
Engenharia de Software
(14341, 16230, 15386)

Software Architecture

(adapted from Software Engineering: International Version, Ian Sommerville, Pearson, 2015, and

Engineering Software Products: An Introduction to Modern Software Engineering , Ian Sommerville, Pearson, 2020)

1Nuno Pombo - Engenharia de Software, 2024/25

Topics covered

 Software architecture

 Software architecture and components

2

Software architecture (1 of 2)

 To create a reliable, secure and efficient product, you

need to pay attention to architectural design which

includes:

▪ its overall organization,

▪ how the software is decomposed into components,

▪ the server organization

▪ the technologies that you use to build the software. The

architecture of a software product affects its performance,

usability, security, reliability and maintainability.

3

Software architecture (2 of 2)

 There are many different interpretations of the term

‘software architecture’.

▪ Some focus on ‘architecture’ as a noun - the structure of a

system and others consider ‘architecture’ to be a verb - the

process of defining these structures.

4

Software architecture

Architecture is the fundamental organization of a software system embodied in

its components, their relationships to each other and to the environment, and

the principles guiding its design and evolution.

The IEEE definition of software architecture

5

Software architecture and components

 A component is an element that implements a coherent

set of functionality or features.

 Software component can be considered as a collection

of one or more services that may be used by other

components.

 When designing software architecture, you don’t have to

decide how an architectural element or component is to

be implemented.

 Rather, you design the component interface and leave

the implementation of that interface to a later stage of

the development process.

6

Access to services provided by software components

7

Why is architecture important? (1 of 3)

8

Why is architecture important? (2 of 3)

 Architecture is important because the architecture of a

system has a fundamental influence on the non-

functional system properties.

 Architectural design involves understanding the issues

that affect the architecture of your product and creating

an architectural description that shows the critical

components and their relationships.

9

Why is architecture important? (3 of 3)

 Minimizing complexity should be an important goal for

architectural designers.

▪ The more complex a system, the more difficult and expensive it

is to understand and change.

▪ Programmers are more likely to make mistakes and introduce

bugs and security vulnerabilities when they are modifying or

extending a complex system.

10

Attribute Key issue

Responsiveness Does the system return results to users in a reasonable

time?

Reliability Do the system features behave as expected by both

developers and users?

Availability Can the system deliver its services when requested by

users?

Security Does the system protect itself and users’ data from

unauthorized attacks and intrusions?

Usability Can system users access the features that they need and

use them quickly and without errors?

Maintainability Can the system be readily updated and new features

added without undue costs?

Resilience Can the system continue to deliver user services in the

event of partial failure or external attack?

Non-functional system quality attributes

11

Centralized security architectures

 The benefits of a centralized security architecture are

that it is easier to design and build protection and that

the protected information can be accessed more

efficiently.

 However, if your security is breached, you lose

everything.

 If you distribute information, it takes longer to access all

of the information and costs more to protect it.

 If security is breached in one location, you only lose the

information that you have stored there.

12

Maintainability and performance (1 of 2)

 This figure shows a system with two components (C1 and C2) that

share a common database.

▪ Assume C1 runs slowly because it has to reorganize the information in

the database before using it.

▪ The only way to make C1 faster might be to change the database. This

means that C2 also has to be changed, which may, potentially, affect its

response time.

13

Maintainability and performance (1 of 2)

 This figure shows a different architecture is used where each

component has its own copy of the parts of the database that it

needs.

▪ If one component needs to change the database organization, this does

not affect the other component.

14

Maintainability and performance (2 of 2)

 However, a multi-database architecture may run more slowly and

may cost more to implement and change.

▪ A multi-database architecture needs a mechanism (component C3) to

ensure that the data shared by C1 and C2 is kept consistent when it is

changed.

15

Issues that influence architectural decisions

16

Issue Architectural importance

Non-functional

product

characteristics

Non-functional product characteristics such as security

and performance affect all users. If you get these

wrong, your product is unlikely to be a commercial

success. Unfortunately, some characteristics are

opposing, so you can optimize only the most
important.

Product lifetime If you anticipate a long product lifetime, you need to

create regular product revisions. You therefore need

an architecture that can evolve, so that it can be

adapted to accommodate new features and

technology.

