
Engenharia de Software
(14341, 16230, 15386)

DevOps and Code Management

(adapted from Engineering Software Products: An Introduction to Modern Software Engineering , Ian Sommerville,

Pearson, 2020)

1Nuno Pombo - Engenharia de Software, 2024/25

Topics covered

 Software support

 DevOps principles

 Code management

 Code repositor

 Continuous integration

 DevOps measurement

2

Software support (1 of 2)

 Traditionally, separate teams were responsible software

development, software release and software support.

 The development team passed over a ‘final’ version of

the software to a release team. This team then built a

release version, tested this and prepared release

documentation before releasing the software to

customers.

3

Software support (2 of 2)

 A third team was responsible for providing customer

support.

▪ The original development team were sometimes also

responsible for implementing software changes.

▪ Alternatively, the software may have been maintained by a

separate ‘maintenance team’.

4

Development, release and support

5

DevOps (1 of 2)

There are inevitable delays and overheads in

the traditional support model.

To speed up the release and support processes,

an alternative approach called DevOps

(Development+Operations) has been developed.

6

DevOps (2 of 2)

 Three factors led to the development and widespread

adoption of DevOps:

▪ Agile software engineering reduced the development time for

software, but the traditional release process introduced a

bottleneck between development and deployment.

▪ Amazon re-engineered their software around services and

introduced an approach in which a service was developed and

supported by the same team. Amazon’s claim that this led to

significant improvements in reliability was widely publicized.

▪ It became possible to release software as a service, running on

a public or private cloud. Software products did not have to be

released to users on physical media or downloads.

7

DevOps

8

Principle Explanation

Everyone is responsible

for everything.

All team members have joint responsibility for

developing, delivering, and supporting the software.

Everything that can be

automated should be

automated.

All activities involved in testing, deployment, and

support should be automated if it is possible to do

so. There should be minimal manual involvement in

deploying software.

Measure first, change

later.

DevOps should be driven by a measurement

program where you collect data about the system

and its operation. You then use the collected data to

inform decisions about changing DevOps processes

and tools.

DevOps principles

9

Benefit Explanation

Faster deployment Software can be deployed to production more quickly

because communication delays between the people

involved in the process are dramatically reduced.

Reduced risk The increment of functionality in each release is small so

there is less chance of feature interactions and other

changes that cause system failures and outages.

Faster repair DevOps teams work together to get the software up and

running again as soon as possible. There is no need to

discover which team was responsible for the problem and

to wait for them to fix it.

More productive teams DevOps teams are happier and more productive than the

teams involved in the separate activities. Because team

members are happier, they are less likely to leave to find

jobs elsewhere.

Benefits of DevOps

10

Code management (1 of 2)

 During the development of a software product, the

development team will probably create tens of thousands

of lines of code and automated tests.

 These will be organized into hundreds of files. Dozens of

libraries may be used, and several, different programs

may be involved in creating and running the code.

 Code management is a set of software-supported

practices that is used to manage an evolving codebase.

11

Code management (2 of 2)

 You need code management to ensure that changes

made by different developers do not interfere with each

other, and to create different product versions.

 Code management tools make it easy to create an

executable product from its source code files and to run

automated tests on that product.

12

Alice and Bob worked for a company called FinanceMadeSimple and were team members

involved in developing a personal finance product. Alice discovered a bug in a module

called TaxReturnPreparation. The bug was that a tax return was reported as filed but

sometimes it was not actually sent to the tax office. She edited the module to fix the bug.

Bob was working on the user interface for the system and was also working on

TaxReturnPreparation. Unfortunately, he took a copy before Alice had fixed the bug and,

after making his changes, he saved the module.This overwrote Alice’s changes, but she

was not aware of this.

The product tests did not reveal the bug, as it was an intermittent failure that depended on

the sections of the tax return form that had been completed. The product was launched

with the bug. For most users, everything worked OK. However, for a small number of

users, their tax returns were not filed and they were fined by the revenue service. The

subsequent investigation showed the software company was negligent. This was widely

publicized and, as well as a fine from the tax authorities, users lost confidence in the

software. Many switched to a rival product. FinanceMadeSimple failed and both Bob and

Alice lost their jobs.

A code management problem

13

Code management and DevOps

 Source code management, combined with automated

system building, is essential for professional software

engineering.

 In companies that use DevOps, a modern code

management system is a fundamental requirement for

‘automating everything’.

 Not only does it store the project code that is ultimately

deployed, it also stores all other information that is used

in DevOps processes.

 DevOps automation and measurement tools all interact

with the code management system.

