
Engenharia de Software
(14341, 16230, 15386)

Software Testing

(adapted from Engineering Software Products: An Introduction to Modern Software Engineering, Ian Sommerville,
Pearson, 2020)

1Nuno Pombo - Engenharia de Software, 2023/24

Software testing

²Software testing is a process in which you execute
your program using data that simulates user inputs.

²You observe its behaviour to see whether or not
your program is doing what it is supposed to do.

§ Tests pass if the behaviour is what you expect. Tests fail if
the behaviour differs from that expected.

§ If your program does what you expect, this shows that for
the inputs used, the program behaves correctly.

² If these inputs are representative of a larger set of
inputs, you can infer that the program will behave
correctly for all members of this larger input set. 2

Program bugs (1 of 2)

² If the behaviour of the program does not match the
behaviour that you expect, then this means that there
are bugs in your program that need to be fixed.

3

Program bugs (2 of 2)

² There are two causes of program bugs:
§ Programming errors You have accidentally included faults in

your program code. For example, a common programming error
is an ‘off-by-1’ error where you make a mistake with the upper
bound of a sequence and fail to process the last element in that
sequence.

§ Understanding errors You have misunderstood or have been
unaware of some of the details of what the program is supposed
to do. For example, if your program processes data from a file,
you may not be aware that some of this data is in the wrong
format, so your program doesn’t include code to handle this.

4

Test type Testing goals

Functional testing Test the functionality of the overall system. The goals of functional
testing are to discover as many bugs as possible in the
implementation of the system and to provide convincing evidence
that the system is fit for its intended purpose.

User testing Test that the software product is useful to and usable by end-users.
You need to show that the features of the system help users do
what they want to do with the software. You should also show that
users understand how to access the software’s features and can
use these features effectively.

Performance and
load testing

Test that the software works quickly and can handle the expected
load placed on the system by its users. You need to show that the
response and processing time of your system is acceptable to end-
users. You also need to demonstrate that your system can handle
different loads and scales gracefully as the load on the software
increases.

Security testing Test that the software maintains its integrity and can protect user
information from theft and damage.

Types of testing

5

Functional testing (1 of 2)

² Functional testing involves developing a large set of
program tests so that, ideally, all of a program’s code is
executed at least once.

² The number of tests needed obviously depends on the
size and the functionality of the application.

² For a business-focused web application, you may have
to develop thousands of tests to convince yourself that
your product is ready for release to customers.

6

Functional testing (2 of 2)

² Functional testing is a staged activity in which you
initially test individual units of code. You integrate code
units with other units to create larger units then do more
testing.

² The process continues until you have created a
complete system ready for release.

7

Functional testing

Feature
testing

System
testing

Release
testing

Figure 9.2 Functional testing

Unit
Testing

Start

8

Testing process Description
Unit testing The aim of unit testing is to test program units in

isolation. Tests should be designed to execute all of the
code in a unit at least once. Individual code units are
tested by the programmer as they are developed.

Feature testing Code units are integrated to create features. Feature
tests should test all aspects of a feature. All of the
programmers who contribute code units to a feature
should be involved in its testing.

Functional testing processes (1 of 2)

9

Testing process Description

System testing Code units are integrated to create a working (perhaps
incomplete) version of a system. The aim of system testing is
to check that there are no unexpected interactions between the
features in the system. System testing may also involve
checking the responsiveness, reliability, and security of the
system. In large companies, a dedicated testing team may be
responsible for system testing. In small companies, this is
impractical, so product developers are also involved in system
testing.

Release testing The system is package and release for customers and the
release is tested to check that it operates as expected. The
software may be released as a cloud service or as a download
to be installed on a customer’s computer or mobile device. If
Devops is used, then the development team is responsible for
release testing; otherwise, a separate team has that
responsibility.

Functional testing processes (2 of 2)

10

Unit testing (1 of 2)

² As you develop a code unit, you should also develop
tests for that code.

² A code unit is anything that has a clearly defined
responsibility. It is usually a function or class method but
could be a module that includes a small number of other
functions.

² Unit testing is based on a simple general principle:
§ If a program unit behaves as expected for a set of inputs that

have some shared characteristics, it will behave in the same way
for a larger set whose members share these characteristics.

11

Unit testing (2 of 2)

²To test a program efficiently, you should identify
sets of inputs (equivalence partitions) that will be
treated in the same way in your code.

²The equivalence partitions that you identify
should not just include those containing inputs
that produce the correct values. You should also
identify ‘incorrectness partitions’ where the inputs
are deliberately incorrect.

12

Equivalence partitions

Set of all possible inputs

5

Partition 1, where all
inputs share characteristic C1
and some share characteristic
C2.

