
Engenharia de Software
(14341, 16230, 15386)

Refactoring

(adapted from lecture notes of the “DIT 635 - Software Quality and Testing” unit,

delivered by Professor Gregory Gay, at the Chalmers and the University of Gothenburg, 2022)

1Nuno Pombo - Engenharia de Software, 2024/25

Today’s Goals

 Cover the basics of refactoring

 Introduce the idea of “code smells”

2

The Software Lifecycle

3

Concept

Formation

Requirements

Specification

Design

Implementation

and Testing

Release and

Maintenance

The Real Lifecycle

4

Specification
Implementati

on

Verification &

Validation
Operation

R1R2R3R4

Initial

Developme

nt

Evolution

Servicing

Phaseout

Software Maintenance

● Fault Repairs

 Changes made in order to correct coding, design, or

requirements errors.

Environmental Adaptations

 Changes made to accommodate changes to the hardware, OS

platform, or external systems.

Functionality Addition

 New features are added to the system to meet new user

requirements.

5

Software Maintenance Effort

● Maintenance costs more than the initial development.

 2/3rds of budget goes to maintenance on average.

 Up to four times the development cost to maintain critical

systems.

General breakdown:

 65% of effort goes to functionality addition

 18% to environmental adaptation

 17% to fault repair

6

Maintenance is Hard

It is harder to maintain than to write new code.

Must understand code written by another developer, or

code that you wrote long ago.

Creates a “house of cards” effect.

Developers tend to prioritize new development.

Smooth maintenance requires planning and design that

supports maintainability.

7

The Laws of Software Evolution

● Maintenance is an inevitable process.

 Requirements change as the environment changes.

 Changing the software causes environmental changes,

which leads to more requirement changes.

As changes occur, the structure degrades.

 When changes are made, the structure becomes more

complex.

 To prevent this, resources must go into preventative

maintenance - refactoring to preserve and simplify the

structure without adding to functionality.

8

The Laws of Software Evolution

● The amount of change in each release is approximately

constant.

 The more functionality introduced, the more faults.

 A large functionality patch tends to be followed by a patch that

fixes faults without adding additional functionality. Small

functionality changes do not require a fault-correcting patch.

● Functionality must continually increase to maintain user

satisfaction.

9

The Laws of Software Evolution

● The quality of the system will decline unless updated to

work with changing environment.

To improve quality, evolution must be treated as a

feedback system.

 Stakeholders must be continually involved in evolution, and

changes should be influenced by their needs.

10

Refactoring

● Process of revising the code or design to improve its

structure, reduce complexity, or otherwise

accommodate change.

When refactoring, you do not add functionality.

Continuous process of improvement throughout the

evolution of the system.

11

Why Refactor?

Why fix what isn’t broken?

 Components have three purposes:

 To perform a service.

 To allow change.

 To be understood by developers reading it.

 If it does not do any of these, it is “broken”.

 Enables change and improves understandability.

12

Refactoring is an Iterative Process

● Refactoring should take place as an iterative cycle of

small transformations.

○ Choose a small part of the system, redesign it, and make sure

it still works.

 Choose a new section of the system and refactor it.

Refactoring requires unit tests.

 Make sure the code works before and after.

13

Choosing What to Refactor

● Refactor any piece of the system that:

 Seems to work,

 But isn’t well designed,

 And now needs new functionality.

There are stereotypical situations that indicate the need

for refactoring.

 These are called “bad smells”.

14

Code Smells

● Code is duplicated in multiple places.

 A method is too long.

 Conditional statements control behavior based on an

object type.

 Groups of data attributes are duplicated.

 A class has poor cohesion or high coupling.

 A method has too many parameters.

 Speculative generality - adding functionality that “we

might need someday.”

15

More Code Smells

 Changes must be made in several places.

 Poor encapsulation of data that should be private.

 If a weak subclass does not use inherited functionality.

 If a class contains unused code.

 If a class contains potentially unused attributes that

are only set in particular circumstances.

