
Engenharia de Software
(14341, 16230, 15386)

Software Processes
(adapted from Software Engineering: International Version (10th Edition), Ian Sommerville, Pearson, 2015)

1Nuno Pombo - Engenharia de Software, 2024/25



Topics covered

² Software process models

² Process activities
² Coping with change

² Process improvement

2



The software process

² A structured set of activities required to develop a 
software system. 

² Many different software processes but all involve:
§ Specification – defining what the system should do (languages of the 

problem);
§ Design and implementation – defining the organization of the system 

and implementing the system (design is the languages of the solution, 
and implementation the execution language);

§ Validation – checking that it does what the customer wants (accurate 
representations using the languages, both for problem and the solution);

§ Evolution – changing the system in response to changing customer 
needs.

² A software process model is an abstract representation of a process. 
It presents a description of a process from some particular 
perspective. 3



Software process descriptions

² When we describe and discuss processes, we usually 
talk about the activities in these processes such as 
specifying a data model, designing a user interface, etc. 
and the ordering of these activities.

² Process descriptions may also include:
§ Products, which are the outcomes of a process activity; 
§ Roles, which reflect the responsibilities of the people involved in 

the process;
§ Pre- and post-conditions, which are statements that are true 

before and after a process activity has been enacted or a 
product produced.   

4



Plan-driven and agile processes

² Plan-driven processes are processes where all of the 
process activities are planned in advance and progress 
is measured against this plan. 

² In agile processes, planning is incremental and it is 
easier to change the process to reflect changing 
customer requirements. 

² In practice, most practical processes include elements of 
both plan-driven and agile approaches. 

² There are no right or wrong software processes.

5



Software process models

6



Software process models

² The waterfall model
§ Plan-driven model. Separate and distinct phases of specification 

and development.

² Incremental development
§ Specification, development and validation are interleaved. May 

be plan-driven or agile.

² Integration and configuration
§ The system is assembled from existing configurable 

components. May be plan-driven or agile.

² In practice, most large systems are developed using a 
process that incorporates elements from all of these 
models.

7



The waterfall model

8

Requirements
definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance



Waterfall model phases

² There are separate identified phases in the waterfall 
model:
§ Requirements analysis and definition
§ System and software design
§ Implementation and unit testing
§ Integration and system testing
§ Operation and maintenance

² The main drawback of the waterfall model is the difficulty 
of accommodating change after the process is 
underway. In principle, a phase has to be complete 
before moving onto the next phase.

9



Waterfall model problems

² Inflexible partitioning of the project into distinct stages 
makes it difficult to respond to changing customer 
requirements.
§ Therefore, this model is only appropriate when the requirements 

are well-understood and changes will be fairly limited during the 
design process. 

§ Few business systems have stable requirements.

² The waterfall model is mostly used for large systems 
engineering projects where a system is developed at 
several sites.
§ In those circumstances, the plan-driven nature of the waterfall 

model helps coordinate the work. 

10



Incremental development 

11

Concurrent
activities

Validation
Final

version

Development
Intermediate

versions

Specification
Initial

version

Outline
description



Incremental development benefits

² The cost of accommodating changing customer 
requirements is reduced. 
§ The amount of analysis and documentation that has to be 

redone is much less than is required with the waterfall model.

² It is easier to get customer feedback on the development 
work that has been done. 
§ Customers can comment on demonstrations of the software and 

see how much has been implemented. 

² More rapid delivery and deployment of useful software to 
the customer is possible. 
§ Customers are able to use and gain value from the software 

earlier than is possible with a waterfall process. 
12



Incremental development problems

² The process is not visible. 
§ Managers need regular deliverables to measure progress. If 

systems are developed quickly, it is not cost-effective to produce 
documents that reflect every version of the system. 

² System structure tends to degrade as new increments 
are added. 
§ Unless time and money is spent on refactoring to improve the 

software, regular change tends to corrupt its structure. 
Incorporating further software changes becomes increasingly 
difficult and costly. 

13



Integration and configuration

² Based on software reuse where systems are integrated 
from existing components or application systems 
(sometimes called COTS - Commercial-off-the-shelf) 
systems).

