FACULDADE
ENGENHARIA

N

Departamento de
Informatica

Engenharia de Software
(14341, 16230, 15386)

Model-Driven Requirements Engineering

(adapted from Software Engineering: International Version (10th Edition), lan Sommerville, Pearson, 2015)

Nuno Pombo - Engenharia de Software, 2025/26

Topics covered

< Model-driven engineering (MDE)

< Model-driven requirements engineering (MDRE)
< MDRE in practice

Soft Skill of the week: Creativity

Model-driven engineering

Model-driven engineering

< Model-driven engineering (MDE) is an approach to
software development where models rather than
programs are the principal outputs of the development
process.

< The programs that execute on a hardware/software
platform are then generated automatically from the
models.

< Proponents of MDE argue that this raises the level of
abstraction in software engineering so that engineers no
longer have to be concerned with programming
language details or the specifics of execution platforms.

Usage of model-driven engineering

< Model-driven engineering is still at an early stage of
development, and it is unclear whether or not it will have
a significant effect on software engineering practice.

< Pros

» Allows systems to be considered at higher levels of abstraction

» Generating code automatically means that it is cheaper to adapt
systems to new platforms.

< Cons
= Models for abstraction and not necessarily right for
iImplementation.

= Savings from generating code may be outweighed by the costs
of developing translators for new platforms.

Model driven architecture

<> Model-driven architecture (MDA) was the precursor of
more general model-driven engineering.

< MDA is a model-focused approach to software design
and implementation that uses a subset of UML models to

describe a system.

<> Models at different levels of abstraction are created.
From a high-level, platform independent model, it is
possible, in principle, to generate a working program
without manual intervention.

Types of model

< A computation independent model (CIM)

» These model the important domain abstractions used in a
system. CIMs are sometimes called domain models.

< A platform independent model (PIM)

= These model the operation of the system without reference to its
implementation. The PIM is usually described using UML models
that show the static system structure and how it responds to
external and internal events.

< Platform specific models (PSM)

= These are transformations of the platform-independent model
with a separate PSM for each application platform. In principle,
there may be layers of PSM, with each layer adding some
platform-specific detail.

MDA transformations

Computation Platform

. ; Platform Executable

md;p:(;\éilent lnd;p;:;jent > | specific model | | code
Translator Translator Translator

L] T T

Domain specific % Platform Language

guidelines specific patterns specific
and rules patterns

Multiple platform-specific models

Java program

J2EE Translator J2EE SpG(IZIfIC Java code
mode generator
Platform
independent
model
.NET specific C# code
.Net Translator odel generator

C# program

10

Agile methods and MDA

<> The developers of MDA claim that it is intended to
support an iterative approach to development and so can
be used within agile methods.

< The notion of extensive up-front modeling contradicts the
fundamental ideas in the agile manifesto...

< If transformations can be completely automated and a
complete program generated from a PIM, then, in
principle, MDA could be used in an agile development
process as no separate coding would be required.

11

Adoption of MDA

< Arange of factors has limited the adoption of MDE/MDA.

< Specialized tool support is required to convert models
from one level to another.

< There is limited tool availability and organizations may

require tool adaptation and customization to their
environment.

< For the long-lifetime systems developed using MDA,
companies are reluctant to develop their own tools or
rely on small companies that may go out of business.

12

Adoption of MDA

< Models are a good way of facilitating discussions about a
software design. However the abstractions that are
useful for discussions may not be the right abstractions
for implementation.

< For most complex systems, implementation is not the
major problem — requirements engineering, security and
dependability, integration with legacy systems and
testing are all more significant.

13

Adoption of MDA

< The arguments for platform-independence are only valid
for large, long-lifetime systems. For software products
and information systems, the savings from the use of

MDA are likely to be outweighed by the costs of its
iIntroduction and tooling.

< The widespread adoption of agile methods over the
same period that MDA was evolving has diverted
attention away from model-driven approaches.

14

Model-driven requirements engineering

15

Why Not Only Use Text?

<> Natural language can be ambiguous.

