FACULDADE
ENGENHARIA

N

Departamento de
Informatica

Engenharia de Software
(14341, 16230, 15386)

System Modeling #1

(adapted from Software Engineering: International Version (10th Edition), lan Sommerville, Pearson, 2015)

Nuno Pombo - Engenharia de Software, 2025/26

Topics covered

<~ Interaction models

< Context models

Soft Skill of the week: Ethics

ROBERT E. LEE’S PLANTATION OFFICE
A Consequential Decision

Robert E. Lee changed the course of American history in this
room on April 20, 1861. He rejected President Lincoln’s offer of

command of the US Army and resigned from his decades-long
career. He wrote, “| have been unable to make up my mind to

raise my hand against my native state, my relations, my children,
and my home.” He knew that his wife and children would soon

be forced to flee their beloved Arlington.

System modeling

< System modeling is the process of developing abstract
representations of a system.

< System modeling has now come to mean representing a
system using some kind of graphical notation, which is
now almost always based on notations in the Unified
Modeling Language (UML).

< System modeling helps the analyst to understand the
functionality of the system and models are used to
communicate with customers.

Existing and planned system models

< Models of the existing system are used during requirements
engineering. They help clarify what the existing system does
and can be used as a basis for discussing its strengths and
weaknesses. These then lead to requirements for the new
system.

< Models of the new system are used during requirements
engineering to help explain the proposed requirements to
other system stakeholders. Engineers use these models to
discuss design proposals and to document the system for
Implementation.

< In a model-driven engineering process, it is possible to
generate a complete or partial system implementation from

the system model.

Benefits of using graphical notation in system modeling

< Clear Visualization: Provides an intuitive, standardized way to
represent both the structure and behaviour of a system.

< Reduced Ambiguity: Minimizes misunderstandings by
replacing vague text descriptions with precise diagrams.

< Early Validation & Verification: Allows stakeholders to review,

confirm, and refine requirements before costly development
stages.

< Improved Communication: Creates a common language for
developers, analysts, testers, and business stakeholders.

System perspectives

< An external perspective, where you model the context or
environment of the system.

< An interaction perspective, where you model the
Interactions between a system and its environment, or
between the components of a system.

< A structural perspective, where you model the
organization of a system or the structure of the data that
IS processed by the system.

< A behavioral perspective, where you model the dynamic
behavior of the system and how it responds to events.

Hierarchy of UML diagrams

Diagram
Structure Behavror
Diagram Diagram
Class Component Object Activity Use-Case [|5tate Machine
Diagram Diagram Diagram Diagram Diagram Diagram
Compaosite Deployment Package Interaction
Structure Diagram Diagram Diagram
Diagram
sequence Communication Timing
Diagram Diagram Diagram
Interaction
Owerview

Diagram

UML diagram types

< Activity diagrams, which show the activities involved in a
process or in data processing (i.e. show workflows in
processes).

< Use case diagrams, which show the interactions
between actors and the system.

< Sequence diagrams, which show interactions between
actors and the system and between system components
over time.

< Class diagrams, which show the object classes in the
system and the associations between these classes.

< State diagrams, which show how the system reacts to
iInternal and external events. 9

Use of graphical models

< As a means of facilitating discussion about an existing or
proposed system

» |[ncomplete and incorrect models are OK as their role is to
support discussion.

<> As a way of documenting an existing system

= Models should be an accurate representation of the system but
need not be complete.

< As a detailed system description that can be used to
generate a system implementation

» Models have to be both correct and complete.

10

Interaction models

11

Interaction models

< Modeling user interaction is important as it helps to
identify user requirements.

< Modeling system-to-system interaction highlights the
communication problems that may arise.

< Modeling component interaction helps us understand if a
proposed system structure is likely to deliver the required
system performance and dependability.

< Use case diagrams and sequence diagrams may be
used for interaction modeling.

12

Use case modeling

< Use cases were developed originally to support

requirements elicitation and now incorporated into the
UML.

<> Each use case represents a discrete task that involves
external interaction with a system.

< Actors in a use case may be people or other systems.

< Represented diagrammatically to provide an overview of
the use case and in a more detailed textual form.

