FACULDADE
ENGENHARIA

N

Departamento de
Informatica

Engenharia de Software
(14341, 16230, 15386)

Requirements Engineering —
Functional and Non-functional Requirements and Specifications

(adapted from Software Engineering: International Version (10th Edition), lan Sommerville, Pearson, 2015)

Nuno Pombo - Engenharia de Software, 2025/26

Topics covered

<> Functional and non-functional requirements
< Requirements engineering processes

< Requirements specification

Soft Skill of the week: Emotional Intelligence

«pferrarse a la ira es como agarrar un carbon caliente con la
intencion de tirarlo a otra persona; tu eres el que se quema”

Bajale la temperatura a la emocion

Requirements engineering

<> The process of establishing the services that a customer
requires from a system and the constraints under which

It operates and is developed.

<> The system requirements are the descriptions of the
system services and constraints that are generated
during the requirements engineering process.

What is a requirement?

< It may range from a high-level abstract statement of a
service or of a system constraint to a detailed
mathematical functional specification.

< This is inevitable as requirements may serve a dual
function

= May be the basis for a bid for a contract - therefore must be open
to interpretation;

= May be the basis for the contract itself - therefore must be
defined in detail;

= Both these statements may be called requirements.

Types of requirement

< User requirements

= Statements in natural language plus diagrams of the services the
system provides and its operational constraints. Written for
customers.

< System requirements

= A structured document setting out detailed descriptions of the
system’s functions, services and operational constraints. Defines
what should be implemented so may be part of a contract
between client and contractor.

User and system requirements

User requirements definition

1. The Mentcare system shall generate monthly management reports
showing the cost of drugs prescribed by each clinic during that month.

System requirements specification

1.1 On the last working day of each month, a summary of the drugs
prescribed, their cost and the prescribing clinics shall be generated.

1.2 The system shall generate the report for printing after 17.30 on the
last working day of the month.

1.3 A report shall be created for each clinic and shall list the individual
drug names, the total number of prescriptions, the number of doses
prescribed and the total cost of the prescribed drugs.

1.4 If drugs are available in different dose units (e.g. 10mg, 20mg, etc)
separate reports shall be created for each dose unit.

1.5 Access to drug cost reports shall be restricted to authorized users as
listed on a management access control list.

System stakeholders

< Any person or organization who is affected by the
system in some way and so who has a legitimate interest

< Stakeholder types

= End users

= System managers

= System owners

= External stakeholders

Stakeholders in the Mentcare system

< Patients whose information is recorded in the system.

< Doctors who are responsible for assessing and treating
patients.

<> Nurses who coordinate the consultations with doctors and
administer some treatments.

<> Medical receptionists who manage patients’ appointments.

< IT staff who are responsible for installing and maintaining
the system.

Stakeholders in the Mentcare system

< A medical ethics manager who must ensure that the
system meets current ethical guidelines for patient care.

< Health care managers who obtain management
information from the system.

< Medical records staff who are responsible for ensuring
that system information can be maintained and
preserved, and that record keeping procedures have
been properly implemented.

10

Agile methods and requirements

< Many agile methods argue that producing detailed
system requirements is a waste of time as requirements
change so quickly.

< Agile methods usually use incremental requirements

engineering and may express requirements as ‘user
stories’.

< This is practical for business systems but problematic for
systems that require pre-delivery analysis (e.g. critical
systems) or systems developed by several teams.

11

Functional and non-functional requirements

12

Functional and non-functional requirements

<> Functional requirements

= Statements of services the system should provide, how the
system should react to particular inputs and how the system
should behave in particular situations.

= May state what the system should not do.

<> Non-functional requirements

= Constraints on the services or functions offered by the system
such as timing constraints, constraints on the development
process, standards, efc.

= Often apply to the system as a whole rather than individual
features or services.

<> Domain requirements
= Constraints on the system from the domain of operation

13

Domain requirements

<> Example: Train protection system

Train deceleration shall be computed as:
Dtrain — Dcontrol + Dgradient

where Dy qaient i 9.81 ms* * compensated gradient/alpha,
and where the values of 9.81 ms? /alpha are known for
different types of train.