Partition 2, where all inputs share characteristic
C2. Some inputs also share characteristic C1.

Partition 3, where all
inputs share
characteristic C3.
Some inputs also share
characteristic C4.

Partition 4 where all inputs
share characteristic C4.
Some inputs also share
characteristics C3 or C5 but
not both

Partition 5 where all
inputs share characteristics
C4 and C5. None share
characteristic C3

 Figure 9.3 Equivalence partitions

1 2

3

4

13

Equivalence
partition

Characteristic

Correct names 1 The inputs include only alphabetic characters and are between 2
and 40 characters long.

Correct names 2 The inputs include only alphabetic characters, hyphens, or
apostrophes and are between 2 and 40 characters long.

Correct names 1 The inputs are between 2 and 40 characters long but include
disallowed characters.

Correct names 2 The inputs include only allowed characters but are either a single
character or more than 40 characters long.

Incorrect names 3 The inputs are between 2 and 40 characters long but the first
character is a hyphen or an apostrophe.

Incorrect names 4 The inputs include only valid characters and are between 2 and 40
characters long but include a double hyphen, quoted text, or both.

Equivalence partitions for the name-checking function

14

Guideline Explanation

Test edge cases If your partition has upper and lower bounds (e.g., length of strings,
numbers, etc.), choose inputs at the edges of the range.

Force errors Choose test inputs that force the system to generate all error
messages. Choose test inputs that should generate invalid outputs.

Fill buffers Choose test inputs that cause all input buffers to overflow.

Repeat yourself Repeat the same test input or series of inputs several times.

Overflow and
underflow

If your program does numeric calculations, choose test inputs that
cause it to calculate very large or very small numbers.

Don’t forget null
and zero

If your program uses pointers or strings, always test with null
pointers and strings. If you use sequences, test with an empty
sequence. For numeric inputs, always test with zero.

Unit testing guidelines (1 of 2)

15

Guideline Explanation

Keep count When dealing with lists and list transformations, keep count
of the number of elements in each list and check that these
are consistent after each transformation.

One is different If your program deals with sequences, always test with
sequences that have a single value.

Unit testing guidelines (2 of 2)

16

Feature testing (1 of 2)

² Features have to be tested to show that the functionality
is implemented as expected and that the functionality
meets the real needs of users.
§ For example, if your product has a feature that allows users to

login using their Google account, then you have to check that
this registers the user correctly and informs them of what
information will be shared with Google.

§ You may want to check that it gives users the option to sign up
for email information about your product.

17

Feature testing (2 of 2)

² Normally, a feature that does several things is
implemented by multiple, interacting, program units.

² These units may be implemented by different developers
and all of these developers should be involved in the
feature testing process.

18

Types of feature test (1 of 2)

² Interaction tests
§ These test the interactions between the units that implement the

feature. The developers of the units that are combined to make
up the feature may have different understandings of what is
required of that feature.

§ These misunderstandings will not show up in unit tests but may
only come to light when the units are integrated.

§ The integration may also reveal bugs in program units, which
were not exposed by unit testing.

19

Types of feature test (2 of 2)

² Usefulness tests
§ These test that the feature implements what users are likely to

want.
§ For example, the developers of a login with Google feature may

have implemented an opt-out default on registration so that
users receive all emails from a company. They must expressly
choose what type of emails that they don’t want.

§ What might be preferred is an opt-in default so that users choose
what types of email they do want to receive.

20

Story title User story
User registration As a user, I want to be able to log in without

creating a new account so that I don’t have to
remember another login ID and password.

Information sharing As a user, I want to know what information you will
share with other companies. I want to be able to
cancel my registration if I don’t want to share this
information.

Email choice As a user, I want to be able to choose the types of
email that I’ll get from you when I register for an
account.

User stories for the sign-in with Google feature

21

Test Description
Initial login screen Test that the screen displaying a request for Google account

credentials is correctly displayed when a user clicks on the
“Sign-in with Google” link. Test that the login is completed if the
user is already logged in to Google.

Incorrect credentials Test that the error message and retry screen are displayed if
the user inputs incorrect Google credentials.

Shared information Test that the information shared with Google is displayed,
along with a cancel or confirm option. Test that the registration
is canceled if the cancel option is chosen.

Email opt-in Test that the user is offered a menu of options for email
information and can choose multiple items to opt in to emails.
Test that the user is not registered for any emails if no options
are selected.

Feature tests for sign-in with Google

22

System and release testing

²System testing involves testing the system as a whole,
rather than the individual system features.

²System testing should focus on four things:
§ Testing to discover if there are unexpected and unwanted
interactions between the features in a system.

