
Plataformas e Serviços X-Ops
(16233)

DevSecOps

1Nuno Pombo – Plataformas e Serviços X-Ops, 2024/25

Today’s Goals

 Cover the basics of DevSecOps

 Introduce the concept of software component analysis

 Introduce the idea of static and dynamic application

security testing

 Compliance as code

 Discover DevSecOps tools

 Hands-on activity

2

What is DevSecOps?

 DevSecOps integrates security practices into DevOps.

 Shifts security 'left' in the software development lifecycle.

 Ensures security is a shared responsibility across teams.

 Automates security checks to keep pace with rapid

development.

3

Why DevSecOps Matters

 Reduces vulnerabilities by addressing security issues

early.

 Increases collaboration between development,

operations, and security teams.

 Ensures continuous compliance with security standards.

 Supports faster and more secure software delivery.

4

Key Principles of DevSecOps

 Shift Left: Integrate security early in the development

process.

 Automation: Automate security testing within CI/CD

pipelines.

 Continuous Monitoring: Monitor for threats and

vulnerabilities.

 Culture of Shared Responsibility: Encourage

collaboration and security awareness.

5

What is Software Component Analysis (SCA)?

 SCA identifies known vulnerabilities in third-party and

open-source components.

 Scans software dependencies for outdated or insecure

versions.

 Uses vulnerability databases (e.g. the National

Vulnerability Database, USA).

 Helps organizations manage risk in their software supply

chain.

6

Why SCA is Important

Modern software often relies on open-source

components.

 Vulnerabilities in dependencies can expose the entire

application.

 Reduces the risk of software supply chain attacks (e.g.,

Equifax breach).

 Ensures compliance with security standards and

regulations.

7

How SCA Works

 Step 1: Identify all third-party components used in the

application.

 Step 2: Match components against known vulnerability

databases (e.g., NVD).

 Step 3: Provide alerts and remediation suggestions for

vulnerable components.

 Step 4: Monitor for new vulnerabilities and update

components as needed.

8

Real-World Examples of SCA Tools

 Snyk: Scans for vulnerabilities in open-source libraries

and suggests fixes.

WhiteSource: Monitors software components for license

compliance and vulnerabilities.

 Black Duck: Provides detailed reports on open-source

component risks.

 Nexus Lifecycle: Automates security checks for

software dependencies.

9

What is Static Application Security Testing (SAST)?

 SAST analyzes source code or binaries for

vulnerabilities without executing the code.

 Helps identify coding flaws, such as SQL injection or

buffer overflows.

 Performed early in the software development lifecycle

(SDLC).

 Provides developers with specific code locations for

issues detected.

10

Why SAST is Important

 Detects vulnerabilities early in the development process,

reducing remediation costs.

 Helps ensure secure coding practices are followed from

the start.

 Reduces the likelihood of vulnerabilities being introduced

into production.

 Enhances developer awareness of secure coding

principles.

11

How SAST Works

 Step 1: Scans the source code, bytecode, or binaries for

known patterns of vulnerabilities.

 Step 2: Identifies specific lines of code where

vulnerabilities may exist.

 Step 3: Generates a report with details on the detected

issues and recommendations for fixing them.

 Step 4: Integrates into CI/CD pipelines for continuous

security analysis.

12

Real-World Examples of SAST Tools

 SonarQube: Identifies security vulnerabilities in various

programming languages.

 Checkmarx: Offers detailed code analysis for a wide

range of languages.

 Fortify: Provides static analysis for enterprise-level

applications.

 Veracode: Integrates SAST with cloud-based scanning

for continuous security monitoring.

13

What is Dynamic Application Security Testing (DAST)?

 DAST involves testing a running application to find

vulnerabilities in real-time.

 It is a black-box testing method that simulates attacks to

detect security weaknesses.

 Focuses on vulnerabilities such as SQL injection, cross-

site scripting (XSS), and authentication flaws.

 Provides insight into the application's behavior and

security from an attacker’s perspective.

14

Why DAST is Important

 Identifies security issues that occur during runtime,

which static testing might miss.

 Helps detect configuration and deployment-related

vulnerabilities.

 Provides a realistic assessment of the application's

security posture.

 Suitable for testing web applications, APIs, and services

in their deployed state.

15

How DAST Works

 Step 1: The application is deployed in a test or

production environment.

 Step 2: The DAST tool performs automated scans to

simulate attacks and detect vulnerabilities.

 Step 3: Reports provide information on detected

vulnerabilities and potential impact.

 Step 4: Developers or security teams use the findings to

patch or fix the issues.

16

Real-World Examples of DAST Tools

OWASP ZAP: An open-source DAST tool that performs

automated security scans for web applications.

 Burp Suite: Widely used for security testing of web

applications, offering both manual and automated tools.

 Acunetix: Automated tool that scans web applications

for various security vulnerabilities.

 Netsparker: Uses a unique scanning algorithm to

accurately detect vulnerabilities.

17

What is Compliance as Code?

 Compliance as Code automates the enforcement of

compliance policies.

 Uses code to define, manage, and apply compliance

rules.

 Integrates compliance checks within the software

development lifecycle.

 Enables continuous compliance monitoring and auditing.