 There are data classes containing only attributes,

getters, and setters, but nothing else - objects should

encapsulate data and behaviors.

 Unless that data is used by multiple classes.

16

Common Refactorings

(more at http://www.refactoring.com)

Composing Methods

 Extract Method

 Inline Method; Inline Temp

 Introduce Explaining Variable

 Split Temporary Variable

 Remove Assignments to Parameters

 Substitute Algorithm

Moving Features Between Objects

 Move Method; Move Field

 Extract Class

 Inline Class

 Hide Delegate

 Remove Middleman

 Introduce Foreign Method

Organizing Data

 Replace Data Value with Object

 Change Value to Reference; Change Reference to Value

 Replace Array with Object

 Duplicate Observed Data

 Change Unidirectional Association to Bidirectional

 Change Bidirectional Association to to Unidirectional

Simplifying Conditional Expressions

 Decompose Conditional

 Consolidate Conditional Expression

 Consolidate Duplicate Conditional Fragments

 Replace Conditional with Polymorphism

 Introduce Null Object

 Introduce Assertion 17

Making Method Calls Simpler

● Rename Method
● Add/Remove Parameter
● Separate Query from Modifier
● Parameterize Method
● Replace Parameter with Explicit Methods
● Preserve Whole Object
● Replace Parameter with Method
● Introduce Parameter Object
● Remove Setting Method
● Hide Method
● Replace Constructor with Factory Method
● Encapsulate Downcast
● Replace Error Code with Exception
● Replace Exception with Test

Dealing with Generalization

● Pull Up Field; Method; Constructor Body
● Push Down Method; Push Down Field
● Extract Subclass; Extract Superclass; Interface
● Collapse Hierarchy
● Form Template Method
● Replace Inheritance with Delegation (or vice versa)

Big Refactorings

● Nature of the Game
● Tease Apart Inheritance
● Convert Procedural Design to Objects
● Separate Domain from Presentation
● Extract Hierarchy

http://www.refactoring.com/

Refactorings - Composing Methods

 If you have a complex code fragment that can exist

independently, extract it into its own method.

 If you have a method that is extremely simple, inline it

into locations where it is used.

 If you assign values to a temporary variable more than

once, split it into additional temporary variables.

 If assignments are made to parameter variables in a

method, instead assign to a temporary variable.

 If an algorithm is hard to understand, swap it for a

version that is clearer.

18

Refactorings - Moving Features Between Objects

 If a method or field is used more by a calling class than

the class it is placed in, move it.

 If a class is doing more work than it should (or has low

cohesion), extract a subset of related methods into a

new class.

 If a class is doing too little, combine it with another.

 If a class delegates too many calls to a middleman

class, get rid of the middleman and call the client

directly.

 If an imported class needs an additional method, but

you can’t modify it directly, create a method in the

client class with the imported object as a parameter.

19

Refactorings - Conditional Expressions & Data

 If your conditional statements are too complex, extract

methods from the if, then, and else conditions.

 If you have a sequence of conditional tests with the

same result or repeated conditions in each branch,

consolidate them into fewer conditional statements.

 If you have conditional statements to choose behavior

based on object type, instead use polymorphism.

 If you have an attribute that needs additional data or

operations, turn it into a new type of data object.

 If certain array values have special meaning, use a

class to store items instead.

20

Refactorings - Simplifying Method Calls and Generalization

 If a method both returns a value and changes the state

of a passed object, split into two methods and separate

the query from the modifier.

 If several methods do similar things - differentiated by

value - create one method that takes the value as a

parameter.

 If two classes have the same

attribute/method/constructor body, pull it up into the

parent. If an item is only used by some subclasses,

push it into the children.

 If a class has features only used situationally, extract

subclasses for those situations.

21

Example 1: Extract Method

 Before: Long method doing multiple things.

22

Example 1: Extract Method

 After: Break the method into smaller, well-named

methods.

 Explanation: Improves readability and reusability.