Software reuse You can save a lot of time and effort if you can reuse

large components from other products or open-source

software. However, this constrains your architectural

choices because you must fit your design around the

software that is being reused.

The importance of architectural design issues (1 of 2)

17

Issue Architectural importance

Number of users If you are developing consumer software delivered

over the Internet, the number of users can change

very quickly. This can lead to serious performance

degradation unless you design your architecture so

that your system can be quickly scaled up and down.

Software compatibility For some products, it is important to maintain

compatibility with other software so that users can

adopt your product and use data prepared using a

different system. This may limit architectural choices,

such as the database software that you can use.

The importance of architectural design issues (2 of 2)

18

Trade off: Maintainability vs performance (1 of 2)

 System maintainability is an attribute that reflects how

difficult and expensive it is to make changes to a system

after it has been released to customers.

▪ You improve maintainability by building a system from small self-

contained parts, each of which can be replaced or enhanced if

changes are required.

19

Trade off: Maintainability vs performance (2 of 2)

 In architectural terms, this means that the system should

be decomposed into fine-grain components, each of

which does one thing and one thing only.

▪ However, it takes time for components to communicate with

each other. Consequently, if many components are involved in

implementing a product feature, the software will be slower.

20

Trade off: Security vs usability

 You can achieve security by designing the system

protection as a series of layers.

▪ An attacker has to penetrate all of those layers before the

system is compromised.

 Layers might include system authentication layers, a

separate critical feature authentication layer, an

encryption layer and so on.

 Architecturally, you can implement each of these layers

as separate components so that if one of these

components is compromised by an attacker, then the

other layers remain intact.

21

Authentication layers

22

Usability issues (1 of 2)

 A layered approach to security affects the usability of the

software.

▪ Users have to remember information, like passwords, that is

needed to penetrate a security layer. Their interaction with the

system is inevitably slowed down by its security features.

▪ Many users find this irritating and often look for work-arounds so

that they do not have to re-authenticate to access system

features or data.

23

Usability issues (2 of 2)

 To avoid this, you need an architecture:

▪ that doesn’t have too many security layers,

▪ that doesn’t enforce unnecessary security,

▪ that provides helper components that reduce the load on users.

24

Trade off: Availability vs time-to-market (1 of 2)

 Availability is particularly important in enterprise

products, such as products for the finance industry,

where 24/7 operation is expected.

 The availability of a system is a measure of the amount

of ‘uptime’ of that system.

▪ Availability is normally expressed as a percentage of the time

that a system is available to deliver user services.

25

Trade off: Availability vs time-to-market (2 of 2)

 Architecturally, you achieve availability by having

redundant components in a system.

▪ To make use of redundancy, you include sensor components that

detect failure, and switching components that switch operation to

a redundant component when a failure is detected.

 Implementing extra components takes time and

increases the cost of system development. It adds

complexity to the system and therefore increases the

chances of introducing bugs and vulnerabilities.

26

Architectural design questions

 How should the system be organized as a set of

architectural components, where each of these

components provides a subset of the overall system

functionality?

▪ The organization should deliver the system security, reliability

and performance that you need.

 How should these architectural components be

distributed and communicate with each other?

 What technologies should you use in building the system

and what components should be reused?

27

Component organization

 Abstraction in software design means that you focus on

the essential elements of a system or software

component without concern for its details.

 At the architectural level, your concern should be on

large-scale architectural components.

 Decomposition involves analysing these large-scale

components and representing them as a set of finer-

grain components.

 Layered models are often used to illustrate how a

system is composed of components.

28

An architectural model of a document retrieval system

29

Architectural complexity (1 of 2)

 Complexity in a system architecture arises because of

the number and the nature of the relationships between

components in that system.

 When decomposing a system into components, you

should try to avoid unnecessary software complexity.

▪ Localize relationships: If there are relationships between

components A and B, these are easier to understand if A and B

are defined in the same module.

30

Architectural complexity (2 of 2)

 When decomposing a system into components, you

should try to avoid unnecessary software complexity.

▪ Reduce shared dependencies: Where components A and B

depend on some other component or data, complexity increases

because changes to the shared component mean you have to

understand how these changes affect both A and B.