< Example: 'The system shall show the nearest hospitals'
— unclear radius, ranking.

< Models provide structure and reduce misunderstandings.

16

Definition of MDRE

< Capturing, analyzing, and validating requirements.

< Using visual models as the main communication and/or
documentation method.

< Improves requirements traceability, enabling seamless

tracking of requirements throughout the development
lifecycle.

17

Objectives of MDRE

< Reduce ambiguity

= Replace vague natural-language requirements with precise,
visual representations.

= Minimize misinterpretations by using standardized modeling
elements.

= Example: Instead of “fast system response,” specify “system
shall respond within 2 seconds under peak load.”

< Improve shared understanding

= Ensure all stakeholders (technical and non-technical) interpret
requirements the same way.

» Use diagrams and models as a “common language” to bridge
communication gaps.

= Foster early consensus on system functionality and constraints.
18

Objectives of MDRE

< Link requirements to downstream artifacts
= Maintain direct traceability between requirements and their
implementation.

= Enable impact analysis — when a requirement changes, see
which design elements, code modules, and test cases are
affected.

= |mprove consistency across development stages.

< Enable early validation and analysis
= Models can be validated for completeness, consistency, and
correctness using tools.

= Automated generation of design artifacts or test cases is
possible.

= Early detection of conflicts and missing elements reduces costly
rework later. 19

Benefits of MDRE

< Clarity — better than text alone

= Visual models present relationships, processes, and structures
iIn a way that’s easier to understand than long paragraphs.

= Reduces ambiguity by standardizing how requirements are
represented.

= Helps stakeholders with varying technical backgrounds grasp the
same concept quickly.

< Collaboration — aligns teams

= Creates a shared visual language between developers, testers,
product managers, and clients.

= Encourages discussion and validation early in the process.
» |mproves stakeholder engagement in reviewing requirements.

20

Benefits of MDRE

< Change management — faster updates

= Models can be updated quickly when requirements change.
= Avoids re-writing large text documents.
= Supports impact analysis — quickly see what elements are affected.

< Traceability — direct links to implementation

= Each model element can be mapped directly to system components, test cases,
and documentation.

= Facilitates compliance with standards (e.g., ISO, CMMI).
» Makes auditing and verification easier.

< Scalability — works for complex systems

= Supports modular decomposition for large projects.
= Can represent different levels of abstraction (system, sub-system, component).

= Helps maintain consistency across distributed teams and Ilarge-scale

developments.
21

Traditional RE vs MDRE

Aspect

Representation

Clarity

Traceability

Validation and Verification

Scalability

Change Management

Traditional Requirements
Engineering

Text-based documentation

Prone to ambiguities and

misinterpretations

Manual, limited, and error-prone

Relies on manual reviews and testing

Challenging for complex systems

Time-consuming and error-prone

Model-Driven Requirements
Engineering (MDRE)

Visual and formalized models

Precise, unambiguous representation of
requirements

Automated and comprehensive
traceability

Automated validation through modeling
tools

Scalable for large and multidisciplinary
systems

Streamlined with model updates and
real-time tracking

22

MDRE in practice

< Industries

= Automotive — Designing advanced driver-assistance systems
(ADAS), infotainment, and vehicle control software where
functional safety (ISO 26262) is mandatory.

= Aerospace — Avionics and flight control systems requiring strict
compliance with standards.

= Healthcare — Medical device software and hospital information
systems where traceability and regulatory compliance (e.g.,
FDA, ISO 13485) are critical.

23

MDRE in practice

< Large distributed teams
= Helps maintain a single source of truth across geographically
dispersed teams.

» Reduces miscommunication when development, testing, and
design are done in different countries.

= Supports asynchronous collaboration through shared, version-
controlled models.

< Safety-critical and regulated projects

= Ensures traceability from requirements to implementation for
audits.

= Supports impact analysis when requirements or regulations
change.

= Minimizes risk of non-compliance through rigorous modeling and
validation. 24

Types of requirement models

<> Functional — define system features and behaviors.

<> Non-functional — specify performance, constraints, and
quality attributes.