§ Testing to discover if the system features work together
effectively to support what users really want to do with the
system.

§ Testing the system to make sure it operates in the expected
way in the different environments where it will be used.

§ Testing the responsiveness, throughput, security and other
quality attributes of the system.

23

Scenario-based testing

² The best way to systematically test a system is to start
with a set of scenarios that describe possible uses of the
system and then work through these scenarios each
time a new version of the system is created.

² Using the scenario, you identify a set of end-to-end
pathways that users might follow when using the system.

² An end-to-end pathway is a sequence of actions from
starting to use the system for the task, through to
completion of the task.

24

Andrew and Maria have a two-year-old son and a four-month-old daughter. They live in
Scotland and they want to have a holiday in the sunshine. However, they are concerned
about the hassle of flying with young children. They decide to try a family holiday
planning product to help them choose a destination that is easy to get to and that fits in
with their children’s routines.

Maria navigates to the holiday planner website and selects the “find a destination” page.
This presents a screen with a number of options. She can choose a specific destination
or a departure airport and find all destinations that have direct flights from that airport.
She can also input the time band that she’d prefer for flights, holiday dates, and a
maximum cost per person.

Edinburgh is their closest departure airport. She chooses “find direct flights.” The system
then presents a list of countries that have direct flights from Edinburgh and the days
when these flights operate. She selects France, Italy, Portugal, and Spain and requests
further information about these flights. She then sets a filter to display flights that leave
on a Saturday or Sunday after 7.30 am and arrive before 6 pm. She also sets the
maximum acceptable cost for a flight. The list of flights is pruned according to the filter
and is redisplayed. Maria then clicks on the flight she wants. This opens a tab in her
browser showing a booking form for this flight on the airline’s website.

Choosing a holiday destination

25

End-to-end pathways

1. User inputs departure airport and chooses to see only direct flights. User
quits.

2. User inputs departure airport and chooses to see all flights. User quits.
3. User chooses destination country and chooses to see all flights. User quits.
4. User inputs departure airport and chooses to see direct flights. User sets

filter specifying departure times and prices. User quits.
5. User inputs departure airport and chooses to see direct flights. User sets

filter specifying departure times and prices. User selects a displayed flight
and clicks through to airline website. User returns to holiday planner after
booking flight.

26

Release testing (1 of 2)

² Release testing is a type of system testing where a system that’s
intended for release to customers is tested.

² The fundamental differences between release testing and system
testing are:
§ Release testing tests the system in its real operational

environment rather than in a test environment. Problems
commonly arise with real user data, which is sometimes more
complex and less reliable than test data.

§ The aim of release testing is to decide if the system is good
enough to release, not to detect bugs in the system. Therefore,
some tests that ‘fail’ may be ignored if these have minimal
consequences for most users.

27

Release testing (2 of 2)

²Preparing a system for release involves packaging that
system for deployment (e.g. in a container if it is a cloud
service) and installing software and libraries that are used
by your product. You must define configuration
parameters such as the name of a root directory, the
database size limit per user and so on.

28

Test automation

² Automated testing is based on the idea that tests should
be executable.

² An executable test includes the input data to the unit that
is being tested, the expected result and a check that the
unit returns the expected result.

² You run the test and the test passes if the unit returns
the expected result.

² Normally, you should develop hundreds or thousands of
executable tests for a software product.

29

Automated testing

Figure 9.4 Automated testing

Test
runner

Code
being tested

Testing
framework

Files of executable tests

Test
report

30

Automated tests (1 of 2)

² It is good practice to structure automated tests into three
parts:
§ Arrange You set up the system to run the test. This

involves defining the test parameters and, if
necessary, mock objects that emulate the functionality
of code that has not yet been developed.

§ Action You call the unit that is being tested with the
test parameters.

§ Assert You make an assertion about what should
hold if the unit being tested has executed
successfully.

31

Automated tests (2 of 2)

² If you use equivalence partitions to identify test inputs,
you should have several automated tests based on
correct and incorrect inputs from each partition.

32

The test pyramid

Unit tests

Feature tests

System
tests

Increased automation
Reduced costs

Figure 9.5 The test pyramid

33

Automated feature testing

² Generally, users access features through the product’s
graphical user interface (GUI).

² However, GUI-based testing is expensive to automate so
it is best to design your product so that its features can
be directly accessed through an API and not just from
the user interface.

² The feature tests can then access features directly
through the API without the need for direct user
interaction through the system’s GUI.

² Accessing features through an API has the additional
benefit that it is possible to re-implement the GUI without
changing the functional components of the software.