 It is always preferable to use local data wherever

possible and to avoid sharing data if you can.

31

Examples of component relationships

32

Architectural design guidelines

33

Design guidelines and layered architectures (1 of 2)

 Each layer is an area of concern and is considered

separately from other layers.

▪ The top layer is concerned with user interaction, the next layer

down with user interface management, the third layer with

information retrieval and so on.

 Within each layer, the components are independent and

do not overlap in functionality.

▪ The lower layers include components that provide general

functionality so there is no need to replicate this in the

components in a higher level.

34

Design guidelines and layered architectures (2 of 2)

 The architectural model is a high-level model that does

not include implementation information.

▪ Ideally, components at level X (say) should only interact with the

APIs of the components in level X-1. That is, interactions should

be between layers and not across layers.

35

Cross-cutting concerns

 Cross-cutting concerns are concerns that are systemic, that

is, they affect the whole system.

 In a layered architecture, cross-cutting concerns affect all

layers in the system as well as the way in which people use

the system.

 Cross-cutting concerns are completely different from the

functional concerns represented by layers in a software

architecture.

 Every layer has to take them into account and there are

inevitably interactions between the layers because of these

concerns.

 The existence of cross-cutting concerns is the reason why

modifying a system after it has been designed to improve its

security is often difficult. 36

Cross-cutting concerns

37

Security architecture

Different technologies are used in different layers, such as an SQL database or a

Firefox browser. Attackers can try to use vulnerabilities in these technologies to

gain access. Consequently, you need protection from attacks at each layer as

well as protection at lower layers in the system from successful attacks that have

occurred at higher-level layers.

If there is only a single security component in a system, this represents a critical

system vulnerability. If all security checking goes through that component and it

stops working properly or is compromised in an attack, then you have no reliable

security in your system. By distributing security across the layers, your system is
more resilient to attacks and software failure (remember the Rogue One example

earlier in the chapter).

Security as a cross-cutting concern

38

A generic layered architecture for a web-based

application

39

Layer Explanation

Browser-based or

mobile user

Interface

A web browser system interface in which HTML forms

are often used to collect user input. Javascript

components for local actions, such as input validation,

should also be included at this level. Alternatively, a

mobile interface may be implemented as an app.

Authentication and UI

management

A user interface management layer that may include

components for user authentication and web page

generation.

Application-specific

functionality

An “application” layer that provides functionality of the

application. Sometimes this may be expanded into more

than one layer.

Layer functionality in a web-based application (1 of 2)

40

Layer Explanation

Basic shared services A shared services layer that includes components

that provide services used by the application layer

components.

Database and

transaction

Management

A database layer that provides services such as

transaction management and recovery. If your

application does not use a database, then this may

not be required.

Layer functionality in a web-based application (2 of 2)

41

Principle Explanation

Replaceability It should be possible for users to replace applications in the system

with alternatives and to add new applications. Consequently, the list of

applications included should not be hardwired into the system.

Extensibility It should be possible for users or system administrators to create their

own versions of the system, which may extend or limit the “standard”

system.

Age-appropriate Alternative user interfaces should be supported so that ageappropriate

interfaces for students at different levels can be created.

Programmability It should be easy for users to create their own applications by linking

existing applications in the system.

Minimum work Users who do not wish to change the system should not have to do

extra work so that other users can make changes.

iLearn architectural design principles

42

iLearn design principles

 Our goal in designing the iLearn system was to create an

adaptable, universal system that could be easily updated

as new learning tools became available.

▪ This means that it must be possible to change and replace

components and services in the system (principles (1) and (2)).

▪ Because the potential system users spanned an age range from

3 to 18, we needed to provide age-appropriate user interfaces

and to make it easy to choose an interface (principle (3)).

▪ Principle (4) also contributes to system adaptability and principle

(5) was included to ensure that this adaptability did not adversely

affect users who did not require it.

43

Designing iLearn as a service-oriented system (1 of 2)

 These principles led us to an architectural design

decision that the iLearn system should be service-

oriented.

 Every component in the system is a service. Any service

is potentially replaceable and new services can be

created by combining existing services. Different

services delivering comparable functionality can be

provided for students of different ages.

44

Designing iLearn as a service-oriented system (2 of 2)

 Service integration

▪ Full integration: Services are aware of and can communicate

with other services through their APIs.