23

Example 2: Rename Variable

 Before: Unclear or misleading variable names.

24

Example 2: Rename Variable

 After: Replace with meaningful, descriptive names.

 Explanation: Enhances code readability and

maintainability.

25

Example 3: Inline Method

 Before: Method that is too simple and used only once.

26

Example 3: Inline Method

 After: Inline the method directly into the caller.

 Explanation: Reduces unnecessary indirection.

27

Example 4: Replace Temp with Query

 Before: Temporary variable holds result of expression.

28

Example 4: Replace Temp with Query

 After: Replace temp with method that directly returns the

result.

 Explanation: Makes the code cleaner and easier to

understand.

29

Example 5: Extract Class

 Before: Class doing too much (God class).

30

Example 5: Extract Class

 After: Split responsibilities into multiple classes.

 Explanation: Promotes Single Responsibility Principle (SRP).

31

Example 6: Replace Magic Number with Symbolic

Constant

 Before: Hard-coded numbers in code.

32

Example 6: Replace Magic Number with Symbolic

Constant

 After: Replace with named constants.

 Explanation: Makes the code self-explanatory.

33

Example 7: Move Method

 Before: Method more related to another class.

34

Example 7: Move Method

 After: Move the method to appropriate class.

 Explanation: Improves code organization and relevance.

35

Example 8: Replace Conditional with Polymorphism

 Before: Complex conditional logic.

36

Example 8: Replace Conditional with Polymorphism

 After: Replace with polymorphic classes or strategies.

 Explanation: Simplifies logic and enhances flexibility.

37

Example 9: Decompose Conditional

 Before: Complex and nested conditional statements

38

Example 9: Decompose Conditional

 After: Break down into methods with clear names.

 Explanation: Increases clarity and reduces code complexity.

39

Example 10: Introduce Null Object

 Before: Null checks scattered throughout the code.

40

Example 10: Introduce Null Object

 After: Introduce a Null Object to represent absence of an

object.

 Explanation: Simplifies code by removing null checks.

41

Example 11: Replace Inheritance with Composition

 Before: Inheritance leads to rigid and brittle code.

42

Example 11: Replace Inheritance with Composition

 After: Use composition instead of inheritance.

 Explanation: Improves flexibility and reusability.

43

Example 12: Consolidate Duplicate Conditional

Fragments

 Before: Duplicate code within conditional branches.

44

Example 12: Consolidate Duplicate Conditional

Fragments

 After: Consolidate duplicate code outside the conditional.

 Explanation: Reduces redundancy and enhances

maintainability.

45

Dangers of Refactoring

● Code that used to be well commented, well tested,

and fully reviewed might not be any of these things

after refactoring.

You might have inserted faults into code that

previously worked.

This is why unit tests are important. If the new

code is broken, revert back to the old code.

What if the new design is not better?

46

“I Don’t Have Time”

47

“I Don’t Have Time”

Most common excuse for not refactoring.

Refactoring incurs an up-front cost.

 Developers don’t want to do it.

 Neither do managers - they lose time and get “nothing” (no new

features)

● Small companies (start-ups) avoid it.

 “We can’t afford it.” “We don’t need it.”

So do large companies.

 “We’d rather add new features.”

 “No one gets promoted for refactoring.”

48

“I Don’t Have Time”

● Refactoring is the key to effective evolution.

○ Enables rapid addition of new features, with fewer

faults (up to a 500% ROI).

○ Good for programmer morale.

Refactoring is an investment in a company’s prime

asset - its code base.

Many start-ups use cutting-edge tech and agile

processes that evolve rapidly. So should the code.