34

Feature testing through an API

Feature 1

Feature 3 Feature 4

Feature 2

API

Browser or mobile app interface

Figure 9.6 Feature testing through an API

Feature
tests

35

System testing (1 of 2)

² System testing, which should follow feature testing,
involves testing the system as a surrogate user.

² As a system tester, you go through a process of
selecting items from menus, making screen selections,
inputting information from the keyboard and so on.

² You are looking for interactions between features that
cause problems, sequences of actions that lead to
system crashes and so on.

36

System testing (2 of 2)

² Manual system testing, when testers have to repeat
sequences of actions, is boring and error-prone. In some
cases, the timing of actions is important and is practically
impossible to repeat consistently.

§ To avoid these problems, testing tools have been
developed that can record a series of actions and
automatically replay these when a system is retested

37

Interaction recording and playback

System being tested

System API

Interaction
session record

User action
recording

User action
playback

Figure 9.7 Interaction recording and playback

Browser or mobile app interface

38

Test-driven development (1 of 2)

² Test-driven development (TDD) is an approach to
program development that is based around the general
idea that you should write an executable test or tests for
code that you are writing before you write the code.

² It was introduced by early users of the Extreme
Programming agile method, but it can be used with any
incremental development approach.

39

Test-driven development (2 of 2)

² Test-driven development works best for the development
of individual program units and it is more difficult to apply
to system testing.

² Even the strongest advocates of TDD accept that it is
challenging to use this approach when you are
developing and testing systems with graphical user
interfaces.

40

Test-driven development

Write code stub that
will fail test

Run all
automated tests

Implement code that
should cause failing test to pass

Identify partial implementation
of functionality

Functionality
complete

Functionality
incomplete

Refactor code
if required

All tests pass

Identify new
functionality

Run all
automated tests

Test failure

Figure 9.8 Test-driven development

Start

41

Activity Description
Identify partial
implementation

Break down the implementation of the functionality
required into smaller mini-units. Choose one of these
mini-units for implementation.

Write mini-unit tests Write one or more automated tests for the mini-unit that
you have chosen for implementation. The mini-unit
should pass these tests if it is properly implemented.

Write a code stub that
will fail test

Write incomplete code that will be called to implement
the mini-unit. You know this will fail.

Run all automated
tests

Run all existing automated tests. All previous tests
should pass. The test for the incomplete code should
fail.

Implement code that
should cause the
failing test to pass

Write code to implement the mini-unit, which should
cause it to operate correctly.

Stages of test-driven development (1 of 2)

42

Activity Description

Rerun all automated tests If any tests fail, your code is incorrect. Keep working on it until
all tests pass.

Refactor code if required If all tests pass, you can move on to implementing the next
mini-unit. If you see ways of improving your code, you should
do this before the next stage of implementation.

Stages of test-driven development (2 of 2)

43

Benefits of test-driven development (1 of 2)

² It is a systematic approach to testing in which tests are
clearly linked to sections of the program code.
§ This means you can be confident that your tests cover all of the

code that has been developed and that there are no untested
code sections in the delivered code. In my view, this is the most
significant benefit of TDD.

² The tests act as a written specification for the program
code. In principle at least, it should be possible to
understand what the program does by reading the tests.

44

Benefits of test-driven development (2 of 2)

² Debugging is simplified because, when a program failure
is observed, you can immediately link this to the last
increment of code that you added to the system.

² It is argued that TDD leads to simpler code as
programmers only write code that’s necessary to pass
tests. They don’t over-engineer their code with complex
features that aren’t needed.

45

Security testing

² Security testing aims to find vulnerabilities that may be
exploited by an attacker and to provide convincing
evidence that the system is sufficiently secure.

² The tests should demonstrate that the system can resist
attacks on its availability, attacks that try to inject
malware and attacks that try to corrupt or steal users’
data and identity.

² Comprehensive security testing requires specialist
knowledge of software vulnerabilities and approaches to
testing that can find these vulnerabilities.

46

Risk-based security testing

² A risk-based approach to security testing involves identifying
common risks and developing tests to demonstrate that the system
protects itself from these risks.

² You may also use automated tools that scan your system to check
for known vulnerabilities, such as unused HTTP ports being left
open.

² Based on the risks that have been identified, you then design tests
and checks to see if the system is vulnerable.

² It may be possible to construct automated tests for some of these
checks, but others inevitably involve manual checking of the
system’s behaviour and its files.

47

Unauthorized attacker gains access to a system using authorized credentials.

Authorized individual accesses resources that are forbidden to that person.

Authentication system fails to detect unauthorized attacker.

Attacker gains access to database using SQL poisoning attack.

Improper management of HTTP sessions.

