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Topics covered

² Software process models

² Process activities
² Coping with change

² Process improvement
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The software process

² A structured set of activities required to develop a 
software system. 

² Many different software processes but all involve:
§ Specification – defining what the system should do (languages of the 

problem);
§ Design and implementation – defining the organization of the system 

and implementing the system (design is the languages of the solution, 
and implementation the execution language);

§ Validation – checking that it does what the customer wants (accurate 
representations using the languages, both for problem and the solution);

§ Evolution – changing the system in response to changing customer 
needs.

² A software process model is an abstract representation of a process. 
It presents a description of a process from some particular 
perspective. 3



Software process descriptions

² When we describe and discuss processes, we usually 
talk about the activities in these processes such as 
specifying a data model, designing a user interface, etc. 
and the ordering of these activities.

² Process descriptions may also include:
§ Products, which are the outcomes of a process activity; 
§ Roles, which reflect the responsibilities of the people involved in 

the process;
§ Pre- and post-conditions, which are statements that are true 

before and after a process activity has been enacted or a 
product produced.   
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Plan-driven and agile processes

² Plan-driven processes are processes where all of the 
process activities are planned in advance and progress 
is measured against this plan. 

² In agile processes, planning is incremental and it is 
easier to change the process to reflect changing 
customer requirements. 

² In practice, most practical processes include elements of 
both plan-driven and agile approaches. 

² There are no right or wrong software processes.
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Software process models
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Software process models

² The waterfall model
§ Plan-driven model. Separate and distinct phases of specification 

and development.

² Incremental development
§ Specification, development and validation are interleaved. May 

be plan-driven or agile.

² Integration and configuration
§ The system is assembled from existing configurable 

components. May be plan-driven or agile.

² In practice, most large systems are developed using a 
process that incorporates elements from all of these 
models.
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The waterfall model
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Waterfall model phases

² There are separate identified phases in the waterfall 
model:
§ Requirements analysis and definition
§ System and software design
§ Implementation and unit testing
§ Integration and system testing
§ Operation and maintenance

² The main drawback of the waterfall model is the difficulty 
of accommodating change after the process is 
underway. In principle, a phase has to be complete 
before moving onto the next phase.

9



Waterfall model problems

² Inflexible partitioning of the project into distinct stages 
makes it difficult to respond to changing customer 
requirements.
§ Therefore, this model is only appropriate when the requirements 

are well-understood and changes will be fairly limited during the 
design process. 

§ Few business systems have stable requirements.

² The waterfall model is mostly used for large systems 
engineering projects where a system is developed at 
several sites.
§ In those circumstances, the plan-driven nature of the waterfall 

model helps coordinate the work. 
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Incremental development 
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Incremental development benefits

² The cost of accommodating changing customer 
requirements is reduced. 
§ The amount of analysis and documentation that has to be 

redone is much less than is required with the waterfall model.

² It is easier to get customer feedback on the development 
work that has been done. 
§ Customers can comment on demonstrations of the software and 

see how much has been implemented. 

² More rapid delivery and deployment of useful software to 
the customer is possible. 
§ Customers are able to use and gain value from the software 

earlier than is possible with a waterfall process. 
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Incremental development problems

² The process is not visible. 
§ Managers need regular deliverables to measure progress. If 

systems are developed quickly, it is not cost-effective to produce 
documents that reflect every version of the system. 

² System structure tends to degrade as new increments 
are added. 
§ Unless time and money is spent on refactoring to improve the 

software, regular change tends to corrupt its structure. 
Incorporating further software changes becomes increasingly 
difficult and costly. 
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Integration and configuration

² Based on software reuse where systems are integrated 
from existing components or application systems 
(sometimes called COTS - Commercial-off-the-shelf) 
systems).

² Reused elements may be configured to adapt their 
behaviour and functionality to a user’s requirements

² Reuse is now the standard approach for building many 
types of business system
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Types of reusable software

² Stand-alone application systems (sometimes called 
COTS) that are configured for use in a particular 
environment.

² Collections of objects that are developed as a package 
to be integrated with a component framework such as 
.NET or J2EE.

² Web services that are developed according to service 
standards and which are available for remote invocation. 
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Reuse-oriented software engineering
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Key process stages

² Requirements specification

² Software discovery and evaluation
² Requirements refinement

² Application system configuration

² Component adaptation and integration
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Advantages and disadvantages

² Reduced costs and risks as less software is developed 
from scratch

² Faster delivery and deployment of system

² But requirements compromises are inevitable so system 
may not meet real needs of users

² Loss of control over evolution of reused system elements
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Coping with change
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Coping with change

² Change is inevitable in all large software projects.
§ Business changes lead to new and changed system 

requirements
§ New technologies open up new possibilities for improving 

implementations
§ Changing platforms require application changes

² Change leads to rework so the costs of change include 
both rework (e.g. re-analysing requirements) as well as 
the costs of implementing new functionality
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Reducing the costs of rework

² Change anticipation, where the software process 
includes activities that can anticipate possible changes 
before significant rework is required. 
§ For example, a prototype system may be developed to show 

some key features of the system to customers. 

² Change tolerance, where the process is designed so that 
changes can be accommodated at relatively low cost.
§ This normally involves some form of incremental development. 

Proposed changes may be implemented in increments that have 
not yet been developed. If this is impossible, then only a single 
increment (a small part of the system) may have be altered to 
incorporate the change.
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Coping with changing requirements

² System prototyping, where a version of the system or 
part of the system is developed quickly to check the 
customer’s requirements and the feasibility of design 
decisions. This approach supports change anticipation. 