13

Use case diagrams

< Purpose

= Capture System Functionality: Represent what the system
should do from the user's perspective.

» |dentify Actors & Interactions: Show all external entities
(actors) and how they interact with the system.

<> Best Practices

= Keep It High-Level: Focus on main functionalities, not low-level
detalils.

= Avoid Technical Overload: Limit specialized notation or internal
system design details.

= Ensure Clarity: Make it easy for non-technical stakeholders to
understand.

14

Use case diagrams

[— subject, system boundary

«Subsystem»
Checkout m
multiplicity extend relationship
extend» 7
assocnatlon € :"4——”/
actor
\b Checkout b
actor
\
Customer sincluden \ Clerk
include — Payment - ‘ "
relationship &/1) _
multiplicity Payment Service
use case et
R Manage
Users
© uml-diagrams.org
Administrator

15

Use case diagrams

< Actor: is an entity outside of a process which trigger
information exchange with the process.

<> Use case: is an event taking place within a process and
it is often triggered by an actor.

< Relationship: information flow between an actor and a
use case or between two use cases. An extend
relationship exists between two similar use cases where
the second one has some extra activities, that is, the
activities of the first use case are extended in the second
one. On the contrary, an include relationship is a
generalization denoting the inclusion of the behavior
described by another use case.

16

Transfer-data use case

< A use case in the Mentcare system

Medical receptionist

X

Patient record system

17

Tabular description of the ‘Transfer data’ use case

Actors

Description

Data
Stimulus
Response

Comments

Medical receptionist, patient records system (PRS)

A receptionist may transfer data from the Mentcare
system to a general patient record database that is
maintained by a health authority. The information
transferred may either be updated personal information
(address, phone number, etc.) or a summary of the
patient’s diagnosis and treatment.

Patient’s personal information, treatment summary

User command issued by medical receptionist
Confirmation that PRS has been updated

The receptionist must have appropriate security
permissions to access the patient information and the
PRS.

18

Use cases in the Mentcare system involving the role

‘Medical Receptionist’
Register
patient
Unregister
patient
View patient
info.

Contact
patient

X

Medical
receptionist

19

Practice: activity diagram

<>Creating an use case diagram for the checkout
and payment processes in an appointment
booking workflow within the Mentcare system.

@

N
¢ mEm)
e 1:

-~

:

20

Sequence diagrams

< Sequence diagrams are part of the UML and are used to
model the Iinteractions between the actors and the
objects within a system.

< A sequence diagram shows the sequence of interactions
that take place during a particular use case or use case
Instance.

<> The objects and actors involved are listed along the top
of the diagram, with a dotted line drawn vertically from
these.

<> Interactions between objects are indicated by annotated
arrows.

21

Sequence diagrams

< Purpose

» Model Interactions Over Time: Show how objects or
components interact in a specific time order.

= Clarify Workflows & Responsibilities: ldentify which part of
the system is responsible for each step in the process.

<> Best Practices

= Focus on Key Interactions: Avoid clutter—show only the
essential messages and participants.

= Use Clear Message Names: Ensure each message/action is
understandable at a glance.

= Maintain Logical Order: Keep the sequence intuitive and
consistent with the system’s behavior.

= Highlight Initiator and Outcome: Make clear what triggers the
interaction and the expected results. 22

Sequence diagrams

sd submﬁ_cumments) lifeline «serviet»

Amwa&mt
. «javascript»
window :Comments }_Q

| | object creation

gate

validate()
" e |
synchronous / validate()
message '5\ P «creater cajax»
----- > :
execution N :Proxy

ution occurrence
ification ificati j
specificatio specification «ajax» |

message

return

= ,
_______ wajaxn
message X < T /
= X _ _ asynchronous
/—V message
gate

duration _
constraint

destruction

! «callback» < —er:o; -
|
L
ref
P> / Handle Errors occurrence
specification

interaction use ﬂ
T Y — uml-diagrams.org

Sequence diagrams

< Arrow: dashed arrow back indicates return. Standard arrow (forward
or back) indicates flat flow control.

<> Asynchronous message: invocation of operation of target lifetime.
The sender does not pass the control to the receiver. The sender
and the receiver carry on their work concurrently.