² Reused elements may be configured to adapt their 
behaviour and functionality to a user’s requirements

² Reuse is now the standard approach for building many 
types of business system

14



Types of reusable software

² Stand-alone application systems (sometimes called 
COTS) that are configured for use in a particular 
environment.

² Collections of objects that are developed as a package 
to be integrated with a component framework such as 
.NET or J2EE.

² Web services that are developed according to service 
standards and which are available for remote invocation. 

15



Reuse-oriented software engineering

16

Requirements
specification

Software
discovery

Software
evaluation

Requirements
refinement

Configure
application 

system

Adapt 
components

Integrate
system

Develop new
components

Application system 
available

Components
available



Key process stages

² Requirements specification

² Software discovery and evaluation
² Requirements refinement

² Application system configuration

² Component adaptation and integration

17



Advantages and disadvantages

² Reduced costs and risks as less software is developed 
from scratch

² Faster delivery and deployment of system

² But requirements compromises are inevitable so system 
may not meet real needs of users

² Loss of control over evolution of reused system elements

18



Coping with change

19



Coping with change

² Change is inevitable in all large software projects.
§ Business changes lead to new and changed system 

requirements
§ New technologies open up new possibilities for improving 

implementations
§ Changing platforms require application changes

² Change leads to rework so the costs of change include 
both rework (e.g. re-analysing requirements) as well as 
the costs of implementing new functionality

20



Reducing the costs of rework

² Change anticipation, where the software process 
includes activities that can anticipate possible changes 
before significant rework is required. 
§ For example, a prototype system may be developed to show 

some key features of the system to customers. 

² Change tolerance, where the process is designed so that 
changes can be accommodated at relatively low cost.
§ This normally involves some form of incremental development. 

Proposed changes may be implemented in increments that have 
not yet been developed. If this is impossible, then only a single 
increment (a small part of the system) may have be altered to 
incorporate the change.

21



Coping with changing requirements

² System prototyping, where a version of the system or 
part of the system is developed quickly to check the 
customer’s requirements and the feasibility of design 
decisions. This approach supports change anticipation. 

² Incremental delivery, where system increments are 
delivered to the customer for comment and 
experimentation. This supports both change avoidance 
and change tolerance. 

22



Software prototyping

² A prototype is an initial version of a system used to 
demonstrate concepts and try out design options.

² A prototype can be used in:
§ The requirements engineering process to help with requirements 

elicitation and validation;
§ In design processes to explore options and develop a UI design;
§ In the testing process to run back-to-back tests.

23



Benefits of prototyping

² Improved system usability.

² A closer match to users’ real needs.
² Improved design quality.

² Improved maintainability.

² Reduced development effort.

24



The process of prototype development

25

Establish
prototype
objectives

Define
prototype

functionality

Develop
prototype

Evaluate
prototype

Prototyping
plan

Outline
definition

Executable
prototype

Evaluation
report



Prototype development

² May be based on rapid prototyping languages or tools

² May involve leaving out functionality
§ Prototype should focus on areas of the product that are not well-

understood;
§ Error checking and recovery may not be included in the 

prototype;
§ Focus on functional rather than non-functional requirements 

such as reliability and security

26



Throw-away prototypes

² Prototypes should be discarded after development as 
they are not a good basis for a production system:
§ It may be impossible to tune the system to meet non-functional 

requirements;
§ Prototypes are normally undocumented;
§ The prototype structure is usually degraded through rapid 

change;
§ The prototype probably will not meet normal organisational 

quality standards.

27



Prototyping examples

28



Prototyping examples

29



Incremental delivery

² Rather than deliver the system as a single delivery, the 
development and delivery is broken down into 
increments with each increment delivering part of the 
required functionality.

² User requirements are prioritised and the highest priority 
requirements are included in early increments.

² Once the development of an increment is started, the 
requirements are frozen though requirements for later 
increments can continue to evolve.

30



Incremental development and delivery

² Incremental development
§ Develop the system in increments and evaluate each increment 

before proceeding to the development of the next increment;
§ Normal approach used in agile methods;
§ Evaluation done by user/customer proxy.