14

Domain requirements

%

Understandability |-

Domain
Requirements
Problems

Implicitness —

Zad

Requirements are expressed in the
language of the application domain

Software engineers may not
understand domain language

Domain specialists understand the
domain so they don’'t make
requirements explicit

Software engineers may not
understand implicit requirements

15

Functional requirements

< Describe functionality or system services.

< Depend on the type of software, expected users and the
type of system where the software is used.

< Functional user requirements may be high-level
statements of what the system should do.

< Functional system requirements should describe the
system services in detall.

16

Mentcare system: functional requirements

<> A user shall be able to search the appointments lists for
all clinics.

< The system shall generate each day, for each clinic, a
list of patients who are expected to attend appointments
that day.

< Each staff member using the system shall be uniquely
identified by his or her 8-digit employee number.

17

Requirements imprecision

< Problems arise when functional requirements are not
precisely stated.

<> Ambiguous requirements may be interpreted in different
ways by developers and users.

<> Consider the term ‘search’ in requirement

“A user shall be able to search the appointments lists for all clinics.”

» User intention — search for a patient name across all
appointments in all clinics;

= Developer interpretation — search for a patient name in an
iIndividual clinic. User chooses clinic then search.

18

Requirements completeness and consistency

<> In principle, requirements should be both complete and
consistent.
< Complete
» They should include descriptions of all facilities required.
<> Consistent

= There should be no conflicts or contradictions in the descriptions
of the system facilities.

< In practice, because of system and environmental
complexity, it is impossible to produce a complete and
consistent requirements document.

19

Example Requirement#1

The product shall provide status messages regarding
background processing at regular intervals not less than
every 60 seconds.

Problems:

< Regular intervals? “not less” than 60 seconds? What is
the upper limit?

< What events need to trigger status messages?

< What are the status messages”?

20

Example#1 Rewritten

The product shall provide status messages regarding
background processing at intervals of 60, plus or minus 10,
seconds.

I. If background processing is progressing normally, the
percentage of the background task processing that has been
completed shall be displayed.

li. A message shall be displayed when the background task is

complete.

lii. An error message shall be displayed if the background task

has not progressed for 10 seconds or failed.

IV. Status messages are logged to the log file maintained on the

local file system.

21

Example Requirement#2

The product shall switch between displaying and hiding
non-printing characters instantaneously.

Problems:
< Instantaneously is not testable - subjective.

< When is it switching? What causes this switch? Is it
random?

22

Example#2 Rewritten

The text entry box shall switch between displaying and
hiding non-printing characters within 200ms of mouse
release of the display button in the quick function bar.

23

Example Requirement#3

Charge numbers should be validated online against the
master corporate charge number list, if possible. The
system shall validate the charge number entered against
the online master corporate charge number list. If the
charge number is not found on the list, an error message
shall be displayed and the order shall not be accepted.

24

Example#3 Rewritten

The system shall validate the charge card number entered
against the online master corporate charge card number
list.

I. If the charge card number is not found on the list, an error
message shall be displayed and the order shall not be
accepted.

. If the charge card number is found on the list, a success
message shall be displayed and the order shall be accepted.

lii. If the online master corporate charge number list is not
available, an error message shall be displayed and the order
shall not be accepted.

25

Example Requirement#4

The system shall respond to all user requests within 2
seconds.

Problems:

< Too overarching - need to address different user
requests one at a time, each might have different needs.

< Very likely to lead to inconsistent requirements.

26

Non-functional requirements

<> These define system properties and constraints e.g.
reliability, response time and storage requirements.
Constraints are /O device capability, system
representations, etc.

< Process requirements may also be specified mandating
a particular IDE, programming language or development
method.

<> Non-functional requirements may be more critical than
functional requirements. If these are not met, the system
may be useless.

