
Plataformas e Serviços X-Ops
(16233)

DevSecOps

1Nuno Pombo – Plataformas e Serviços X-Ops, 2024/25

Today’s Goals

 Cover the basics of DevSecOps

 Introduce the concept of software component analysis

 Introduce the idea of static and dynamic application

security testing

 Compliance as code

 Discover DevSecOps tools

 Hands-on activity

2

What is DevSecOps?

 DevSecOps integrates security practices into DevOps.

 Shifts security 'left' in the software development lifecycle.

 Ensures security is a shared responsibility across teams.

 Automates security checks to keep pace with rapid

development.

3

Why DevSecOps Matters

 Reduces vulnerabilities by addressing security issues

early.

 Increases collaboration between development,

operations, and security teams.

 Ensures continuous compliance with security standards.

 Supports faster and more secure software delivery.

4

Key Principles of DevSecOps

 Shift Left: Integrate security early in the development

process.

 Automation: Automate security testing within CI/CD

pipelines.

 Continuous Monitoring: Monitor for threats and

vulnerabilities.

 Culture of Shared Responsibility: Encourage

collaboration and security awareness.

5

What is Software Component Analysis (SCA)?

 SCA identifies known vulnerabilities in third-party and

open-source components.

 Scans software dependencies for outdated or insecure

versions.

 Uses vulnerability databases (e.g. the National

Vulnerability Database, USA).

 Helps organizations manage risk in their software supply

chain.

6

Why SCA is Important

Modern software often relies on open-source

components.

 Vulnerabilities in dependencies can expose the entire

application.

 Reduces the risk of software supply chain attacks (e.g.,

Equifax breach).

 Ensures compliance with security standards and

regulations.

7

How SCA Works

 Step 1: Identify all third-party components used in the

application.

 Step 2: Match components against known vulnerability

databases (e.g., NVD).

 Step 3: Provide alerts and remediation suggestions for

vulnerable components.

 Step 4: Monitor for new vulnerabilities and update

components as needed.

8

Real-World Examples of SCA Tools

 Snyk: Scans for vulnerabilities in open-source libraries

and suggests fixes.

WhiteSource: Monitors software components for license

compliance and vulnerabilities.

 Black Duck: Provides detailed reports on open-source

component risks.

 Nexus Lifecycle: Automates security checks for

software dependencies.

9

What is Static Application Security Testing (SAST)?

 SAST analyzes source code or binaries for

vulnerabilities without executing the code.

 Helps identify coding flaws, such as SQL injection or

buffer overflows.

 Performed early in the software development lifecycle

(SDLC).

 Provides developers with specific code locations for

issues detected.

10

Why SAST is Important

 Detects vulnerabilities early in the development process,

reducing remediation costs.

 Helps ensure secure coding practices are followed from

the start.

 Reduces the likelihood of vulnerabilities being introduced

into production.

 Enhances developer awareness of secure coding

principles.

11

How SAST Works

 Step 1: Scans the source code, bytecode, or binaries for

known patterns of vulnerabilities.

 Step 2: Identifies specific lines of code where

vulnerabilities may exist.

 Step 3: Generates a report with details on the detected

issues and recommendations for fixing them.

 Step 4: Integrates into CI/CD pipelines for continuous

security analysis.

12

Real-World Examples of SAST Tools

 SonarQube: Identifies security vulnerabilities in various

programming languages.

 Checkmarx: Offers detailed code analysis for a wide

range of languages.

 Fortify: Provides static analysis for enterprise-level

applications.

 Veracode: Integrates SAST with cloud-based scanning

for continuous security monitoring.

13

What is Dynamic Application Security Testing (DAST)?

 DAST involves testing a running application to find

vulnerabilities in real-time.

 It is a black-box testing method that simulates attacks to

detect security weaknesses.

 Focuses on vulnerabilities such as SQL injection, cross-

site scripting (XSS), and authentication flaws.

 Provides insight into the application's behavior and

security from an attacker’s perspective.

14

Why DAST is Important

 Identifies security issues that occur during runtime,

which static testing might miss.

 Helps detect configuration and deployment-related

vulnerabilities.

 Provides a realistic assessment of the application's

security posture.

 Suitable for testing web applications, APIs, and services

in their deployed state.

15

How DAST Works

 Step 1: The application is deployed in a test or

production environment.

 Step 2: The DAST tool performs automated scans to

simulate attacks and detect vulnerabilities.

 Step 3: Reports provide information on detected

vulnerabilities and potential impact.

 Step 4: Developers or security teams use the findings to

patch or fix the issues.

16

Real-World Examples of DAST Tools

OWASP ZAP: An open-source DAST tool that performs

automated security scans for web applications.

 Burp Suite: Widely used for security testing of web

applications, offering both manual and automated tools.

 Acunetix: Automated tool that scans web applications

for various security vulnerabilities.

 Netsparker: Uses a unique scanning algorithm to

accurately detect vulnerabilities.

17

What is Compliance as Code?

 Compliance as Code automates the enforcement of

compliance policies.

 Uses code to define, manage, and apply compliance

rules.

 Integrates compliance checks within the software

development lifecycle.

 Enables continuous compliance monitoring and auditing.