Some of the most successful companies (Google)

reward and require refactoring.
49

Practice#1: Identify the code smell and suggest a

possible refactoring

50

Practice#1: Solution (Rename Variable)

51

Practice#2: Identify the code smell and suggest a

possible refactoring

52

Practice#2: Solution (Extract Method)

53

Practice#3: Identify the code smell and suggest a

possible refactoring

54

Practice#3: Solution (Consolidate Duplicate Conditional

Fragments)

55

Practice#4: Identify the code smell and suggest a

possible refactoring

56

Practice#4: Solution (Replace Conditional with

Polymorphism)

57

Practice#5: Identify the code smell and suggest a

possible refactoring

58

Practice#5: Solution (Replace Inheritance with

Composition)

59

60

	Slide 1: Engenharia de Software (14341, 16230, 15386) Refactoring (adapted from lecture notes of the “DIT 635 - Software Quality and Testing” unit, delivered by Professor Gregory Gay, at the Chalmers and the University of Gothenburg, 2022)
	Slide 2: Today’s Goals
	Slide 3: The Software Lifecycle
	Slide 4: The Real Lifecycle
	Slide 5: Software Maintenance
	Slide 6: Software Maintenance Effort
	Slide 7: Maintenance is Hard
	Slide 8: The Laws of Software Evolution
	Slide 9: The Laws of Software Evolution
	Slide 10: The Laws of Software Evolution
	Slide 11: Refactoring
	Slide 12: Why Refactor?
	Slide 13: Refactoring is an Iterative Process
	Slide 14: Choosing What to Refactor
	Slide 15: Code Smells
	Slide 16: More Code Smells
	Slide 17: Common Refactorings (more at http://www.refactoring.com)
	Slide 18: Refactorings - Composing Methods
	Slide 19: Refactorings - Moving Features Between Objects
	Slide 20: Refactorings - Conditional Expressions & Data
	Slide 21: Refactorings - Simplifying Method Calls and Generalization
	Slide 22: Example 1: Extract Method
	Slide 23: Example 1: Extract Method
	Slide 24: Example 2: Rename Variable
	Slide 25: Example 2: Rename Variable
	Slide 26: Example 3: Inline Method
	Slide 27: Example 3: Inline Method
	Slide 28: Example 4: Replace Temp with Query
	Slide 29: Example 4: Replace Temp with Query
	Slide 30: Example 5: Extract Class
	Slide 31: Example 5: Extract Class
	Slide 32: Example 6: Replace Magic Number with Symbolic Constant
	Slide 33: Example 6: Replace Magic Number with Symbolic Constant
	Slide 34: Example 7: Move Method
	Slide 35: Example 7: Move Method
	Slide 36: Example 8: Replace Conditional with Polymorphism
	Slide 37: Example 8: Replace Conditional with Polymorphism
	Slide 38: Example 9: Decompose Conditional
	Slide 39: Example 9: Decompose Conditional
	Slide 40: Example 10: Introduce Null Object
	Slide 41: Example 10: Introduce Null Object
	Slide 42: Example 11: Replace Inheritance with Composition
	Slide 43: Example 11: Replace Inheritance with Composition
	Slide 44: Example 12: Consolidate Duplicate Conditional Fragments
	Slide 45: Example 12: Consolidate Duplicate Conditional Fragments
	Slide 46: Dangers of Refactoring
	Slide 47: “I Don’t Have Time”
	Slide 48: “I Don’t Have Time”
	Slide 49: “I Don’t Have Time”
	Slide 50: Practice#1: Identify the code smell and suggest a possible refactoring
	Slide 51: Practice#1: Solution (Rename Variable)
	Slide 52: Practice#2: Identify the code smell and suggest a possible refactoring
	Slide 53: Practice#2: Solution (Extract Method)
	Slide 54: Practice#3: Identify the code smell and suggest a possible refactoring
	Slide 55: Practice#3: Solution (Consolidate Duplicate Conditional Fragments)
	Slide 56: Practice#4: Identify the code smell and suggest a possible refactoring
	Slide 57: Practice#4: Solution (Replace Conditional with Polymorphism)
	Slide 58: Practice#5: Identify the code smell and suggest a possible refactoring
	Slide 59: Practice#5: Solution (Replace Inheritance with Composition)
	Slide 60

