
Engenharia de Software
(14341, 16230, 15386)

Software Architecture

(adapted from Software Engineering: International Version, Ian Sommerville, Pearson, 2015, and 
Engineering Software Products: An Introduction to Modern Software Engineering, Ian Sommerville, Pearson, 2020)

1Nuno Pombo - Engenharia de Software, 2023/24



Topics covered

² Software architecture

² Software architecture and components

2



Software architecture (1 of 2)

² To create a reliable, secure and efficient product, you
need to pay attention to architectural design which
includes:
§ its overall organization,
§ how the software is decomposed into components,
§ the server organization
§ the technologies that you use to build the software. The

architecture of a software product affects its performance,
usability, security, reliability and maintainability.

3



Software architecture (2 of 2)

² There are many different interpretations of the term
‘software architecture’.
§ Some focus on ‘architecture’ as a noun - the structure of a

system and others consider ‘architecture’ to be a verb - the
process of defining these structures.

4



Software architecture
Architecture is the fundamental organization of a software system embodied in
its components, their relationships to each other and to the environment, and
the principles guiding its design and evolution.

The IEEE definition of software architecture

5



Software architecture and components

² A component is an element that implements a coherent
set of functionality or features.

² Software component can be considered as a collection
of one or more services that may be used by other
components.

² When designing software architecture, you don’t have to
decide how an architectural element or component is to
be implemented.

² Rather, you design the component interface and leave
the implementation of that interface to a later stage of
the development process.

6



Access to services provided by software components

S2 S3S1 S5 S6S4

Component 1

Services accessed through
the component API

Figure 4.1 Access to services provided by software components

Component 2

Services accessed directly
by other components API

7



Why is architecture important? (1 of 3)

8



Why is architecture important? (2 of 3)

² Architecture is important because the architecture of a
system has a fundamental influence on the non-
functional system properties.

² Architectural design involves understanding the issues
that affect the architecture of your product and creating
an architectural description that shows the critical
components and their relationships.

9



Why is architecture important? (3 of 3)

² Minimizing complexity should be an important goal for
architectural designers.
§ The more complex a system, the more difficult and expensive it

is to understand and change.
§ Programmers are more likely to make mistakes and introduce

bugs and security vulnerabilities when they are modifying or
extending a complex system.

10



Attribute Key issue
Responsiveness Does the system return results to users in a reasonable 

time?
Reliability Do the system features behave as expected by both 

developers and users?
Availability Can the system deliver its services when requested by 

users?
Security Does the system protect itself and users’ data from 

unauthorized attacks and intrusions?
Usability Can system users access the features that they need and 

use them quickly and without errors?
Maintainability Can the system be readily updated and new features 

added without undue costs?
Resilience Can the system continue to deliver user services in the 

event of partial failure or external attack?

Non-functional system quality attributes

11



Centralized security architectures

² The benefits of a centralized security architecture are
that it is easier to design and build protection and that
the protected information can be accessed more
efficiently.

² However, if your security is breached, you lose
everything.

² If you distribute information, it takes longer to access all
of the information and costs more to protect it.

² If security is breached in one location, you only lose the
information that you have stored there.

12



Maintainability and performance (1 of 2)

² This figure shows a system with two components (C1 and C2) that
share a common database.
§ Assume C1 runs slowly because it has to reorganize the information in 

the database before using it. 
§ The only way to make C1 faster might be to change the database. This 

means that C2 also has to be changed, which may, potentially, affect its 
response time.

User interface

C1 C2

Shared database

Figure 4.2. Shared database architecture

13



Maintainability and performance (1 of 2)

² This figure shows a different architecture is used where each
component has its own copy of the parts of the database that it
needs.
§ If one component needs to change the database organization, this does

not affect the other component.

User interface

C1 C2

Shared database

Figure 4.2. Shared database architecture

14



Maintainability and performance (2 of 2)

² However, a multi-database architecture may run more slowly and
may cost more to implement and change.
§ A multi-database architecture needs a mechanism (component C3) to

ensure that the data shared by C1 and C2 is kept consistent when it is
changed.