² Incremental delivery
§ Deploy an increment for use by end-users;
§ More realistic evaluation about practical use of software;
§ Difficult to implement for replacement systems as increments 

have less functionality than the system being replaced.

31



Incremental delivery 

32

Design system
architecture

Define outline
 requirements

Assign requirements
      to increments

System
incomplete?

Final
system

Develop system
increment

Validate
increment

Integrate
increment

Validate
system

Deploy
increment

System
complete?



Incremental delivery advantages

² Customer value can be delivered with each increment so 
system functionality is available earlier.

² Early increments act as a prototype to help elicit 
requirements for later increments.

² Lower risk of overall project failure.
² The highest priority system services tend to receive the 

most testing.

33



Incremental delivery problems

² Most systems require a set of basic facilities that are 
used by different parts of the system. 
§ As requirements are not defined in detail until an increment is to 

be implemented, it can be hard to identify common facilities that 
are needed by all increments. 

² The essence of iterative processes is that the 
specification is developed in conjunction with the 
software. 
§ However, this conflicts with the procurement model of many 

organizations, where the complete system specification is part of 
the system development contract. 

34



Process improvement

35



Process improvement

² Many software companies have turned to software 
process improvement as a way of enhancing the quality 
of their software, reducing costs or accelerating their 
development processes. 

² Process improvement means understanding existing 
processes and changing these processes to increase 
product quality and/or reduce costs and development 
time. 

36



Approaches to improvement

² The process maturity approach, which focuses on 
improving process and project management and 
introducing good software engineering practice. 
§ The level of process maturity reflects the extent to which good 

technical and management practice has been adopted in 
organizational software development processes. 

² The agile approach, which focuses on iterative 
development and the reduction of overheads in the 
software process. 
§ The primary characteristics of agile methods are rapid delivery of 

functionality and responsiveness to changing customer 
requirements.

37



The process improvement cycle 

Analyze

Measure

Change

38



Process improvement activities

² Process measurement 
§ You measure one or more attributes of the software process or 

product. These measurements forms a baseline that helps you 
decide if process improvements have been effective. 

² Process analysis 
§ The current process is assessed, and process weaknesses and 

bottlenecks are identified. Process models (sometimes called 
process maps) that describe the process may be developed. 

² Process change 
§ Process changes are proposed to address some of the identified 

process weaknesses. These are introduced and the cycle 
resumes to collect data about the effectiveness of the changes.

39



Process measurement

² Wherever possible, quantitative process data 
should be collected
§ However, where organisations do not have clearly defined 

process standards this is very difficult as you don’t know what to 
measure. A process may have to be defined before any 
measurement is possible.

² Process measurements should be used to 
assess process improvements
§ But this does not mean that measurements should drive the 

improvements. The improvement driver should be the 
organizational objectives.

40



Process metrics

² Time taken for process activities to be 
completed
§ E.g. Calendar time or effort to complete an activity or process.

² Resources required for processes or activities
§ E.g. Total effort in person-days.

² Number of occurrences of a particular event
§ E.g. Number of defects discovered.

41



Key points

² Software processes are the activities involved in 
producing a software system. Software process models 
are abstract representations of these processes.

² General process models describe the organization of 
software processes. 
§ Examples of these general models include the ‘waterfall’ model,  

incremental development, and reuse-oriented development.

² Requirements engineering is the process of developing a 
software specification.

42



Key points

² Design and implementation processes are concerned 
with transforming a requirements specification into an 
executable software system. 

² Software validation is the process of checking that the 
system conforms to its specification and that it meets the 
real needs of the users of the system.

² Software evolution takes place when you change 
existing software systems to meet new requirements. 
The software must evolve to remain useful.

² Processes should include activities such as prototyping 
and incremental delivery to cope with change.

43



Key points

² Processes may be structured for iterative development 
and delivery so that changes may be made without 
disrupting the system as a whole.

² The principal approaches to process improvement are 
agile approaches, geared to reducing process 
overheads, and maturity-based approaches based on 
better process management and the use of good 
software engineering practice.

44



45


