
Engenharia de Software
(14341, 16230, 15386)

Model-Driven Requirements Engineering

(adapted from Software Engineering: International Version (10th Edition), Ian Sommerville, Pearson, 2015)

1Nuno Pombo - Engenharia de Software, 2025/26

Topics covered

 Model-driven engineering (MDE)

 Model-driven requirements engineering (MDRE)

 MDRE in practice

2

Soft Skill of the week: Creativity

3

Model-driven engineering

4

Model-driven engineering

 Model-driven engineering (MDE) is an approach to

software development where models rather than

programs are the principal outputs of the development

process.

 The programs that execute on a hardware/software

platform are then generated automatically from the

models.

 Proponents of MDE argue that this raises the level of

abstraction in software engineering so that engineers no

longer have to be concerned with programming

language details or the specifics of execution platforms.

5

Usage of model-driven engineering

 Model-driven engineering is still at an early stage of

development, and it is unclear whether or not it will have

a significant effect on software engineering practice.

 Pros

▪ Allows systems to be considered at higher levels of abstraction

▪ Generating code automatically means that it is cheaper to adapt

systems to new platforms.

 Cons

▪ Models for abstraction and not necessarily right for

implementation.

▪ Savings from generating code may be outweighed by the costs

of developing translators for new platforms.

6

Model driven architecture

 Model-driven architecture (MDA) was the precursor of

more general model-driven engineering.

 MDA is a model-focused approach to software design

and implementation that uses a subset of UML models to

describe a system.

 Models at different levels of abstraction are created.

From a high-level, platform independent model, it is

possible, in principle, to generate a working program

without manual intervention.

7

Types of model

 A computation independent model (CIM)

▪ These model the important domain abstractions used in a

system. CIMs are sometimes called domain models.

 A platform independent model (PIM)

▪ These model the operation of the system without reference to its

implementation. The PIM is usually described using UML models

that show the static system structure and how it responds to

external and internal events.

 Platform specific models (PSM)

▪ These are transformations of the platform-independent model

with a separate PSM for each application platform. In principle,

there may be layers of PSM, with each layer adding some

platform-specific detail.

8

MDA transformations

9

Multiple platform-specific models

10

Agile methods and MDA

 The developers of MDA claim that it is intended to

support an iterative approach to development and so can

be used within agile methods.

 The notion of extensive up-front modeling contradicts the

fundamental ideas in the agile manifesto…

 If transformations can be completely automated and a

complete program generated from a PIM, then, in

principle, MDA could be used in an agile development

process as no separate coding would be required.

11

Adoption of MDA

 A range of factors has limited the adoption of MDE/MDA.

 Specialized tool support is required to convert models

from one level to another.

 There is limited tool availability and organizations may

require tool adaptation and customization to their

environment.

 For the long-lifetime systems developed using MDA,

companies are reluctant to develop their own tools or

rely on small companies that may go out of business.

12

Adoption of MDA

 Models are a good way of facilitating discussions about a

software design. However the abstractions that are

useful for discussions may not be the right abstractions

for implementation.

 For most complex systems, implementation is not the

major problem – requirements engineering, security and

dependability, integration with legacy systems and

testing are all more significant.

13

Adoption of MDA

 The arguments for platform-independence are only valid

for large, long-lifetime systems. For software products

and information systems, the savings from the use of

MDA are likely to be outweighed by the costs of its

introduction and tooling.

 The widespread adoption of agile methods over the

same period that MDA was evolving has diverted

attention away from model-driven approaches.

14

Model-driven requirements engineering

15

Why Not Only Use Text?

 Natural language can be ambiguous.

 Example: 'The system shall show the nearest hospitals'

— unclear radius, ranking.

 Models provide structure and reduce misunderstandings.

16

Definition of MDRE

 Capturing, analyzing, and validating requirements.

 Using visual models as the main communication and/or

documentation method.

 Improves requirements traceability, enabling seamless

tracking of requirements throughout the development

lifecycle.

17

Objectives of MDRE

 Reduce ambiguity

▪ Replace vague natural-language requirements with precise,

visual representations.

▪ Minimize misinterpretations by using standardized modeling

elements.

▪ Example: Instead of “fast system response,” specify “system

shall respond within 2 seconds under peak load.”

 Improve shared understanding

▪ Ensure all stakeholders (technical and non-technical) interpret

requirements the same way.

▪ Use diagrams and models as a “common language” to bridge

communication gaps.

▪ Foster early consensus on system functionality and constraints.
18

Objectives of MDRE

 Link requirements to downstream artifacts

▪ Maintain direct traceability between requirements and their

implementation.

▪ Enable impact analysis — when a requirement changes, see

which design elements, code modules, and test cases are

affected.

▪ Improve consistency across development stages.

 Enable early validation and analysis

▪ Models can be validated for completeness, consistency, and

correctness using tools.

▪ Automated generation of design artifacts or test cases is

possible.

▪ Early detection of conflicts and missing elements reduces costly

rework later. 19

Benefits of MDRE

 Clarity — better than text alone

▪ Visual models present relationships, processes, and structures

in a way that’s easier to understand than long paragraphs.

▪ Reduces ambiguity by standardizing how requirements are

represented.

▪ Helps stakeholders with varying technical backgrounds grasp the

same concept quickly.

 Collaboration — aligns teams

▪ Creates a shared visual language between developers, testers,

product managers, and clients.

▪ Encourages discussion and validation early in the process.

▪ Improves stakeholder engagement in reviewing requirements.