² Incremental delivery, where system increments are 
delivered to the customer for comment and 
experimentation. This supports both change avoidance 
and change tolerance. 
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Software prototyping

² A prototype is an initial version of a system used to 
demonstrate concepts and try out design options.

² A prototype can be used in:
§ The requirements engineering process to help with requirements 

elicitation and validation;
§ In design processes to explore options and develop a UI design;
§ In the testing process to run back-to-back tests.
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Benefits of prototyping

² Improved system usability.

² A closer match to users’ real needs.
² Improved design quality.

² Improved maintainability.

² Reduced development effort.
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The process of prototype development
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Prototype development

² May be based on rapid prototyping languages or tools

² May involve leaving out functionality
§ Prototype should focus on areas of the product that are not well-

understood;
§ Error checking and recovery may not be included in the 

prototype;
§ Focus on functional rather than non-functional requirements 

such as reliability and security
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Throw-away prototypes

² Prototypes should be discarded after development as 
they are not a good basis for a production system:
§ It may be impossible to tune the system to meet non-functional 

requirements;
§ Prototypes are normally undocumented;
§ The prototype structure is usually degraded through rapid 

change;
§ The prototype probably will not meet normal organisational 

quality standards.
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Prototyping examples
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Prototyping examples
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Incremental delivery

² Rather than deliver the system as a single delivery, the 
development and delivery is broken down into 
increments with each increment delivering part of the 
required functionality.

² User requirements are prioritised and the highest priority 
requirements are included in early increments.

² Once the development of an increment is started, the 
requirements are frozen though requirements for later 
increments can continue to evolve.
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Incremental development and delivery

² Incremental development
§ Develop the system in increments and evaluate each increment 

before proceeding to the development of the next increment;
§ Normal approach used in agile methods;
§ Evaluation done by user/customer proxy.

² Incremental delivery
§ Deploy an increment for use by end-users;
§ More realistic evaluation about practical use of software;
§ Difficult to implement for replacement systems as increments 

have less functionality than the system being replaced.
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Incremental delivery 
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Incremental delivery advantages

² Customer value can be delivered with each increment so 
system functionality is available earlier.

² Early increments act as a prototype to help elicit 
requirements for later increments.

² Lower risk of overall project failure.
² The highest priority system services tend to receive the 

most testing.
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Incremental delivery problems

² Most systems require a set of basic facilities that are 
used by different parts of the system. 
§ As requirements are not defined in detail until an increment is to 

be implemented, it can be hard to identify common facilities that 
are needed by all increments. 

² The essence of iterative processes is that the 
specification is developed in conjunction with the 
software. 
§ However, this conflicts with the procurement model of many 

organizations, where the complete system specification is part of 
the system development contract. 
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Process improvement
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Process improvement

² Many software companies have turned to software 
process improvement as a way of enhancing the quality 
of their software, reducing costs or accelerating their 
development processes. 

² Process improvement means understanding existing 
processes and changing these processes to increase 
product quality and/or reduce costs and development 
time. 
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Approaches to improvement

² The process maturity approach, which focuses on 
improving process and project management and 
introducing good software engineering practice. 
§ The level of process maturity reflects the extent to which good 

technical and management practice has been adopted in 
organizational software development processes. 

² The agile approach, which focuses on iterative 
development and the reduction of overheads in the 
software process. 
§ The primary characteristics of agile methods are rapid delivery of 

functionality and responsiveness to changing customer 
requirements.
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The process improvement cycle 
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Process improvement activities

² Process measurement 
§ You measure one or more attributes of the software process or 

product. These measurements forms a baseline that helps you 
decide if process improvements have been effective. 

² Process analysis 
§ The current process is assessed, and process weaknesses and 

bottlenecks are identified. Process models (sometimes called 
process maps) that describe the process may be developed. 

² Process change 
§ Process changes are proposed to address some of the identified 

process weaknesses. These are introduced and the cycle 
resumes to collect data about the effectiveness of the changes.
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Process measurement

² Wherever possible, quantitative process data 
should be collected
§ However, where organisations do not have clearly defined 

process standards this is very difficult as you don’t know what to 
measure. A process may have to be defined before any 
measurement is possible.

² Process measurements should be used to 
assess process improvements
§ But this does not mean that measurements should drive the 

improvements. The improvement driver should be the 
organizational objectives.
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Process metrics

² Time taken for process activities to be 
completed
§ E.g. Calendar time or effort to complete an activity or process.

² Resources required for processes or activities
§ E.g. Total effort in person-days.

² Number of occurrences of a particular event
§ E.g. Number of defects discovered.
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Key points

² Software processes are the activities involved in 
producing a software system. Software process models 
are abstract representations of these processes.

² General process models describe the organization of 
software processes. 
§ Examples of these general models include the ‘waterfall’ model,  

incremental development, and reuse-oriented development.

² Requirements engineering is the process of developing a 
software specification.
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Key points

² Design and implementation processes are concerned 
with transforming a requirements specification into an 
executable software system. 

² Software validation is the process of checking that the 
system conforms to its specification and that it meets the 
real needs of the users of the system.

² Software evolution takes place when you change 
existing software systems to meet new requirements. 
The software must evolve to remain useful.

² Processes should include activities such as prototyping 
and incremental delivery to cope with change.
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Key points

² Processes may be structured for iterative development 
and delivery so that changes may be made without 
disrupting the system as a whole.

² The principal approaches to process improvement are 
agile approaches, geared to reducing process 
overheads, and maturity-based approaches based on 
better process management and the use of good 
software engineering practice.
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