14

Code management and DevOps

15

Code management fundamentals

 Code management systems provide a set of features

that support four general areas:

▪ Code transfer Developers take code into their personal file store

to work on it then return it to the shared code management

system.

▪ Version storage and retrieval Files may be stored in several

different versions and specific versions of these files can be

retrieved.

▪ Merging and branching Parallel development branches may be

created for concurrent working. Changes made by developers in

different branches may be merged.

▪ Version information Information about the different versions

maintained in the system may be stored and retrieved.

16

Code repository (1 of 2)

 All source code management systems have a shared

repository and a set of features to manage the files in

that repository:

▪ All source code files and file versions are stored in the repository,

as are other artefacts such as configuration files, build scripts,

shared libraries and versions of tools used.

▪ The repository includes a database of information about the

stored files such as version information, information about who

has changed the files, what changes were made at what times,

and so on.

17

Code repository (2 of 2)

 Files can be transferred to and from the repository and

information about the different versions of files and their

relationships may be updated.

▪ Specific versions of files and information about these versions

can always be retrieved from the repository.

18

Feature Description

Version and release

Identification

Managed versions of a code file are uniquely identified when

they are submitted to the system and can be retrieved using

their identifier and other file attributes.

Change history recording The reasons changes to a code file have been made are

recorded and maintained.

Independent development Several developers can work on the same code file at the

same time. When this is submitted to the code management

system, a new version is created

Project support All of the files associated with a project may be checked out

at the same time. There is no need to check out files one at

a time.

Storage management The code management system includes efficient storage

mechanisms so that it doesn’t keep multiple copies of files

that have only small differences.

Features of code management systems

19

Git

 In 2005, Linus Torvalds, the developer of Linux,

revolutionized source code management by developing

a distributed version control system (DVCS) called Git to

manage the code of the Linux kernel.

 This was geared to supporting large-scale open-source

development. It took advantage of the fact that storage

costs had fallen to such an extent that most users did not

have to be concerned with local storage management.

 Instead of only keeping the copies of the files that users

are working on, Git maintains a clone of the repository

on every user’s computer.

20

Repository cloning in Git

21

Benefits of distributed code management (1 of 2)

 Resilience

▪ Everyone working on a project has their own copy of the

repository. If the shared repository is damaged or subjected to a

cyberattack, work can continue, and the clones can be used to

restore the shared repository. People can work offline if they

don’t have a network connection.

 Speed

▪ Committing changes to the repository is a fast, local operation

and does not need data to be transferred over the network.

22

Benefits of distributed code management (2 of 2)

 Flexibility

▪ Local experimentation is much simpler. Developers can safely

experiment and try different approaches without exposing these

to other project members. With a centralized system, this may

only be possible by working outside the code management

system.

23

Git repositories

24

Branching and merging (1 of 2)

 Branching and merging are fundamental ideas that are

supported by all code management systems.

 A branch is an independent, stand-alone version that is

created when a developer wishes to change a file.

 The changes made by developers in their own branches

may be merged to create a new shared branch.

25

Branching and merging (2 of 2)

 The repository ensures that branch files that have been

changed cannot overwrite repository files without a

merge operation.

▪ If Alice or Bob make mistakes on the branch they are working

on, they can easily revert to the master file.

▪ If they commit changes, while working, they can revert to earlier

versions of the work they have done. When they have finished

and tested their code, they can then replace the master file by

merging the work they have done with the master branch

26

Branching and merging

27

DevOps automation

 By using DevOps with automated support, you can

dramatically reduce the time and costs for integration,

deployment and delivery.

 Everything that can be, should be automated is a

fundamental principle of DevOps.

 As well as reducing the costs and time required for

integration, deployment and delivery, process

automation also makes these processes more reliable

and reproducible.

 Automation information is encoded in scripts and system

models that can be checked, reviewed, versioned and

stored in the project repository. 28

Aspect Description

Continuous integration Each time a developer commits a change to the project’s

master branch, an executable version of the system is built

and tested.

Continuous delivery A simulation of the product’s operating environment is

created and the executable software version is tested.

Continuous deployment A new release of the system is made available to users

every time a change is made to the master branch of the

software.

Infrastructure as code Machine-readable models of the infrastructure (network,

servers, routers, etc.) on which the product executes are

used by configuration management tools to build the

software’s execution platform. The software to be installed,

such as compilers and libraries and a DBMS, are included

in the infastructure model.

Aspects of DevOps automation

29

System integration (1 of 2)

 System integration (system building) is the process of

gathering all of the elements required in a working

system, moving them into the right directories, and

putting them together to create an operational system.

30

System integration (2 of 2)

 Typical activities that are part of the system integration

process include:

▪ Installing database software and setting up the database with the

appropriate schema.