User interface

C1

Figure 4.3. Multiple database architecture

C1 database C2 database

C3

Database reconciliation

C2

15



Issues that influence architectural decisions

Nonfunctional 
product characteristics

Product
lifetime

Software 
reuse

Number of
users

Software
compatibility Architectural

influences

Figure 4.4 Issues that influence architectural decisions

16



Issue Architectural importance

Non-functional 
product
characteristics

Non-functional product characteristics such as security
and performance affect all users. If you get these
wrong, your product is unlikely to be a commercial
success. Unfortunately, some characteristics are
opposing, so you can optimize only the most
important.

Product lifetime If you anticipate a long product lifetime, you need to
create regular product revisions. You therefore need
an architecture that can evolve, so that it can be
adapted to accommodate new features and
technology.

Software reuse You can save a lot of time and effort if you can reuse
large components from other products or open-source
software. However, this constrains your architectural
choices because you must fit your design around the
software that is being reused.

The importance of architectural design issues (1 of 2)

17



Issue Architectural importance

Number of users If you are developing consumer software delivered
over the Internet, the number of users can change
very quickly. This can lead to serious performance
degradation unless you design your architecture so
that your system can be quickly scaled up and down.

Software compatibility For some products, it is important to maintain
compatibility with other software so that users can
adopt your product and use data prepared using a
different system. This may limit architectural choices,
such as the database software that you can use.

The importance of architectural design issues (2 of 2)

18



Trade off: Maintainability vs performance (1 of 2)

² System maintainability is an attribute that reflects how
difficult and expensive it is to make changes to a system
after it has been released to customers.
§ You improve maintainability by building a system from small self-

contained parts, each of which can be replaced or enhanced if
changes are required.

19



Trade off: Maintainability vs performance (2 of 2)

² In architectural terms, this means that the system should
be decomposed into fine-grain components, each of
which does one thing and one thing only.
§ However, it takes time for components to communicate with

each other. Consequently, if many components are involved in
implementing a product feature, the software will be slower.

20



Trade off: Security vs usability

² You can achieve security by designing the system
protection as a series of layers.
§ An attacker has to penetrate all of those layers before the

system is compromised.

² Layers might include system authentication layers, a
separate critical feature authentication layer, an
encryption layer and so on.

² Architecturally, you can implement each of these layers
as separate components so that if one of these
components is compromised by an attacker, then the
other layers remain intact.

21



Authentication layers

Protected asset such as a 
database of users’ credit cards

Encryption 

Feature authentication 

Application authentication 

IP authentication 

Figure 4.5  Authentication layers

22



Usability issues (1 of 2)

² A layered approach to security affects the usability of the
software.
§ Users have to remember information, like passwords, that is

needed to penetrate a security layer. Their interaction with the
system is inevitably slowed down by its security features.

§ Many users find this irritating and often look for work-arounds so
that they do not have to re-authenticate to access system
features or data.

23



Usability issues (2 of 2)

² To avoid this, you need an architecture:
§ that doesn’t have too many security layers,
§ that doesn’t enforce unnecessary security,
§ that provides helper components that reduce the load on users.

24



Trade off: Availability vs time-to-market (1 of 2)

² Availability is particularly important in enterprise
products, such as products for the finance industry,
where 24/7 operation is expected.

² The availability of a system is a measure of the amount
of ‘uptime’ of that system.
§ Availability is normally expressed as a percentage of the time

that a system is available to deliver user services.

25



Trade off: Availability vs time-to-market (2 of 2)

² Architecturally, you achieve availability by having
redundant components in a system.
§ To make use of redundancy, you include sensor components that

detect failure, and switching components that switch operation to
a redundant component when a failure is detected.

² Implementing extra components takes time and
increases the cost of system development. It adds
complexity to the system and therefore increases the
chances of introducing bugs and vulnerabilities.

26



Architectural design questions

² How should the system be organized as a set of
architectural components, where each of these
components provides a subset of the overall system
functionality?
§ The organization should deliver the system security, reliability

and performance that you need.

² How should these architectural components be
distributed and communicate with each other?

² What technologies should you use in building the system
and what components should be reused?