27

Types of nonfunctional requirement

Non-functional
requirements

Product
requirements

Organizational
requirements

External
requirements

Efficiency
requirements

Dependability
requirements

Security
requirements

Regulatory
requirements

Ethical
requirements

Usability
requirements

Environmental
requirements

Operational
requirements

Development
requirements

Legislative
requirements

Performance
requirements

Space
requirements

Accounting
requirements

Safety/security
requirements

Non-functional requirements implementation

< Non-functional requirements may affect the overall

architecture of a system rather than the individual
components.

= For example, to ensure that performance requirements are met,
you may have to organize the system to minimize
communications between components.

< A single non-functional requirement, such as a security
requirement, may generate a number of related
functional requirements that define system services that
are required.

= [t may also generate requirements that restrict existing
requirements.

29

Non-functional classifications

< Product requirements

= Requirements which specify that the delivered product must
behave in a particular way e.g. execution speed, reliability, etc.

<> Organisational requirements

= Requirements which are a consequence of organisational
policies and procedures e.g. process standards used,
implementation requirements, etc.

< External requirements

= Requirements which arise from factors which are external to the
system and its development process e.g. interoperability
requirements, legislative requirements, etc.

30

Examples of nonfunctional requirements in the Mentcare
system

Product requirement

The Mentcare system shall be available to all clinics during normal
working hours (Mon—Fri, 08:30—17:30). Downtime within normal
working hours shall not exceed five seconds in any one day.

Organizational requirement
Users of the Mentcare system shall authenticate themselves using
their health authority identity card.

External requirement
The system shall implement patient privacy provisions as set out in

HStan-03-2006-priv.

31

Goals and requirements

< Non-functional requirements may be very difficult to state

precisely and imprecise requirements may be difficult to
verify.

< Goal
= A general intention of the user such as ease of use.
<> Verifiable non-functional requirement
= A statement using some measure that can be objectively tested.

< Goals are helpful to developers as they convey the
intentions of the system users.

32

Usability requirements

<> The system should be easy to use by medical staff and
should be organized in such a way that user errors are
minimized. (Goal)

< Medical staff shall be able to use all the system functions
after four hours of training. After this training, the
average number of errors made by experienced users
shall not exceed two per hour of system use. (Testable
non-functional requirement)

33

Metrics for specifying nonfunctional

requirements

Speed

Size

Ease of use

Reliability

Robustness

Portability

Processed transactions/second
User/event response time
Screen refresh time

Mbytes
Number of ROM chips

Training time
Number of help frames

Mean time to failure
Probability of unavailability
Rate of failure occurrence
Availability

Time to restart after failure
Percentage of events causing failure
Probability of data corruption on failure

Percentage of target dependent statements
Number of target systems

34

Requirements engineering processes

35

Requirements engineering processes

<> The processes used for RE vary widely depending on
the application domain, the people involved and the
organisation developing the requirements.

< However, there are a number of generic activities
common to all processes
= Requirements elicitation;
= Requirements analysis;
= Requirements validation;
= Requirements management.

< In practice, RE is an iterative activity in which these
processes are interleaved.

36

Requirements elicitation and analysis

<> Sometimes called requirements elicitation or
requirements discovery.

<> Involves technical staff working with customers to find
out about the application domain, the services that the
system should provide and the system’s operational
constraints.

<> May involve end-users, managers, engineers involved in
maintenance, domain experts, trade unions, etc. These
are called stakeholders.

37

Requirements elicitation

< Software engineers work with a range of system
stakeholders to find out about the application domain,
the services that the system should provide, the required
system performance, hardware constraints, other
systems, efc.

< Stages include:

= Requirements discovery,

= Requirements classification and organization,
= Requirements prioritization and negotiation,

= Requirements specification.

38

Problems of requirements elicitation

< Stakeholders don’t know what they really want.
<> Stakeholders express requirements in their own terms.
< Different stakeholders may have conflicting requirements.

< Organisational and political factors may influence the
system requirements.

< The requirements change during the analysis process.
New stakeholders may emerge and the business
environment may change.