18

Why Compliance as Code Matters

 Ensures adherence to regulatory requirements (e.g.,

GDPR, HIPAA, PCI DSS).

 Reduces manual compliance checks, saving time and

resources.

 Automates auditing and reporting for compliance

standards.

 Helps detect non-compliance issues early in the

development process.

19

Key Principles of Compliance as Code

 Define Compliance Rules as Code: Policies are

codified and version-controlled.

 Automate Compliance Checks: Integrate into CI/CD

pipelines.

 Continuous Monitoring: Automatically detect non-

compliance issues.

 Remediation Automation: Automatically fix compliance

issues when possible.

20

Compliance as Code Workflow

 Step 1: Define compliance requirements as code.

 Step 2: Integrate compliance checks into CI/CD

pipelines.

 Step 3: Continuously monitor for compliance issues in

deployed environments.

 Step 4: Generate reports and take remediation actions

as needed.

21

Tools for Implementing Compliance as Code

Open Policy Agent: Policy engine for enforcing rules.

 InSpec: Framework for automated testing and auditing

of compliance.

 Chef Compliance: Ensures that systems comply with

desired state policies.

 HashiCorp Sentinel: Policy as code framework for

Terraform and other tools.

22

Benefits of Compliance as Code

 Automates repetitive compliance tasks.

 Provides a consistent approach to managing

compliance.

 Enables continuous compliance across all environments.

 Reduces risk by catching issues early in the

development process.

23

Challenges in Adopting Compliance as Code

 Requires a shift in mindset towards treating compliance

as part of the development process.

May need integration with legacy systems and existing

compliance frameworks.

 Policy definitions must be kept up to date with changing

regulations.

 Complexity in automating certain compliance

requirements.

24

Best Practices for Compliance as Code

 Start by codifying high-priority compliance requirements.

 Integrate compliance checks into every stage of the

CI/CD pipeline.

 Regularly update policy definitions to reflect regulatory

changes.

 Train teams on compliance requirements and the tools

used.

25

Hands-on activity

 Warming up!

What are your favorites science fiction novels or films?

26

Analysis of a Science Fiction Film

 Plot Summary: Briefly describe the story, setting, and

main characters.

 Themes and Messages: Identify core themes like

technology, AI, dystopia, or human nature and the film’s

commentary on these.

 Technical Aspects: Examine special effects,

cinematography, and sound, highlighting how they

support the sci-fi atmosphere.

27

Analysis of a Science Fiction Film

 Characters and Development: Analyze character roles,

motivations, and their interactions with technology or

society.

 Real-World Relevance: Discuss parallels to real-world

issues (e.g., AI, cybersecurity, ethics) and how the film

speculates on future impacts.

 Impact and Legacy: Reflect on the film's influence,

cultural significance, and contributions to science fiction.

28

Analysis of a Science Fiction Film

29

Group Discussion

30

What went wrong in
the scenario?

What security
measures were

missing?

How could
DevSecOps practices
have prevented this

situation?

Designing a DevSecOps Solution

31

Identify a real-world system similar to the one presented in the
film (e.g., military systems, IoT devices, AI-powered platforms).

Outline a basic CI/CD pipeline with security integrations to
prevent the security flaw identified in the film.

Have them specify which DevSecOps tools they would use (e.g.,
Snyk, OWASP ZAP, Aqua Security).

Design a logical and/or physical architecture of the proposed
solution.

Presentation Time!

32

3-minutes pitch

Think critically! (which tools and practies might
work best in different contexts)?

Last Challenge :)

33

How security in fictional settings can parallel
real-world challenges?

How DevSecOps may to improve cybersecurity in
futuristic scenarios?

34

	Slide 1: Plataformas e Serviços X-Ops (16233) DevSecOps
	Slide 2: Today’s Goals
	Slide 3: What is DevSecOps?
	Slide 4: Why DevSecOps Matters
	Slide 5: Key Principles of DevSecOps
	Slide 6: What is Software Component Analysis (SCA)?
	Slide 7: Why SCA is Important
	Slide 8: How SCA Works
	Slide 9: Real-World Examples of SCA Tools
	Slide 10: What is Static Application Security Testing (SAST)?
	Slide 11: Why SAST is Important
	Slide 12: How SAST Works
	Slide 13: Real-World Examples of SAST Tools
	Slide 14: What is Dynamic Application Security Testing (DAST)?
	Slide 15: Why DAST is Important
	Slide 16: How DAST Works
	Slide 17: Real-World Examples of DAST Tools
	Slide 18: What is Compliance as Code?
	Slide 19: Why Compliance as Code Matters
	Slide 20: Key Principles of Compliance as Code
	Slide 21: Compliance as Code Workflow
	Slide 22: Tools for Implementing Compliance as Code
	Slide 23: Benefits of Compliance as Code
	Slide 24: Challenges in Adopting Compliance as Code
	Slide 25: Best Practices for Compliance as Code
	Slide 26: Hands-on activity
	Slide 27: Analysis of a Science Fiction Film
	Slide 28: Analysis of a Science Fiction Film
	Slide 29: Analysis of a Science Fiction Film
	Slide 30: Group Discussion
	Slide 31: Designing a DevSecOps Solution
	Slide 32: Presentation Time!
	Slide 33: Last Challenge :)
	Slide 34