20

Benefits of MDRE

 Change management — faster updates

▪ Models can be updated quickly when requirements change.

▪ Avoids re-writing large text documents.

▪ Supports impact analysis — quickly see what elements are affected.

 Traceability — direct links to implementation

▪ Each model element can be mapped directly to system components, test cases,

and documentation.

▪ Facilitates compliance with standards (e.g., ISO, CMMI).

▪ Makes auditing and verification easier.

 Scalability — works for complex systems

▪ Supports modular decomposition for large projects.

▪ Can represent different levels of abstraction (system, sub-system, component).

▪ Helps maintain consistency across distributed teams and large-scale

developments.
21

Traditional RE vs MDRE

22

MDRE in practice

 Industries

▪ Automotive – Designing advanced driver-assistance systems

(ADAS), infotainment, and vehicle control software where

functional safety (ISO 26262) is mandatory.

▪ Aerospace – Avionics and flight control systems requiring strict

compliance with standards.

▪ Healthcare – Medical device software and hospital information

systems where traceability and regulatory compliance (e.g.,

FDA, ISO 13485) are critical.

23

MDRE in practice

 Large distributed teams

▪ Helps maintain a single source of truth across geographically

dispersed teams.

▪ Reduces miscommunication when development, testing, and

design are done in different countries.

▪ Supports asynchronous collaboration through shared, version-

controlled models.

 Safety-critical and regulated projects

▪ Ensures traceability from requirements to implementation for

audits.

▪ Supports impact analysis when requirements or regulations

change.

▪ Minimizes risk of non-compliance through rigorous modeling and

validation. 24

Types of requirement models

 Functional — define system features and behaviors.

 Non-functional — specify performance, constraints, and

quality attributes.

 Informal visuals — use block diagrams, flowcharts, or

mind maps.

25

Agile methods and MDRE

 Visual representation of requirements

▪ MDRE leverages visual and formalized models to

represent requirements clearly and concisely,

minimizing the ambiguity often associated with purely

text-based Agile user stories.

▪ Visual models allow teams to quickly understand

requirements, spot inconsistencies, and adapt to

shifting priorities without losing the overall system

perspective.

26

Agile methods and MDRE

 Real-Time updates and adaptability

▪ In Agile projects, requirements evolve throughout the

development lifecycle.

▪ MDRE ensures models are dynamically updated to

reflect ongoing changes, ensuring the entire team

remains aligned on the latest scope and objectives.

▪ This reduces miscommunication and prevents costly

delays caused by unclear or outdated requirements.

27

Agile methods and MDRE

 Enhanced Cross-Team Collaboration

▪ MDRE tools (e.g. Visure Requirements ALM Platform)

provide a shared, model-driven workspace for

cross-functional teams.

▪ Designers, developers, testers, and stakeholders can

all interact with the same models, enabling

transparent discussions and faster decision-making.

28

Practice: MDRE

Based on the video you watched:

 Identify 4–6 core requirements from the scenario.

 Create a simple diagram (boxes + arrows).

 Use an online tool to produce the schematic.

29

Key points (1 of 2)

 A model is an abstract view of a system that ignores system details.

Complementary system models can be developed to show the

system’s context, interactions, structure and behavior.

 Context models show how a system that is being modeled is

positioned in an environment with other systems and processes.

 Use case diagrams and sequence diagrams are used to describe

the interactions between users and systems in the system being

designed. Use cases describe interactions between a system and

external actors; sequence diagrams add more information to these

by showing interactions between system objects.

 Structural models show the organization and architecture of a

system. Class diagrams are used to define the static structure of

classes in a system and their associations.

30

Key points (2 of 2)

 Behavioral models are used to describe the dynamic behavior

of an executing system. This behavior can be modeled from

the perspective of the data processed by the system, or by

the events that stimulate responses from a system.

 Activity diagrams may be used to model the processing of

data, where each activity represents one process step.

 State diagrams are used to model a system’s behavior in

response to internal or external events.

 Model-driven engineering is an approach to software

development in which a system is represented as a set of

models that can be automatically transformed to executable

code.

31

32

	Slide 1: Engenharia de Software (14341, 16230, 15386) Model-Driven Requirements Engineering (adapted from Software Engineering: International Version (10th Edition), Ian Sommerville, Pearson, 2015)
	Slide 2: Topics covered
	Slide 3: Soft Skill of the week: Creativity
	Slide 4: Model-driven engineering
	Slide 5: Model-driven engineering
	Slide 6: Usage of model-driven engineering
	Slide 7: Model driven architecture
	Slide 8: Types of model
	Slide 9: MDA transformations
	Slide 10: Multiple platform-specific models
	Slide 11: Agile methods and MDA
	Slide 12: Adoption of MDA
	Slide 13: Adoption of MDA
	Slide 14: Adoption of MDA
	Slide 15: Model-driven requirements engineering
	Slide 16: Why Not Only Use Text?
	Slide 17: Definition of MDRE
	Slide 18: Objectives of MDRE
	Slide 19: Objectives of MDRE
	Slide 20: Benefits of MDRE
	Slide 21: Benefits of MDRE
	Slide 22: Traditional RE vs MDRE
	Slide 23: MDRE in practice
	Slide 24: MDRE in practice
	Slide 25: Types of requirement models
	Slide 26: Agile methods and MDRE
	Slide 27: Agile methods and MDRE
	Slide 28: Agile methods and MDRE
	Slide 29: Practice: MDRE
	Slide 30: Key points (1 of 2)
	Slide 31: Key points (2 of 2)
	Slide 32