27



Component organization

² Abstraction in software design means that you focus on
the essential elements of a system or software
component without concern for its details.

² At the architectural level, your concern should be on
large-scale architectural components.

² Decomposition involves analysing these large-scale
components and representing them as a set of finer-
grain components.

² Layered models are often used to illustrate how a
system is composed of components.

28



An architectural model of a document retrieval system

User interaction

Web browser

Authentication and 
authorization

Form and query 
manager

Web page 
generation

User interface management

Search Document 
retrieval

Rights 
management Accounting

Index 
management Index querying Index 

creation

Local input
validation

Local printing

Information retrieval

Document index

DB1 DB2 DB3 DB4 DB5

Databases

Figure 4.6 An architectural model of a document retrieval system

Basic services

Database 
query

User account 
management

Query 
validation

Logging

Payments

29



Architectural complexity (1 of 2)

² Complexity in a system architecture arises because of
the number and the nature of the relationships between
components in that system.

² When decomposing a system into components, you
should try to avoid unnecessary software complexity.
§ Localize relationships: If there are relationships between

components A and B, these are easier to understand if A and B
are defined in the same module.

30



Architectural complexity (2 of 2)

² When decomposing a system into components, you
should try to avoid unnecessary software complexity.
§ Reduce shared dependencies: Where components A and B

depend on some other component or data, complexity increases
because changes to the shared component mean you have to
understand how these changes affect both A and B.

² It is always preferable to use local data wherever
possible and to avoid sharing data if you can.

31



Examples of component relationships

C2
C1

C1 is-part-of C2

C1

C2

calls

C1 uses C2

C1 C2

C1 C2C1

C1 is-located-with C2

data

C1 shares-data-with C2

Figure 4.7 Examples of component relationships

32



Architectural design guidelines

Design
guidelines

Separation of concerns
Organize your architecture

into components that focus on 
a single concern

Implement once
Avoid duplicating 

functionality at different 
places in your architecture

Stable interfaces
Design component 

interfaces that are coherent
 and that change slowly

Figure 4.8 Architectural design guidelines

33



Design guidelines and layered architectures (1 of 2)

² Each layer is an area of concern and is considered
separately from other layers.
§ The top layer is concerned with user interaction, the next layer

down with user interface management, the third layer with
information retrieval and so on.

² Within each layer, the components are independent and
do not overlap in functionality.
§ The lower layers include components that provide general

functionality so there is no need to replicate this in the
components in a higher level.

34



Design guidelines and layered architectures (2 of 2)

² The architectural model is a high-level model that does
not include implementation information.
§ Ideally, components at level X (say) should only interact with the

APIs of the components in level X-1. That is, interactions should
be between layers and not across layers.

35



Cross-cutting concerns

² Cross-cutting concerns are concerns that are systemic, that
is, they affect the whole system.

² In a layered architecture, cross-cutting concerns affect all
layers in the system as well as the way in which people use
the system.

² Cross-cutting concerns are completely different from the
functional concerns represented by layers in a software
architecture.

² Every layer has to take them into account and there are
inevitably interactions between the layers because of these
concerns.

² The existence of cross-cutting concerns is the reason why
modifying a system after it has been designed to improve its
security is often difficult. 36



Cross-cutting concerns

Figure 4.9 Cross-cutting concerns

Security Performance Reliability

Hardware

 User interface     

Operating system

Infrastructure

Application

37



Security architecture
Different technologies are used in different layers, such as an SQL database or a
Firefox browser. Attackers can try to use vulnerabilities in these technologies to
gain access. Consequently, you need protection from attacks at each layer as
well as protection at lower layers in the system from successful attacks that have
occurred at higher-level layers.

If there is only a single security component in a system, this represents a critical
system vulnerability. If all security checking goes through that component and it
stops working properly or is compromised in an attack, then you have no reliable
security in your system. By distributing security across the layers, your system is
more resilient to attacks and software failure (remember the Rogue One example
earlier in the chapter).