▪ Partial integration: Services may share service components and

databases but are not aware of and cannot communicate directly

with other application services.

▪ Independent: These services do not use any shared system

services or databases and they are unaware of any other

services in the system. They can be replaced by any other

comparable service.

45

A layered architectural model of the iLearn system

46

Distribution architecture

 The distribution architecture of a software system

defines the servers in the system and the allocation of

components to these servers.

 Client-server architectures are a type of distribution

architecture that is suited to applications where clients

access a shared database and business logic operations

on that data.

 In this architecture, the user interface is implemented on

the user’s own computer or mobile device.

▪ Functionality is distributed between the client and one or more

server computers.

47

Client–server architecture

48

Client–server architecture

Name Client-server

Description In a client–server architecture, the functionality of the system is organized

into services, with each service delivered from a separate server. Clients are
users of these services and access servers to make use of them.

When used Used when data in a shared database has to be accessed from a range of

locations. Because servers can be replicated, may also be used when the
load on a system is variable.

Advantages The principal advantage of this model is that servers can be distributed

across a network. General functionality (e.g., a printing service) can be
available to all clients and does not need to be implemented by all services.

Disadvantages Each service is a single point of failure so susceptible to denial of service

attacks or server failure. Performance may be unpredictable because it
depends on the network as well as the system. May be management
problems if servers are owned by different organizations.

49

The Model-View-Controller (MVC) pattern

50

The Model-View-Controller (MVC) pattern

Name MVC (Model-View-Controller)

Description Separates presentation and interaction from the system data. The system is

structured into three logical components that interact with each other. The
Model component manages the system data and associated operations on
that data. The View component defines and manages how the data is

presented to the user. The Controller component manages user interaction
(e.g., key presses, mouse clicks, etc.) and passes these interactions to the

View and the Model.

When used Used when there are multiple ways to view and interact with data. Also used

when the future requirements for interaction and presentation of data are
unknown.

Advantages Allows the data to change independently of its representation and vice versa.

Supports presentation of the same data in different ways with changes made
in one representation shown in all of them.

Disadvantages Can involve additional code and code complexity when the data model and

interactions are simple.

51

Client-server communication (1 of 2)

 Client-server communication normally uses the HTTP

protocol.

▪ The client sends a message to the server that includes an

instruction such as GET or POST along with the identifier of a

resource (usually a URL) on which that instruction should

operate. The message may also include additional information,

such as information collected from a form.

52

Client-server communication (2 of 2)

 HTTP is a text-only protocol so structured data has to be

represented as text. There are two ways of representing

this data that are widely used, namely XML and JSON.

▪ XML is a markup language with tags used to identify each data

item.

▪ JSON is a simpler representation based on the representation of

objects in the Javascript language.

53

Multi-tier client–server architecture

54

Service-oriented architecture

 Services in a service-oriented architecture are stateless

components, which means that they can be replicated

and can migrate from one computer to another.

 Many servers may be involved in providing services

 A service-oriented architecture is usually easier to scale

as demand increases and is resilient to failure.

55

Service-oriented architecture

56

Issues in architectural choice (1 of 2)

 Data type and data updates

▪ If you are mostly using structured data that may be updated by

different system features, it is usually best to have a single

shared database that provides locking and transaction

management. If data is distributed across services, you need a

way to keep it consistent and this adds overhead to your system.

 Change frequency

▪ If you anticipate that system components will be regularly

changed or replaced, then isolating these components as

separate services simplifies those changes

57

Issues in architectural choice (2 of 2)

 The system execution platform

▪ If you plan to run your system on the cloud with users accessing

it over the Internet, it is usually best to implement it as a service-

oriented architecture because scaling the system is simpler.

▪ If your product is a business system that runs on local servers, a

multi-tier architecture may be more appropriate.

58

Technology Design decision

Database Should you use a relational SQL database or an

unstructured NoSQL database?

Platform Should you deliver your product on a mobile app

and/or a web platform?

Server Should you use dedicated in-house servers or design

your system to run on a public cloud? If a public cloud,

should you use Amazon, Google, Microsoft, or some

other option?

Open source Are there suitable open-source components that you

could incorporate into your products?

