooTest to test
it, containing various "test case" methods to run.

– Each method looks for particular results and passes / fails.

• JUnit provides "assert" commands to help us write tests.
– The idea: Put assertion calls in your test methods to check
things you expect to be true. If they aren't, the test will fail.

2

A JUnit test class

– A method with @Test is flagged as a JUnit test case.
• All @Test methods run when JUnit runs your test class.

3

JUnit assertion methods

• Each method can also be passed a string to display if it fails:
– e.g. assertEquals("message", expected, actual)

assertTrue(test) fails if the boolean test is false

assertFalse(test) fails if the boolean test is true

assertEquals(expected, actual) fails if the values are not equal

assertNull(value) fails if the given value is not null

assertNotNull(value) fails if the given value is null
fail() causes current test to immediately fail

4

What's wrong with this?

5

Well-structured assertions

6

7