▪ Loading test data into the database.

▪ Compiling the files that make up the product.

▪ Linking the compiled code with the libraries and other

components used.

▪ Checking that external services used are operational.

▪ Deleting old configuration files and moving configuration files to

the correct locations.

▪ Running a set of system tests to check that the integration has

been successful.

31

Continuous integration (1 of 2)

 Continuous integration simply means that an integrated

version of the system is created and tested every time a

change is pushed to the system’s shared repository.

 On completion of the push operation, the repository

sends a message to an integration server to build a new

version of the product

 The advantage of continuous integration compared to

less frequent integration is that it is faster to find and fix

bugs in the system.

32

Continuous integration (2 of 2)

 If you make a small change and some system tests then

fail, the problem almost certainly lies in the new code

that you have pushed to the project repo.

 You can focus on this code to find the bug that’s causing

the problem.

33

Continuous integration

34

Breaking the build (1 of 2)

 In a continuous integration environment, developers

have to make sure that they don’t ‘break the build’.

 Breaking the build means pushing code to the project

repository which, when integrated, causes some of the

system tests to fail.

 If this happens to you, your priority should be to discover

and fix the problem so that normal development can

continue.

35

Breaking the build (2 of 2)

 To avoid breaking the build, you should always adopt an

‘integrate twice’ approach to system integration.

▪ You should integrate and test on your own computer before

pushing code to the project repository to trigger the integration

server

36

Local integration

37

System building

 Continuous integration is only effective if the integration

process is fast and developers do not have to wait for

the results of their tests of the integrated system.

 However, some activities in the build process, such as

populating a database or compiling hundreds of system

files, are inherently slow.

 It is therefore essential to have an automated build

process that minimizes the time spent on these activities.

 Fast system building is achieved using a process of

incremental building, where only those parts of the

system that have been changed are rebuilt.

38

A dependency model

39

Dependencies (1 of 2)

 The upward-pointing arrow means ‘depends on’ and

shows the information required to complete the task

shown in the rectangle at the base of the model.

 Running a set of system tests depends on the existence

of executable object code for both the program being

tested and the system tests.

40

Dependencies (2 of 2)

 In turn, these depend on the source code for the system

and the tests that are compiled to create the object code.

 Next figure is a lower-level dependency model that

shows the dependencies involved in creating the object

code for a source code files called Mycode.

41

File dependencies

42

Continuous integration

 An automated build system uses the specification of

dependencies to work out what needs to be done. It uses the

file modification timestamp to decide if a source code file has

been changed.

▪ The modification date of the compiled code is after the modification date

of the source code. The build system infers that no changes have been

made to the source code and does nothing.

▪ The modification date of the compiled code is before the modification
date of the compiled code. The build system recompiles the source and

replaces the existing file of compiled code with an updated version.

▪ The modification date of the compiled code is after the modification date

of the source code. However, the modification date of Classdef is after

the modification date of the source code of Mycode. Therefore, Mycode
has to be recompiled to incorporate these changes.

43

Continuous delivery and deployment (1 of 2)

 Continuous integration means creating an executable

version of a software system whenever a change is

made to the repository. The CI tool builds the system and

runs tests on your development computer or project

integration server.

 However, the real environment in which software runs

will inevitably be different from your development

system.

 When your software runs in its real, operational

environment bugs may be revealed that did not show up

in the test environment.

44

Continuous delivery and deployment (2 of 2)

Continuous delivery means that, after making changes to

a system, you ensure that the changed system is ready

for delivery to customers.

This means that you have to test it in a production

environment to make sure that environmental factors do

not cause system failures or slow down its performance.

45

Continuous delivery and deployment

46

The deployment pipeline (1 of 2)

 After initial integration testing, a staged test environment

is created.

 This is a replica of the actual production environment in

which the system will run.

 The system acceptance tests, which include

functionality, load and performance tests, are then run to

check that the software works as expected. If all of these

tests pass, the changed software is installed on the

production servers.

47

The deployment pipeline (2 of 2)

 To deploy the system, you then momentarily stop all new

requests for service and leave the older version to

process the outstanding transactions.

 Once these have been completed, you switch to the new

version of the system and restart processing.

48

Benefit Explanation

Reduced costs If you use continuous deployment, you have no option but to invest

in a completely automated deployment pipeline. Manual

deployment is a time-consuming and error-prone process. Setting

up an automated system is expensive and takes time, but you can

recover these costs quickly if you make regular updates to your

product.

Faster problem

solving

If a problem occurs, it will probably affect only a small part of the

system and the source of that problem will be obvious. If you

bundle many changes into a single release, finding and fixing

problems are more difficult.