<> Execution specification (or activation): means that an object is
running its code or it is in the stack waiting for another objects’
method. May also represents self-calls and callbacks.

< Lifetime: represents an individual participant in the interaction,
namely, entity object models information. It holds information and
some operations that naturally related to the information.

24

Sequence diagrams

< Message (method call): horizontal arrow to other object.
Write message name and arguments above arrow.

< Object: name syntax: <objectname>:<classname>.

> objectname not defined: anonymous object

> classname not defined: object of unknown class

< Return message: pass of information back to the caller
of a correspondent former message.

<> Synchronous message: invocation of operation of target
lifetime. The sender passes the control to the receiver
and cannot do anything until the receiver sends the
control back.

25

Sequence diagram for View patient information

Medical Receptionist

% P: Patientinfo D: Mentcare-DB AS: Authorization

| ! |
Viewinfo (PID) |

report (Info, PID, | |
uID) | |
" |

|

authorize (Info,
UID)

authorization H
+ _______

alt |
[authorization OK] Patient info |

[authorization fail] Error (no access) |

i oo
u a |
|
|
I

Sequence diagram for Transfer Data

Medical Receptionist PRS
% P: Patientinfo D: Mentcare-DB AS: Authorization %
| | | n
| | | login () R
ok | | | "
“- - - - - - - - - F-=-=====- I - -4
alt :
[sendinfa] |

updatelnfo() 1] ypdatePRS (UID)

autharize (TF, UID)

authorization

update (PID)

Message (OK) R 4--- _updateOK |

—_ — — — — — — —— — — — — — —— — — — — T —————————— - —

[sendSummary]

UpdateSummary()

summarize (UID)

authorize (TF, uiD) |

authorization

* lsummary

update (PID)
update OK

Message (OK)

-+

Context models

28

Context models

< Context models are used to illustrate the operational
context of a system - they show what lies outside the
system boundaries.

< Social and organisational concerns may affect the
decision on where to position system boundaries.

< Architectural models show the system and its
relationship with other systems.

29

System boundaries

< System boundaries are established to define what is
iInside and what is outside the system.

= They show other systems that are used or depend on the system
being developed.

<> The position of the system boundary has a profound
effect on the system requirements.
< Defining a system boundary is a political judgment

= There may be pressures to develop system boundaries that
increase / decrease the influence or workload of different parts of
an organization.

30

The context of the Mentcare system

«system»
Management
reporting
system

«system»
Patient record
system

«system»
Admissions
system

«system»
Mentcare

«system»
HC statistics
system

«system»
Appointments
system

«system»
Prescription
system

31

Process perspective

< Context models simply show the other systems in the
environment, not how the system being developed is
used in that environment.

<> Process models reveal how the system being developed
IS used In broader business processes.

< UML activity diagrams may be used to define business
process models.

32

Activity diagrams

< Purpose

= Model workflows of activities and actions

* Represents the step-by-step sequence of operations in a
process.

« Shows how activities transition from one to another, including
the start and end points.

= Represent parallel and conditional flows clearly

* lllustrates where processes can branch (decision points) or
run in parallel (fork/join nodes).

 Helps identify opportunities for concurrency and
dependencies between tasks.

33

Activity diagrams

<> Best Practices

= Use swimlanes to show responsibilities

 Clearly assign each activity to a role, system, or department.

« Swimlanes make it easy to identify ownership and
collaboration points.

= Keep decision points simple and easy to interpret

« Use clear yes/no or condition labels on branches.

* Avoid overly complex conditions in one decision node; break
them into multiple steps if necessary.

34

Activity diagrams

Initial Node = T

Action =— — o

Control Flow =— =— =+

Fork Node = = |= =—»

Activity Final Node =—

Customer ATM Machine Bank
LY
— ~
Partition
=% | Inset Card = =
Enter PIN
7
»
i invalid PIN
Enter Amount [valid PIN] [inval i}
A
— e —
Check A t Balance
[balance >= amount] [balance < amount]
4
Debit A
Take Money from Slot
Join Noj

Merge Node

= Swimlane

Guard

35

Activity diagrams

< Action: represents a single step within an activity that is
not further decomposed within the activity.