Security as a cross-cutting concern

38



A generic layered architecture for a web-based 
application

Authentication and user interaction management

Browser-based or mobile user interface

Application-specific functionality

Transaction and database management

Figure 4.10 A generic layered architecture for a web-based application

Basic shared services

39



Layer Explanation
Browser-based or 
mobile user
Interface

A web browser system interface in which HTML forms
are often used to collect user input. Javascript
components for local actions, such as input validation,
should also be included at this level. Alternatively, a
mobile interface may be implemented as an app.

Authentication and UI
management

A user interface management layer that may include
components for user authentication and web page
generation.

Application-specific
functionality

An “application” layer that provides functionality of the
application. Sometimes this may be expanded into more
than one layer.

Layer functionality in a web-based application (1 of 2)

40



Layer Explanation
Basic shared services A shared services layer that includes components

that provide services used by the application layer
components.

Database and 
transaction
Management

A database layer that provides services such as
transaction management and recovery. If your
application does not use a database, then this may
not be required.

Layer functionality in a web-based application (2 of 2)

41



Principle Explanation

Replaceability It should be possible for users to replace applications in the system
with alternatives and to add new applications. Consequently, the list of
applications included should not be hardwired into the system.

Extensibility It should be possible for users or system administrators to create their
own versions of the system, which may extend or limit the “standard”
system.

Age-appropriate Alternative user interfaces should be supported so that ageappropriate
interfaces for students at different levels can be created.

Programmability It should be easy for users to create their own applications by linking
existing applications in the system.

Minimum work Users who do not wish to change the system should not have to do
extra work so that other users can make changes.

iLearn architectural design principles

42



iLearn design principles

² Our goal in designing the iLearn system was to create an
adaptable, universal system that could be easily updated
as new learning tools became available.
§ This means that it must be possible to change and replace

components and services in the system (principles (1) and (2)).
§ Because the potential system users spanned an age range from

3 to 18, we needed to provide age-appropriate user interfaces
and to make it easy to choose an interface (principle (3)).

§ Principle (4) also contributes to system adaptability and principle
(5) was included to ensure that this adaptability did not adversely
affect users who did not require it.

43



Designing iLearn as a service-oriented system (1 of 2)

² These principles led us to an architectural design
decision that the iLearn system should be service-
oriented.

² Every component in the system is a service. Any service
is potentially replaceable and new services can be
created by combining existing services. Different
services delivering comparable functionality can be
provided for students of different ages.

44



Designing iLearn as a service-oriented system (2 of 2)

² Service integration
§ Full integration: Services are aware of and can communicate

with other services through their APIs.
§ Partial integration: Services may share service components and

databases but are not aware of and cannot communicate directly
with other application services.

§ Independent: These services do not use any shared system
services or databases and they are unaware of any other
services in the system. They can be replaced by any other
comparable service.

45



A layered architectural model of the iLearn system

Authentication
User storage

Logging and monitoring
Application storage

Application interfacing
Search

Shared infrastructure services

Integrated services

Application services

Configuration services

User interface management

User analyticsResource discovery

Group
configuration

Application
configuration

Security
configuration

User interface

Web browser iLearn app

Interface creation Forms management Interface delivery

Archive access

Blog   Wiki   Spreadsheet   Presentation  Drawing

User installed
applications

Virtual learning
environment

Email and 
messaging

Video conf.Word processor

User interface
configuration

Setup
service

Figure 4.11 A layered architectural model of the iLearn system

Authentication and 
authorization

Login

46



Distribution architecture

² The distribution architecture of a software system
defines the servers in the system and the allocation of
components to these servers.

² Client-server architectures are a type of distribution
architecture that is suited to applications where clients
access a shared database and business logic operations
on that data.

² In this architecture, the user interface is implemented on
the user’s own computer or mobile device.
§ Functionality is distributed between the client and one or more

server computers.

47



Client–server architecture

Client 1

Client 2

Client 3

Client ...

Servers

request

response

request

request

request

response

response

response

Figure 4.12 Client-server architecture

Load
balancer

48



Client–server architecture

Name Client-server

Description In a client–server architecture, the functionality of the system is organized
into services, with each service delivered from a separate server. Clients are
users of these services and access servers to make use of them.