Benefits of continuous deployment (1 of 2)

49

Benefit Explanation

Faster customer

feedback

You can deploy new features when they are ready for customer

use. You can ask them for feedback on these features and use this

feedback to identify improvements that you need to make.

A/B testing This is an option if you have a large customer base and use

several servers for deployment. You can deploy a new version of

the software on some servers and leave the older version running

on others. You then use the load balancer to divert some

customers to the new version while others use the older version.

You can measure and assess how new features are used to see if

they do what you expect.

Benefits of continuous deployment (2 of 2)

50

Infrastructure as code (1 of 2)

 In an enterprise environment, there are usually many

different physical or virtual servers (web servers,

database servers, file servers, etc.) that do different

things. These have different configurations and run

different software packages.

 It is therefore difficult to keep track of the software

installed on each machine.

51

Infrastructure as code (2 of 2)

 The idea of infrastructure as code was proposed as a

way to address this problem. Rather than manually

updating the software on a company’s servers, the

process can be automated using a model of the

infrastructure written in a machine-processable

language.

 Configuration management (CM) tools such as Puppet

and Chef can automatically install software and services

on servers according to the infrastructure definition.

52

Infrastructure as code

53

Benefits of infrastructure as code (1 of 2)

 Defining your infrastructure as code and using a

configuration management system solves two key

problems of continuous deployment.

▪ Your testing environment must be exactly the same as your

deployment environment. If you change the deployment

environment, you have to mirror those changes in your testing

environment.

▪ When you change a service, you have to be able to roll that

change out to all of your servers quickly and reliably. If there is a

bug in your changed code that affects the system’s reliability, you

have to be able to seamlessly roll back to the older system.

54

Benefits of infrastructure as code (2 of 2)

 The business benefits of defining your infrastructure as

code are lower costs of system management and lower

risks of unexpected problems arising when infrastructure

changes are implemented.

55

Characteristic Explanation

Visibility Your infrastructure is defined as a stand-alone model that can be

read, discussed, understood, and reviewed by the whole DevOps

team.

Reproducibility Using a configuration management tool means that the installation

tasks will always be run in the same sequence so that the same

environment is always created. You are not reliant on people

remembering the order that they need to do things.

Reliability In managing a complex infrastructure, system administrators often

make simple mistakes, especially when the same changes have to

be made to several servers. Automating the process avoids these

mistakes.

Recovery Like any other code, your infrastructure model can be versioned

and stored in a code management system. If infrastructure

changes cause problems, you can easily revert to an older version

and reinstall the environment that you know works.

Characteristics of infrastructure as code

56

Containers (1 of 2)

 A container provides a stand-alone execution

environment running on top of an operating system such

as Linux.

 The software installed in a Docker container is specified

using a Dockerfile, which is, essentially, a definition of

your software infrastructure as code.

 You build an executable container image by processing

the Dockerfile.

57

Containers (2 of 2)

 Using containers makes it very simple to provide

identical execution environments.

▪ For each type of server that you use, you define the environment

that you need and build an image for execution. You can run an

application container as a test system or as an operational

system; there is no distinction between them.

▪ When you update your software, you rerun the image creation

process to create a new image that includes the modified

software. You can then start these images alongside the existing

system and divert service requests to them

58

DevOps measurement (1 of 2)

 After you have adopted DevOps, you should try to

continuously improve your DevOps process to achieve

faster deployment of better-quality software.

59

DevOps measurement (2 of 2)

There are four types of software development
measurement:

▪ Process measurement You collect and analyse data

about your development, testing and deployment

processes.

▪ Service measurement You collect and analyse data about

the software’s performance, reliability and acceptability to

customers.

▪ Usage measurement You collect and analyse data about

how customers use your product.

▪ Business success measurement You collect and

analyse data about how your product contributes to the

overall success of the business.
60

Automating measurement (1 of 2)

 As far as possible, the DevOps principle of automating

everything should be applied to software measurement.

 You should instrument your software to collect data

about itself and you should use a monitoring system, to

collect data about your software’s performance and

availability.

61

Automating measurement (2 of 2)

 Some process measurements can also be automated.

▪ However, there are problems in process measurement because

people are involved. They work in different ways, may record

information differently and are affected by outside influences that

affect the way they work.

62

Metrics used in the DevOps scorecard

63

Logging and analysis

64

Key points (1 of 4)

 DevOps is the integration of software development and

the management of that software once it has been

deployed for use. The same team is responsible for

development, deployment and software support.

 The benefits of DevOps are faster deployment, reduced

risk, faster repair of buggy code and more productive

teams.