18

Why Compliance as Code Matters

 Ensures adherence to regulatory requirements (e.g.,

GDPR, HIPAA, PCI DSS).

 Reduces manual compliance checks, saving time and

resources.

 Automates auditing and reporting for compliance

standards.

 Helps detect non-compliance issues early in the

development process.

19

Key Principles of Compliance as Code

 Define Compliance Rules as Code: Policies are

codified and version-controlled.

 Automate Compliance Checks: Integrate into CI/CD

pipelines.

 Continuous Monitoring: Automatically detect non-

compliance issues.

 Remediation Automation: Automatically fix compliance

issues when possible.

20

Compliance as Code Workflow

 Step 1: Define compliance requirements as code.

 Step 2: Integrate compliance checks into CI/CD

pipelines.

 Step 3: Continuously monitor for compliance issues in

deployed environments.

 Step 4: Generate reports and take remediation actions

as needed.

21

Tools for Implementing Compliance as Code

Open Policy Agent: Policy engine for enforcing rules.

 InSpec: Framework for automated testing and auditing

of compliance.

 Chef Compliance: Ensures that systems comply with

desired state policies.

 HashiCorp Sentinel: Policy as code framework for

Terraform and other tools.

22

Benefits of Compliance as Code

 Automates repetitive compliance tasks.

 Provides a consistent approach to managing

compliance.

 Enables continuous compliance across all environments.

 Reduces risk by catching issues early in the

development process.

23

Challenges in Adopting Compliance as Code

 Requires a shift in mindset towards treating compliance

as part of the development process.

May need integration with legacy systems and existing

compliance frameworks.

 Policy definitions must be kept up to date with changing

regulations.

 Complexity in automating certain compliance

requirements.

24

Best Practices for Compliance as Code

 Start by codifying high-priority compliance requirements.

 Integrate compliance checks into every stage of the

CI/CD pipeline.

 Regularly update policy definitions to reflect regulatory

changes.

 Train teams on compliance requirements and the tools

used.

25

Hands-on activity

 Warming up!

What are your favorites science fiction novels or films?

26

Analysis of a Science Fiction Film

 Plot Summary: Briefly describe the story, setting, and

main characters.

 Themes and Messages: Identify core themes like

technology, AI, dystopia, or human nature and the film’s

commentary on these.

 Technical Aspects: Examine special effects,

cinematography, and sound, highlighting how they

support the sci-fi atmosphere.

27

Analysis of a Science Fiction Film

 Characters and Development: Analyze character roles,

motivations, and their interactions with technology or

society.

 Real-World Relevance: Discuss parallels to real-world

issues (e.g., AI, cybersecurity, ethics) and how the film

speculates on future impacts.

 Impact and Legacy: Reflect on the film's influence,

cultural significance, and contributions to science fiction.

28

Analysis of a Science Fiction Film

29

Group Discussion

30

What went wrong in
the scenario?

What security
measures were

missing?

How could
DevSecOps practices
have prevented this

situation?

Designing a DevSecOps Solution

31

Identify a real-world system similar to the one presented in the
film (e.g., military systems, IoT devices, AI-powered platforms).

Outline a basic CI/CD pipeline with security integrations to
prevent the security flaw identified in the film.

Have them specify which DevSecOps tools they would use (e.g.,
Snyk, OWASP ZAP, Aqua Security).

Design a logical and/or physical architecture of the proposed
solution.

Presentation Time!

32

3-minutes pitch

Think critically! (which tools and practies might
work best in different contexts)?

Last Challenge :)

33

How security in fictional settings can parallel
real-world challenges?

How DevSecOps may to improve cybersecurity in
futuristic scenarios?

34

	Slide 1: Plataformas e Serviços X-Ops (16233) DevSecOps
	Slide 2: Today’s Goals
	Slide 3: What is DevSecOps?
	Slide 4: Why DevSecOps Matters
	Slide 5: Key Principles of DevSecOps
	Slide 6: What is Software Component Analysis (SCA)?
	Slide 7: Why SCA is Important
	Slide 8: How SCA Works
	Slide 9: Real-World Examples of SCA Tools
	Slide 10: What is Static Application Security Testing (SAST)?
	Slide 11: Why SAST is Important
	Slide 12: How SAST Works
	Slide 13: Real-World Examples of SAST Tools
	Slide 14: What is Dynamic Application Security Testing (DAST)?
	Slide 15: Why DAST is Important
	Slide 16: How DAST Works
	Slide 17: Real-World Examples of DAST Tools
	Slide 18: What is Compliance as Code?
	Slide 19: Why Compliance as Code Matters
	Slide 20: Key Principles of Compliance as Code
	Slide 21: Compliance as Code Workflow
	Slide 22: Tools for Implementing Compliance as Code
	Slide 23: Benefits of Compliance as Code
	Slide 24: Challenges in Adopting Compliance as Code
	Slide 25: Best Practices for Compliance as Code
	Slide 26: Hands-on activity
	Slide 27: Analysis of a Science Fiction Film
	Slide 28: Analysis of a Science Fiction Film
	Slide 29: Analysis of a Science Fiction Film
	Slide 30: Group Discussion
	Slide 31: Designing a DevSecOps Solution
	Slide 32: Presentation Time!
	Slide 33: Last Challenge :)
	Slide 34