< Informal visuals — use block diagrams, flowcharts, or
mind maps.

25

Agile methods and MDRE

< Visual representation of requirements

» MDRE leverages visual and formalized models to
represent requirements clearly and concisely,
minimizing the ambiguity often associated with purely
text-based Agile user stories.

= Visual models allow teams to quickly understand
requirements, spot inconsistencies, and adapt to
shifting priorities without losing the overall system
perspective.

26

Agile methods and MDRE

< Real-Time updates and adaptability

* |n Agile projects, requirements evolve throughout the
development lifecycle.

* MDRE ensures models are dynamically updated to
reflect ongoing changes, ensuring the entire team
remains aligned on the latest scope and objectives.

= This reduces miscommunication and prevents costly
delays caused by unclear or outdated requirements.

27

Agile methods and MDRE

<> Enhanced Cross-Team Collaboration

» MDRE tools (e.g. Visure Requirements ALM Platform)
provide a shared, model-driven workspace for
cross-functional teams.

= Designers, developers, testers, and stakeholders can
all interact with the same models, enabling
transparent discussions and faster decision-making.

28

Practice: MDRE

Based on the video you watched:
< ldentify 4—6 core requirements from the scenario.
< Create a simple diagram (boxes + arrows).

<> Use an online tool to produce the schematic.

¥ N /
/
| ~
I _ K

Y 1.\ - /

29

Key points (1 of 2)

< A model is an abstract view of a system that ignores system details.
Complementary system models can be developed to show the
system’s context, interactions, structure and behavior.

< Context models show how a system that is being modeled is
positioned in an environment with other systems and processes.

< Use case diagrams and sequence diagrams are used to describe
the interactions between users and systems in the system being
designed. Use cases describe interactions between a system and
external actors; sequence diagrams add more information to these
by showing interactions between system objects.

< Structural models show the organization and architecture of a
system. Class diagrams are used to define the static structure of
classes in a system and their associations.

30

Key points (2 of 2)

<> Behavioral models are used to describe the dynamic behavior
of an executing system. This behavior can be modeled from
the perspective of the data processed by the system, or by
the events that stimulate responses from a system.

< Activity diagrams may be used to model the processing of
data, where each activity represents one process step.

< State diagrams are used to model a system’s behavior in
response to internal or external events.

< Model-driven engineering is an approach to software
development in which a system is represented as a set of
models that can be automatically transformed to executable
code.

31

;

w"ﬁ“éﬁ% N WHY

‘T '_]: WHEN

WHAT = W%EVIV\]HAT
1 >
WH_{/\\/: r:EEHOVV

<

	Slide 1: Engenharia de Software (14341, 16230, 15386) Model-Driven Requirements Engineering (adapted from Software Engineering: International Version (10th Edition), Ian Sommerville, Pearson, 2015)
	Slide 2: Topics covered
	Slide 3: Soft Skill of the week: Creativity
	Slide 4: Model-driven engineering
	Slide 5: Model-driven engineering
	Slide 6: Usage of model-driven engineering
	Slide 7: Model driven architecture
	Slide 8: Types of model
	Slide 9: MDA transformations
	Slide 10: Multiple platform-specific models
	Slide 11: Agile methods and MDA
	Slide 12: Adoption of MDA
	Slide 13: Adoption of MDA
	Slide 14: Adoption of MDA
	Slide 15: Model-driven requirements engineering
	Slide 16: Why Not Only Use Text?
	Slide 17: Definition of MDRE
	Slide 18: Objectives of MDRE
	Slide 19: Objectives of MDRE
	Slide 20: Benefits of MDRE
	Slide 21: Benefits of MDRE
	Slide 22: Traditional RE vs MDRE
	Slide 23: MDRE in practice
	Slide 24: MDRE in practice
	Slide 25: Types of requirement models
	Slide 26: Agile methods and MDRE
	Slide 27: Agile methods and MDRE
	Slide 28: Agile methods and MDRE
	Slide 29: Practice: MDRE
	Slide 30: Key points (1 of 2)
	Slide 31: Key points (2 of 2)
	Slide 32