When used Used when data in a shared database has to be accessed from a range of
locations. Because servers can be replicated, may also be used when the
load on a system is variable.

Advantages The principal advantage of this model is that servers can be distributed
across a network. General functionality (e.g., a printing service) can be
available to all clients and does not need to be implemented by all services.

Disadvantages Each service is a single point of failure so susceptible to denial of service
attacks or server failure. Performance may be unpredictable because it
depends on the network as well as the system. May be management
problems if servers are owned by different organizations.

49



The Model-View-Controller (MVC) pattern

Browser

Controller View

Model

Page to displayUser inputs

SERVER

CLIENT

View refresh 
request

Change
notification

View update
request

User changes

Figure 4.13 The model-view-controller pattern

50



The Model-View-Controller (MVC) pattern

Name MVC (Model-View-Controller)

Description Separates presentation and interaction from the system data. The system is
structured into three logical components that interact with each other. The
Model component manages the system data and associated operations on
that data. The View component defines and manages how the data is
presented to the user. The Controller component manages user interaction
(e.g., key presses, mouse clicks, etc.) and passes these interactions to the
View and the Model.

When used Used when there are multiple ways to view and interact with data. Also used
when the future requirements for interaction and presentation of data are
unknown.

Advantages Allows the data to change independently of its representation and vice versa.
Supports presentation of the same data in different ways with changes made
in one representation shown in all of them.

Disadvantages Can involve additional code and code complexity when the data model and
interactions are simple.

51



Client-server communication (1 of 2)

² Client-server communication normally uses the HTTP
protocol.
§ The client sends a message to the server that includes an

instruction such as GET or POST along with the identifier of a
resource (usually a URL) on which that instruction should
operate. The message may also include additional information,
such as information collected from a form.

52



Client-server communication (2 of 2)

² HTTP is a text-only protocol so structured data has to be
represented as text. There are two ways of representing
this data that are widely used, namely XML and JSON.
§ XML is a markup language with tags used to identify each data

item.
§ JSON is a simpler representation based on the representation of

objects in the Javascript language.

53



Multi-tier client–server architecture

Web server

Figure 4.14 Multi-tier client-server architecture

Application
server

Database 
server

Client 1

Client 2

Client 3

Client ...

54



Service-oriented architecture

² Services in a service-oriented architecture are stateless
components, which means that they can be replicated
and can migrate from one computer to another.

² Many servers may be involved in providing services

² A service-oriented architecture is usually easier to scale
as demand increases and is resilient to failure.

55



Service-oriented architecture

Figure 4.15 Service-oriented architecture

Service 
gateway

s1

s2

s3

s4

s5

s6

Web server

Client 1

Client 2

Client 3

Client ...

Services
56



Issues in architectural choice (1 of 2)

² Data type and data updates
§ If you are mostly using structured data that may be updated by

different system features, it is usually best to have a single
shared database that provides locking and transaction
management. If data is distributed across services, you need a
way to keep it consistent and this adds overhead to your system.

² Change frequency
§ If you anticipate that system components will be regularly

changed or replaced, then isolating these components as
separate services simplifies those changes

57



Issues in architectural choice (2 of 2)

² The system execution platform
§ If you plan to run your system on the cloud with users accessing

it over the Internet, it is usually best to implement it as a service-
oriented architecture because scaling the system is simpler.

§ If your product is a business system that runs on local servers, a
multi-tier architecture may be more appropriate.

58



Technology Design decision
Database Should you use a relational SQL database or an

unstructured NoSQL database?
Platform Should you deliver your product on a mobile app

and/or a web platform?
Server Should you use dedicated in-house servers or design

your system to run on a public cloud? If a public cloud,
should you use Amazon, Google, Microsoft, or some
other option?

Open source Are there suitable open-source components that you
could incorporate into your products?

Development tools Do your development tools embed architectural
assumptions about the software being developed that
limit your architectural choices?

Technology choices

59



Database (1 of 2)

² There are two kinds of database that are now commonly
used:
§ Relational databases, where the data is organised into

structured tables.
§ NoSQL databases, in which the data has a more flexible, user-

defined organization.