HTTP session cookies are revealed to an attacker.

Confidential data are unencrypted.

Encryption keys are leaked to potential attackers.

Examples of security risks

48

Risk analysis (1 of 2)

² Once you have identified security risks, you then analyze
them to assess how they might arise. For example, for
the first risk in Table 9.11 (unauthorized attacker) there
are several possibilities:
§ The user has set weak passwords that can be guessed by

an attacker.
§ The system’s password file has been stolen and

passwords discovered by attacker.
§ The user has not set up two-factor authentication.
§ An attacker has discovered credentials of a legitimate user

through social engineering techniques.

49

Risk analysis (2 of 2)

² You can then develop tests to check some of these
possibilities.
§ For example, you might run a test to check that the code

that allows users to set their passwords always checks the
strength of passwords.

50

Code reviews

² Code reviews involve one or more people examining the
code to check for errors and anomalies and discussing
issues with the developer.

² If problems are identified, it is the developer’s
responsibility to change the code to fix the problems.

² Code reviews complement testing. They are effective in
finding bugs that arise through misunderstandings and
bugs that may only arise when unusual sequences of
code are executed.

² Many software companies insist that all code has to go
through a process of code review before it is integrated
into the product codebase.

51

Code reviews

Review preparation

Programmer

Reviewer

Programmer

Discussion

Setup
review

Prepare
code

Distribute
code/tests

Write review
report

Code checking

Prepare
to-do list

Make code
changes

Review Follow-up

Figure 9.9 Code reviews

Reviewer

Check
code

Programmer

52

Activity Description
Set up review The programmer contacts a reviewer and

arranges a review date.
Prepare code The programmer collects the code and tests for

review and annotates them with information for
the reviewer about the intended purpose of the
code and tests.

Distribute code/tests The programmer sends code and tests to the
reviewer.

Check code The reviewer systematically checks the code and
tests against their understanding of what they are
supposed to do.

Write review report The reviewer annotates the code and tests with a
report of the issues to be discussed at the review
meeting.

Code review activities (1 of 2)

53

Activity Description
Discussion The reviewer and programmer discuss the issues

and agree on the actions to resolve these.
Make to-do list The programmer documents the outcome of the

review as a to-do list and shares this with the
reviewer.

Make code changes The programmer modifies the code and tests to
address the issues raised in the review.

Code review activities (2 of 2)

54

Review check Rationale
Are meaningful variables and
function names used?
(General)

Meaningful names make a program easier to
read and understand.

Have all data errors been
considered and tests developed
for these? (General)

It is easy to write tests for the most common
cases, but it is equally important to check
that the program won’t fail when presented
with incorrect data.

Are all exceptions explicitly
handled? (General)

Unhandled exceptions may cause a system
to crash.

Part of a checklist for a Python code review (1 of 2)

55

Review check Rationale
Are default function
parameters used? (Python)

Meaningful names make a program easier to
read and understand.

Are types used consistently?
(Python)

Python does not have compile-time type
checking, so it is possible to assign values of
different types to the same variable. This is
best avoided, but if used, it should be justified.

Is the indentation level
correct?
(Python)

Python uses indentation rather than explicit
brackets after conditional statements to
indicate the code to be executed if the
condition is true or false. If the code is not
properly indented in nested conditionals, this
may mean that incorrect code is executed.

Part of a checklist for a Python code review (2 of 2)

56

Key points (1 of 3)

² The aim of program testing is to find bugs and to show
that a program does what its developers expect it to do.

² Four types of testing that are relevant to software
products are functional testing, user testing, load and
performance testing and security testing.

² Unit testing involves testing program units such as
functions or class methods that have a single
responsibility. Feature testing focuses on testing
individual system features. System testing tests the
system as a whole to check for unwanted interactions
between features and between the system and its
environment.

57

Key points (2 of 3)

² Identifying equivalence partitions, in which all inputs
have the same characteristics, and choosing test inputs
at the boundaries of these partitions, is an effective way
of finding bugs in a program.

² User stories may be used as a basis for deriving feature
tests.

² Test automation is based on the idea that tests should be
executable. You develop a set of executable tests and
run these each time you make a change to a system.

58

Key points (3 of 3)

² Test-driven development is an approach to development
where executable tests are written before the code. Code is
then developed to pass the tests.

² A disadvantage of test-driven development is that
programmers focus on the detail of passing tests rather than
considering the broader structure of their code and algorithms
used.

² Security testing may be risk driven where a list of security
risks is used to identify tests that may identify system
vulnerabilities.

² Code reviews are an effective supplement to testing. They
involve people checking the code to comment on the code
quality and to look for bugs.

59

60