Development tools Do your development tools embed architectural

assumptions about the software being developed that

limit your architectural choices?

Technology choices

59

Database (1 of 2)

 There are two kinds of database that are now commonly

used:

▪ Relational databases, where the data is organised into

structured tables.

▪ NoSQL databases, in which the data has a more flexible, user-

defined organization.

 Relational databases, such as MySQL, are particularly

suitable for situations where you need transaction

management, and the data structures are predictable

and fairly simple.

60

Database (2 of 2)

 NoSQL databases, such as MongoDB, are more flexible

and potentially more efficient than relational databases

for data analysis.

▪ NoSQL databases allow data to be organized hierarchically

rather than as flat tables and this allows for more efficient

concurrent processing of ‘big data’.

61

Delivery platform (1 of 3)

 Delivery can be as a web-based or a mobile product or

both

 Mobile issues:

▪ Intermittent connectivity You must be able to provide a limited

service without network connectivity.

▪ Processor power Mobile devices have less powerful processors,

so you need to minimize computationally-intensive operations.

62

Delivery platform (2 of 3)

 Mobile issues:

▪ Power management Mobile battery life is limited so you should

try to minimize the power used by your application.

▪ On-screen keyboard On-screen keyboards are slow and error-

prone. You should minimize input using the screen keyboard to

reduce user frustration.

63

Delivery platform (3 of 3)

 To deal with these differences, you usually need

separate browser-based and mobile versions of your

product front-end.

▪ You may need a completely different decomposition architecture

in these different versions to ensure that performance and other

characteristics are maintained.

64

Server (1 of 2)

 A key decision that you have to make is whether to

design your system to run on customer servers or to run

on the cloud.

 For consumer products that are not simply mobile apps it

almost always makes sense to develop for the cloud.

65

Server (2 of 2)

 For business products, it is a more difficult decision.

▪ Some businesses are concerned about cloud security and prefer

to run their systems on in-house servers. They may have a

predictable pattern of system usage so there is less need to

design your system to cope with large changes in demand.

 An important choice you have to make if you are running

your software on the cloud is which cloud provider to

use.

66

Open source (1 of 2)

 Open source software is software that is available freely,

which you can change and modify as you wish.

▪ The advantage is that you can reuse rather than implement new

software, which reduces development costs and time to market.

▪ The disadvantages of using open-source software is that you are

constrained by that software and have no control over its

evolution.

67

Open source (2 of 2)

 The decision on the use of open-source software also

depends on the availability, maturity and continuing

support of open source components.

 Open source license issues may impose constraints on

how you use the software.

 Your choice of open source software should depend on

the type of product that you are developing, your target

market and the expertise of your development team.

68

Development tools (1 of 2)

 Development technologies, such as a mobile

development toolkit or a web application framework,

influence the architecture of your software.

▪ These technologies have built-in assumptions about system

architectures and you have to conform to these assumptions to

use the development system.

69

Development tools (2 of 2)

 The development technology that you use may also

have an indirect influence on the system architecture.

▪ Developers usually favour architectural choices that use familiar

technologies that they understand. For example, if your team

have a lot of experience of relational databases, they may argue

for this instead of a NoSQL database.

70

Key points (1 of 4)

 Software architecture is the fundamental organization of

a system embodied in its components, their relationships

to each other, and to the environment, and the principles

guiding its design and evolution.

 The architecture of a software system has a significant

influence on non-functional system properties such as

reliability, efficiency and security.

 Architectural design involves understanding the issues

that are critical for your product and creating system

descriptions that shows components and their

relationships.

71

Key points (2 of 4)

 The principal role of architectural descriptions is to

provide a basis for the development team to discuss the

system organization. Informal architectural diagrams are

effective in architectural description because they are

fast and easy to draw and share.

 System decomposition involves analyzing architectural

components and representing them as a set of finer-

grain components.

72

Key points (3 of 4)

 To minimize complexity, you should separate concerns,

avoid functional duplication and focus on component

interfaces.

 Web-based systems often have a common layered

structure including user interface layers, application-

specific layers and a database layer.

 The distribution architecture in a system defines the

organization of the servers in that system and the

allocation of components to these servers.