39

The requirements elicitation and analysis

process

1. Requirements
discovery

4. Requirements
specification

2. Requirements
classification and
organization

3. Requirements
prioritization and
negotiation

40

Process activities

< Requirements discovery

» |nteracting with stakeholders to discover their requirements.
Domain requirements are also discovered at this stage.

< Requirements classification and organisation

= Groups related requirements and organises them into coherent
clusters.

< Prioritisation and negotiation
» Prioritising requirements and resolving requirements conflicts.

< Requirements specification

= Requirements are documented and input into the next round of
the spiral.

41

Requirements discovery

< The process of gathering information about the required
and existing systems and distilling the user and system
requirements from this information.

< Interaction is with system stakeholders from managers to
external regulators.

< Systems normally have a range of stakeholders.

42

Requirements specification

43

Requirements specification

< Requirements specification concerns recording the
requirements so they can be both remembered and
communicated.

< User requirements have to be understandable by end-
users and customers who do not have a technical
background.

< System requirements are more detailed requirements
and may include more technical information.

< The requirements may be part of a contract for the
system development

= [t is therefore important that these are as complete as possible.

44

Ways of writing a system requirements
specification

Natural language The requirements are written using numbered sentences in natural language.
Each sentence should express one requirement.

Structured natural The requirements are written in natural language on a standard form or
language template. Each field provides information about an aspect of the
requirement.

Design description This approach uses a language like a programming language, but with more

languages abstract features to specify the requirements by defining an operational
model of the system. This approach is now rarely used although it can be
useful for interface specifications.

Graphical notations Graphical models, supplemented by text annotations, are used to define the
functional requirements for the system; UML use case and sequence
diagrams are commonly used.

Mathematical These notations are based on mathematical concepts such as finite-state

specifications machines or sets. Although these unambiguous specifications can reduce
the ambiguity in a requirements document, most customers don’t understand
a formal specification. They cannot check that it represents what they want
and are reluctant to accept it as a system contract

45

Requirements and design

< In principle, requirements should state what the system
should do and the design should describe how it does
this.

< In practice, requirements and design are inseparable

= A system architecture may be designed to structure the
requirements;

= The system may inter-operate with other systems that generate
design requirements;

= The use of a specific architecture to satisfy non-functional
requirements may be a domain requirement.

» This may be the consequence of a regulatory requirement.

46

Natural language specification

< Requirements are written as natural language sentences
supplemented by diagrams and tables.

< Used for writing requirements because it is expressive,
Intuitive and universal. This means that the requirements
can be understood by users and customers.

47

Guidelines for writing requirements

< Invent a standard format and use it for all requirements.

< Use language in a consistent way. Use shall for
mandatory requirements, should for desirable
requirements.

< Use text highlighting to identify key parts of the
requirement.

< Avoid the use of computer jargon.

< Include an explanation (rationale) of why a requirement
IS necessary.

48

Problems with natural language

< Lack of clarity

= Precision is difficult without making the document difficult to
read.

< Requirements confusion
» Functional and non-functional requirements tend to be mixed-up.

< Requirements amalgamation

= Several different requirements may be expressed together.

49

Structured requirements specification

< Structured natural language requirements specifications
Impose constraints on how the requirements are
expressed; the goal is to increase precision and
conciseness.

<~ Actor-action format.

= The actor is the entity responsible for carrying out the action, and
action is what needs to happen. A triggering event might precede
the actor, and the action might be followed by an optional
condition or qualification.

50

Use Case Name: Schedule Patient Appointment

Field

Use Case ID

Use Case Name

Description

Actors

Preconditions

Postconditions

Normal Flow

Alternative Flows

Exceptions

Special Requirements

Assumptions

Content

Uc-MC-m

Schedule Patient Appointment

This use case describes how a mental health practitioner schedules a patient
appointment using the Mentcare system.