 Source code management is essential to avoid changes

made by different developers interfering with each other.

65

Key points (2 of 4)

 All code management systems are based around a

shared code repository with a set of features that support

code transfer, version storage and retrieval, branching

and merging and maintaining version information.

 Git is a distributed code management system that is the

most widely used system for software product

development. Each developer works with their own copy

of the repository which may be merged with the shared

project repository.

66

Key points (3 of 4)

 Continuous integration means that as soon as a change

is committed to a project repository, it is integrated with

existing code and a new version of the system is created

for testing.

 Automated system building tools reduce the time needed

to compile and integrate the system by only recompiling

those components and their dependents that have

changed.

 Continuous deployment means that as soon as a change

is made, the deployed version of the system is

automatically updated. This is only possible when the

software product is delivered as a cloud-based service.
67

Key points (4 of 4)

 Infrastructure as code means that the infrastructure

(network, installed software, etc.) on which software

executes is defined as a machine-readable model.

Automated tools, such as Chef and Puppet, can

provision servers based on the infrastructure model.

 Measurement is a fundamental principle of DevOps. You

may make both process and product measurements.

Important process metrics are deployment frequency,

percentage of failed deployments, and mean time to

recovery from failure.

68

69

	Slide 1: Engenharia de Software (14341, 16230, 15386) DevOps and Code Management (adapted from Engineering Software Products: An Introduction to Modern Software Engineering, Ian Sommerville, Pearson, 2020)
	Slide 2: Topics covered
	Slide 3: Software support (1 of 2)
	Slide 4: Software support (2 of 2)
	Slide 5: Development, release and support
	Slide 6: DevOps (1 of 2)
	Slide 7: DevOps (2 of 2)
	Slide 8: DevOps
	Slide 9: DevOps principles
	Slide 10: Benefits of DevOps
	Slide 11: Code management (1 of 2)
	Slide 12: Code management (2 of 2)
	Slide 13: A code management problem
	Slide 14: Code management and DevOps
	Slide 15: Code management and DevOps
	Slide 16: Code management fundamentals
	Slide 17: Code repository (1 of 2)
	Slide 18: Code repository (2 of 2)
	Slide 19: Features of code management systems
	Slide 20: Git
	Slide 21: Repository cloning in Git
	Slide 22: Benefits of distributed code management (1 of 2)
	Slide 23: Benefits of distributed code management (2 of 2)
	Slide 24: Git repositories
	Slide 25: Branching and merging (1 of 2)
	Slide 26: Branching and merging (2 of 2)
	Slide 27: Branching and merging
	Slide 28: DevOps automation
	Slide 29: Aspects of DevOps automation
	Slide 30: System integration (1 of 2)
	Slide 31: System integration (2 of 2)
	Slide 32: Continuous integration (1 of 2)
	Slide 33: Continuous integration (2 of 2)
	Slide 34: Continuous integration
	Slide 35: Breaking the build (1 of 2)
	Slide 36: Breaking the build (2 of 2)
	Slide 37: Local integration
	Slide 38: System building
	Slide 39: A dependency model
	Slide 40: Dependencies (1 of 2)
	Slide 41: Dependencies (2 of 2)
	Slide 42: File dependencies
	Slide 43: Continuous integration
	Slide 44: Continuous delivery and deployment (1 of 2)
	Slide 45: Continuous delivery and deployment (2 of 2)
	Slide 46: Continuous delivery and deployment
	Slide 47: The deployment pipeline (1 of 2)
	Slide 48: The deployment pipeline (2 of 2)
	Slide 49: Benefits of continuous deployment (1 of 2)
	Slide 50: Benefits of continuous deployment (2 of 2)
	Slide 51: Infrastructure as code (1 of 2)
	Slide 52: Infrastructure as code (2 of 2)
	Slide 53: Infrastructure as code
	Slide 54: Benefits of infrastructure as code (1 of 2)
	Slide 55: Benefits of infrastructure as code (2 of 2)
	Slide 56: Characteristics of infrastructure as code
	Slide 57: Containers (1 of 2)
	Slide 58: Containers (2 of 2)
	Slide 59: DevOps measurement (1 of 2)
	Slide 60: DevOps measurement (2 of 2)
	Slide 61: Automating measurement (1 of 2)
	Slide 62: Automating measurement (2 of 2)
	Slide 63: Metrics used in the DevOps scorecard
	Slide 64: Logging and analysis
	Slide 65: Key points (1 of 4)
	Slide 66: Key points (2 of 4)
	Slide 67: Key points (3 of 4)
	Slide 68: Key points (4 of 4)
	Slide 69