² Relational databases, such as MySQL, are particularly
suitable for situations where you need transaction
management, and the data structures are predictable
and fairly simple.

60



Database (2 of 2)

² NoSQL databases, such as MongoDB, are more flexible
and potentially more efficient than relational databases
for data analysis.
§ NoSQL databases allow data to be organized hierarchically

rather than as flat tables and this allows for more efficient
concurrent processing of ‘big data’.

61



Delivery platform (1 of 3)

² Delivery can be as a web-based or a mobile product or
both

² Mobile issues:
§ Intermittent connectivity You must be able to provide a limited

service without network connectivity.
§ Processor power Mobile devices have less powerful processors,

so you need to minimize computationally-intensive operations.

62



Delivery platform (2 of 3)

² Mobile issues:
§ Power management Mobile battery life is limited so you should

try to minimize the power used by your application.
§ On-screen keyboard On-screen keyboards are slow and error-

prone. You should minimize input using the screen keyboard to
reduce user frustration.

63



Delivery platform (3 of 3)

² To deal with these differences, you usually need
separate browser-based and mobile versions of your
product front-end.
§ You may need a completely different decomposition architecture

in these different versions to ensure that performance and other
characteristics are maintained.

64



Server (1 of 2)

² A key decision that you have to make is whether to
design your system to run on customer servers or to run
on the cloud.

² For consumer products that are not simply mobile apps it
almost always makes sense to develop for the cloud.

65



Server (2 of 2)

² For business products, it is a more difficult decision.
§ Some businesses are concerned about cloud security and prefer

to run their systems on in-house servers. They may have a
predictable pattern of system usage so there is less need to
design your system to cope with large changes in demand.

² An important choice you have to make if you are running
your software on the cloud is which cloud provider to
use.

66



Open source (1 of 2)

² Open source software is software that is available freely,
which you can change and modify as you wish.
§ The advantage is that you can reuse rather than implement new

software, which reduces development costs and time to market.
§ The disadvantages of using open-source software is that you are

constrained by that software and have no control over its
evolution.

67



Open source (2 of 2)

² The decision on the use of open-source software also
depends on the availability, maturity and continuing
support of open source components.

² Open source license issues may impose constraints on
how you use the software.

² Your choice of open source software should depend on
the type of product that you are developing, your target
market and the expertise of your development team.

68



Development tools (1 of 2)

² Development technologies, such as a mobile
development toolkit or a web application framework,
influence the architecture of your software.
§ These technologies have built-in assumptions about system

architectures and you have to conform to these assumptions to
use the development system.

69



Development tools (2 of 2)

² The development technology that you use may also
have an indirect influence on the system architecture.
§ Developers usually favour architectural choices that use familiar

technologies that they understand. For example, if your team
have a lot of experience of relational databases, they may argue
for this instead of a NoSQL database.

70



Key points (1 of 4)

² Software architecture is the fundamental organization of
a system embodied in its components, their relationships
to each other, and to the environment, and the principles
guiding its design and evolution.

² The architecture of a software system has a significant
influence on non-functional system properties such as
reliability, efficiency and security.

² Architectural design involves understanding the issues
that are critical for your product and creating system
descriptions that shows components and their
relationships.

71



Key points (2 of 4)

² The principal role of architectural descriptions is to
provide a basis for the development team to discuss the
system organization. Informal architectural diagrams are
effective in architectural description because they are
fast and easy to draw and share.

² System decomposition involves analyzing architectural
components and representing them as a set of finer-
grain components.

72



Key points (3 of 4)

² To minimize complexity, you should separate concerns,
avoid functional duplication and focus on component
interfaces.

² Web-based systems often have a common layered
structure including user interface layers, application-
specific layers and a database layer.

² The distribution architecture in a system defines the
organization of the servers in that system and the
allocation of components to these servers.

73



Key points (4 of 4)

² Multi-tier client-server and service-oriented architectures
are the most commonly used architectures for web-
based systems.

² Making decisions on technologies such as database and
cloud technologies are an important part of the
architectural design process.

74



75