Primary: Mental Health Practitioner (MHP)
Secondary: Patient, System Scheduler

1. The MHP is logged into the Mentcare system.
2. The patient is registered in the system database.

1. The appointment is stored in the Mentcare appointment database.
2. Motifications are sent to both practitioner and patient.

1. The MHP navigates to the “Appointments” section.

2. The MHP selects a patient from the patient list.

3. The system displays the patient's appointment history and available time slots.
4. The MHP selects a time slot and confirms the booking.

5. The system stores the appointment and sends notifications.

Al: Selected time slot is no longer available - System prompts the MHP to choose
another slot.

AZ2: Patient requests remote consultation < System schedules a video call link instead
of in-person appointment.

If the system is offline or the appointment service is unavailable, the MHP is prompted
to record the appointment manually for later synchronization.

1. Appointment scheduling must be confirmed in < 2 seconds.
2. The system must comply with GDPR privacy rules when handling patient data.

Patients have been praviously registered in Menteare and have provided consent for
electranic notifications.

51

Acceptance criteria

<> Acceptance criteria-based requirements specification
directly addresses the requirements ambiguity problem.

< The requirements are written using test case language,
which is very precise.

52

Acceptance criteria

FR-001

FR-002

FR-003

FR-004

FR-005

Requirement

Patient Record Creation

Appointment Scheduling

Treatment Plan

Management

Secure Messaging

Reporting

Priority

High

High

Medium

Medium

Low

Description

The system must allow authorized staff to create a
patient record with demographics, medical history,
and notes.

Patients and staff can schedule, reschedule, or cancel
appointments.

Practitioners can create, update, and review treatment
plans.

Patients and practitioners can send/receive encrypted
messages.

The system generates monthly patient progress
reports.

Acceptance Criteria

User creates a new patient; record is
saved and retrievable.

Appointment changes are reflected in
real-time in the calendar.

Plans are stored securely and version-
controlled.

Messages are end-to-end encrypted
and auditable.

Reports are generated within 5
seconds with accurate data.

53

Tabular specification

< Used to supplement natural language.

< Particularly useful when you have to define a number of
possible alternative courses of action.

< For example, the insulin pump systems bases its
computations on the rate of change of blood sugar level
and the tabular specification explains how to calculate
the insulin requirement for different scenarios.

54

Tabular specification of computation for an

insulin pump

Sugar level falling (r2 < r1)

Sugar level stable (r2 = r1)

CompDose = 0

CompDose =0

Sugar level increasing and rate of CompDose =0

increase decreasing
((r2-=r1)<(r1 -r0))

Sugar level increasing and rate of CompDose =

increase stable or increasing
((r2—=r1)=(r1 —r0))

round ((r2 — r1)/4)
If rounded result = 0 then
CompDose =
MinimumDose

55

Practice: structured specification

< Determine a structured specification for registering a
patient in the Mentcare system

< Determine a structured specification for recording
Consultation & Progress Notes in the Mentcare system.

56

Requirements validation

57

Requirements validation

< Concerned with demonstrating that the requirements
define the system that the customer really wants.

< Requirements error costs are high so validation is very
important

= Fixing a requirements error after delivery may cost up to 100
times the cost of fixing an implementation error.

58

Requirements checking

< Validity. Does the system provide the functions which
best support the customer’s needs?

<> Consistency. Are there any requirements conflicts?

< Completeness. Are all functions required by the
customer included?

< Realism. Can the requirements be implemented given
available budget and technology

< Verifiability. Can the requirements be checked?

59

Requirements validation techniques

< Requirements reviews
» Systematic manual analysis of the requirements.

< Prototyping

= Using an executable model of the system to check requirements.

<> Test-case generation
= Developing tests for requirements to check testability.

60

Requirements reviews

< Regular reviews should be held while the requirements
definition is being formulated.

<> Both client and contractor staff should be involved in
reviews.

< Reviews may be formal (with completed documents) or
informal. Good communications between developers,
customers and users can resolve problems at an early
stage.

61

Review checks

<> Verifiability

= |s the requirement realistically testable?
<> Comprehensibility

» |s the requirement properly understood?