<> Decision node: accepts tokens on an incoming edge and
presents them to multiple outgoing edges. Which of the
edges is actually traversed depends on the evaluation of
the guards on the outgoing edges.

< Final node: an activity may have more than one activity
final node; the first one reached stops all flows in the
activity.

<> Initial node: is a control node at which flow starts when
the activity is invoked. An activity may have more than
one initial node.

36

Activity diagrams

<>

¢

Fork node: one incoming transition, and multiple outgoing parallel

transitions and/or object flows.

Join node: multiple incoming transitions and/or object flows; one

outgoing transitions. The outgoing continuation does not happen
until all the inputs arrive from all flows.

Merge node: is a control node that brings together multiple alternate

flows. It is not used to synchronize concurrent flows but to accept
one among several alternate flows. A merge node has multiple
iIncoming edges and a single outgoing edge.

Object node: is an abstract activity node that helps to define the

object flow in an activity. In addition, indicates that an instance of a
classifier might be available at a particular point in the activity.

37

Process model of involuntary detention

Confirm
detention
decision

Inform
patient of
rights

Record
detention
decision

Find secure
place

[dangerous]

—>
[not

dangerous]

[not available]

Transfer to
[available] \ secure hospital

Transfer to
police station

Admit to

hospital

«system»
Mentcare

«system»
Admissions
system

Inform
social care
Inform next

of kin

Update
register
A

«system»
Mentcare

38

Practice: activity diagram

<-Creating an activity diagram for the checkout
and payment processes in an appointment
booking workflow within the Mentcare system.

@

N
¢ mEm)
e 1:

-~

:

39

Reflection question

< In your opinion, which UML diagram type is most useful
at the requirements stage and why?

40

Key points

< A model is an abstract view of a system that ignores
system details. Complementary system models can be
developed to show the system’s context, interactions,
structure and behaviour.

< Use case diagrams and sequence diagrams are used to
describe the interactions between users and systems in
the system being designed. Use cases describe
Interactions between a system and external actors;
sequence diagrams add more information to these by
showing interactions between system objects.

41

;

w"ﬁ“éﬁ% N WHY

‘T '_]: WHEN

WHAT = W%EVIV\]HAT
1 >
WH_{/\\/: r:EEHOVV

<

	Slide 1: Engenharia de Software (14341, 16230, 15386) System Modeling #1 (adapted from Software Engineering: International Version (10th Edition), Ian Sommerville, Pearson, 2015)
	Slide 2: Topics covered
	Slide 3: Soft Skill of the week: Ethics
	Slide 4: System modeling
	Slide 5: Existing and planned system models
	Slide 6: Benefits of using graphical notation in system modeling
	Slide 7: System perspectives
	Slide 8: Hierarchy of UML diagrams
	Slide 9: UML diagram types
	Slide 10: Use of graphical models
	Slide 11: Interaction models
	Slide 12: Interaction models
	Slide 13: Use case modeling
	Slide 14: Use case diagrams
	Slide 15: Use case diagrams
	Slide 16: Use case diagrams
	Slide 17: Transfer-data use case
	Slide 18: Tabular description of the ‘Transfer data’ use case
	Slide 19: Use cases in the Mentcare system involving the role ‘Medical Receptionist’
	Slide 20: Practice: activity diagram
	Slide 21: Sequence diagrams
	Slide 22: Sequence diagrams
	Slide 23: Sequence diagrams
	Slide 24: Sequence diagrams
	Slide 25: Sequence diagrams
	Slide 26: Sequence diagram for View patient information
	Slide 27: Sequence diagram for Transfer Data
	Slide 28: Context models
	Slide 29: Context models
	Slide 30: System boundaries
	Slide 31: The context of the Mentcare system
	Slide 32: Process perspective
	Slide 33: Activity diagrams
	Slide 34: Activity diagrams
	Slide 35: Activity diagrams
	Slide 36: Activity diagrams
	Slide 37: Activity diagrams
	Slide 38: Process model of involuntary detention
	Slide 39: Practice: activity diagram
	Slide 40: Reflection question
	Slide 41: Key points
	Slide 42