73

Key points (4 of 4)

 Multi-tier client-server and service-oriented architectures

are the most commonly used architectures for web-

based systems.

 Making decisions on technologies such as database and

cloud technologies are an important part of the

architectural design process.

74

75

	Slide 1: Engenharia de Software (14341, 16230, 15386) Software Architecture (adapted from Software Engineering: International Version, Ian Sommerville, Pearson, 2015, and Engineering Software Products: An Introduction to Modern Software Engineering,
	Slide 2: Topics covered
	Slide 3: Software architecture (1 of 2)
	Slide 4: Software architecture (2 of 2)
	Slide 5: The IEEE definition of software architecture
	Slide 6: Software architecture and components
	Slide 7: Access to services provided by software components
	Slide 8: Why is architecture important? (1 of 3)
	Slide 9: Why is architecture important? (2 of 3)
	Slide 10: Why is architecture important? (3 of 3)
	Slide 11: Non-functional system quality attributes
	Slide 12: Centralized security architectures
	Slide 13: Maintainability and performance (1 of 2)
	Slide 14: Maintainability and performance (1 of 2)
	Slide 15: Maintainability and performance (2 of 2)
	Slide 16: Issues that influence architectural decisions
	Slide 17: The importance of architectural design issues (1 of 2)
	Slide 18: The importance of architectural design issues (2 of 2)
	Slide 19: Trade off: Maintainability vs performance (1 of 2)
	Slide 20: Trade off: Maintainability vs performance (2 of 2)
	Slide 21: Trade off: Security vs usability
	Slide 22: Authentication layers
	Slide 23: Usability issues (1 of 2)
	Slide 24: Usability issues (2 of 2)
	Slide 25: Trade off: Availability vs time-to-market (1 of 2)
	Slide 26: Trade off: Availability vs time-to-market (2 of 2)
	Slide 27: Architectural design questions
	Slide 28: Component organization
	Slide 29: An architectural model of a document retrieval system
	Slide 30: Architectural complexity (1 of 2)
	Slide 31: Architectural complexity (2 of 2)
	Slide 32: Examples of component relationships
	Slide 33: Architectural design guidelines
	Slide 34: Design guidelines and layered architectures (1 of 2)
	Slide 35: Design guidelines and layered architectures (2 of 2)
	Slide 36: Cross-cutting concerns
	Slide 37: Cross-cutting concerns
	Slide 38: Security as a cross-cutting concern
	Slide 39: A generic layered architecture for a web-based application
	Slide 40: Layer functionality in a web-based application (1 of 2)
	Slide 41: Layer functionality in a web-based application (2 of 2)
	Slide 42: iLearn architectural design principles
	Slide 43: iLearn design principles
	Slide 44: Designing iLearn as a service-oriented system (1 of 2)
	Slide 45: Designing iLearn as a service-oriented system (2 of 2)
	Slide 46: A layered architectural model of the iLearn system
	Slide 47: Distribution architecture
	Slide 48: Client–server architecture
	Slide 49: Client–server architecture
	Slide 50: The Model-View-Controller (MVC) pattern
	Slide 51: The Model-View-Controller (MVC) pattern
	Slide 52: Client-server communication (1 of 2)
	Slide 53: Client-server communication (2 of 2)
	Slide 54: Multi-tier client–server architecture
	Slide 55: Service-oriented architecture
	Slide 56: Service-oriented architecture
	Slide 57: Issues in architectural choice (1 of 2)
	Slide 58: Issues in architectural choice (2 of 2)
	Slide 59: Technology choices
	Slide 60: Database (1 of 2)
	Slide 61: Database (2 of 2)
	Slide 62: Delivery platform (1 of 3)
	Slide 63: Delivery platform (2 of 3)
	Slide 64: Delivery platform (3 of 3)
	Slide 65: Server (1 of 2)
	Slide 66: Server (2 of 2)
	Slide 67: Open source (1 of 2)
	Slide 68: Open source (2 of 2)
	Slide 69: Development tools (1 of 2)
	Slide 70: Development tools (2 of 2)
	Slide 71: Key points (1 of 4)
	Slide 72: Key points (2 of 4)
	Slide 73: Key points (3 of 4)
	Slide 74: Key points (4 of 4)
	Slide 75