< Traceability

= |s the origin of the requirement clearly stated?
< Adaptability

= Can the requirement be changed without a large impact on other
requirements?

62

Key points (1 of 2)

< Requirements for a software system set out what the
system should do and define constraints on its operation
and implementation.

< Functional requirements are statements of the services
that the system must provide or are descriptions of how
some computations must be carried out.

<> Non-functional requirements often constrain the system
being developed and the development process being
used.

< They often relate to the emergent properties of the
system and therefore apply to the system as a whole.

63

Key points (2 of 2)

< Requirements specification is the process of formally
documenting the user and system requirements and
creating a software requirements document.

< The software requirements document is an agreed
statement of the system requirements. It should be
organized so that both system customers and software
developers can use it.

< Requirements validation is the process of checking the
requirements for validity, consistency, completeness,
realism and verifiability.

64

E

w"ﬁ”ERIE N WHY

-1- '_‘_[: WHEN

WHAT = VW%EVI\\IIHAT
1 >
WH_\p)\\/l r:EEHOVV

<

	Slide 1: Engenharia de Software (14341, 16230, 15386) Requirements Engineering – Functional and Non-functional Requirements and Specifications (adapted from Software Engineering: International Version (10th Edition), Ian Sommerville, Pearson, 2015)
	Slide 2: Topics covered
	Slide 3: Soft Skill of the week: Emotional Intelligence
	Slide 4: Requirements engineering
	Slide 5: What is a requirement?
	Slide 6: Types of requirement
	Slide 7: User and system requirements
	Slide 8: System stakeholders
	Slide 9: Stakeholders in the Mentcare system
	Slide 10: Stakeholders in the Mentcare system
	Slide 11: Agile methods and requirements
	Slide 12: Functional and non-functional requirements
	Slide 13: Functional and non-functional requirements
	Slide 14: Domain requirements
	Slide 15: Domain requirements
	Slide 16: Functional requirements
	Slide 17: Mentcare system: functional requirements
	Slide 18: Requirements imprecision
	Slide 19: Requirements completeness and consistency
	Slide 20: Example Requirement#1
	Slide 21: Example#1 Rewritten
	Slide 22: Example Requirement#2
	Slide 23: Example#2 Rewritten
	Slide 24: Example Requirement#3
	Slide 25: Example#3 Rewritten
	Slide 26: Example Requirement#4
	Slide 27: Non-functional requirements
	Slide 28: Types of nonfunctional requirement
	Slide 29: Non-functional requirements implementation
	Slide 30: Non-functional classifications
	Slide 31: Examples of nonfunctional requirements in the Mentcare system
	Slide 32: Goals and requirements
	Slide 33: Usability requirements
	Slide 34: Metrics for specifying nonfunctional requirements
	Slide 35: Requirements engineering processes
	Slide 36: Requirements engineering processes
	Slide 37: Requirements elicitation and analysis
	Slide 38: Requirements elicitation
	Slide 39: Problems of requirements elicitation
	Slide 40: The requirements elicitation and analysis process
	Slide 41: Process activities
	Slide 42: Requirements discovery
	Slide 43: Requirements specification
	Slide 44: Requirements specification
	Slide 45: Ways of writing a system requirements specification
	Slide 46: Requirements and design
	Slide 47: Natural language specification
	Slide 48: Guidelines for writing requirements
	Slide 49: Problems with natural language
	Slide 50: Structured requirements specification
	Slide 51
	Slide 52: Acceptance criteria
	Slide 53: Acceptance criteria
	Slide 54: Tabular specification
	Slide 55: Tabular specification of computation for an insulin pump
	Slide 56: Practice: structured specification
	Slide 57: Requirements validation
	Slide 58: Requirements validation
	Slide 59: Requirements checking
	Slide 60: Requirements validation techniques
	Slide 61: Requirements reviews
	Slide 62: Review checks
	Slide 63: Key points (1 of 2)
	Slide 64: Key points (2 of 2)
	Slide 65

