
Plataformas e Serviços X-Ops
(16233)

Microservices Architecture

(adapted from Engineering Software Products: An Introduction to Modern Software Engineering, Ian Sommerville,
Pearson, 2020)

1Nuno Pombo – Plataformas e Serviços X-Ops, 2023/24

²A software service is a software component that can
be accessed from remote computers over the
Internet. Given an input, a service produces a
corresponding output, without side effects.
§ The service is accessed through its published interface
and all details of the service implementation are hidden.

§ Services do not maintain any internal state. State
information is either stored in a database or is maintained
by the service requestor.

Software services (1 of 2)

2

² When a service request is made, the state information
may be included as part of the request and the updated
state information is returned as part of the service result.

² As there is no local state, services can be dynamically
reallocated from one virtual server to another and
replicated across several servers.

Software services (2 of 2)

3

²After various experiments in the 1990s with service-
oriented computing, the idea of ‘big’ Web Services
emerged in the early 2000s.

² These were based on XML-based protocols and
standards such as SOAP for service interaction and
WSDL for interface description.

²Most software services don’t need the generality that’s
inherent in the design of web service protocols.

²Consequently, modern service-oriented systems, use
simpler, ‘lighter weight’ service-interaction protocols
that have lower overheads and, consequently, faster
execution.

Modern web services

4

²Microservices are small-scale, stateless, services
that have a single responsibility. They are combined
to create applications.

²They are completely independent with their own
database and UI management code.

²Software products that use micro services have a
microservices architecture.

² If you need to create cloud-based software products
that are adaptable, scaleable and resilient then I
recommend that design them around a
microservices architecture.

Microservices

5

² System authentication
§ User registration, where users provide information about their

identity, security information, mobile (cell) phone number and
email address.

§ Authentication using UID/password.
§ Two-factor authentication using code sent to mobile phone.
§ User information management e.g. change password or mobile

phone number.
§ Reset forgotten password.

A microservice example (1 of 2)

6

² Each of these features could be implemented as a
separate service that uses a central shared database to
hold authentication information.

² However, these features are too large to be
microservices. To identify the microservices that might
be used in the authentication system, you need to break
down the coarse-grain features into more detailed
functions.

A microservice example (2 of 2)

7

Functional breakdown of authentication features

User registration

Setup new login id

Setup new password

Setup password recovery information

Setup two-factor authentication

Confirm registration

Authenticate using UID/password

Get login id

Get password

Check credentials

Confirm authentication

Figure 6.1 Functional breakdown of authentication features

8

Authentication microservices

UID
management

Password
management

User info
management

UID data

Password data

User data

Authentication

Figure 6.2 Authentication microservices

9

Characteristic Explanation

Self-contained Microservices do not have external dependencies. They
manage their own data and implement their own user
interface.

Lightweight Microservices communicate using lightweight protocols, so
that service communication overheads are low.

Implementation
independent

Microservices may be implemented using different
programming languages and may use different
technologies (e.g., different types of database) in their
implementation.

Independently
Deployable

Each microservice runs in its own process and is
independently deployable, using automated systems.

Business-oriented Microservices should implement business capabilities and
needs, rather than simply provide a technical service.

Characteristics of microservices

10

Microservice communication (1 of 2)

² Microservices communicate by exchanging messages.

² A message that is sent between services includes some
administrative information, a service request and the
data required to deliver the requested service.

11

Microservice communication (2 of 2)

² Services return a response to service request messages.
§ An authentication service may send a message to a login service

that includes the name input by the user.
§ The response may be a token associated with a valid user name

or might be an error saying that there is no registered user.

12

Microservice characteristics (1 of 2)

² A well-designed microservice should have high cohesion
and low coupling.
§ Cohesion is a measure of the number of relationships that parts

of a component have with each other. High cohesion means that
all of the parts that are needed to deliver the component’s
functionality are included in the component.

§ Coupling is a measure of the number of relationships that one
component has with other components in the system. Low
coupling means that components do not have many
relationships with other components.

13

Microservice characteristics (2 of 2)

² Each microservice should have a single responsibility i.e.
it should do one thing only and it should do it well.
§ However, ‘one thing only’ is difficult to define in a way that’s

applicable to all services.
§ Responsibility does not always mean a single, functional activity.

14

Password management functionalityFigure 6.3 Password management functionality

User functions

Create password

Change password

Check password

Recover password

Supporting functions

Check password validity

Delete password

Backup password database

Recover password database

Check database integrity

Repair password DB

15

Microservice support code

Microservice X

 Service functionality

 Message
management

 UI
implementation

 Failure
management

 Data consistency
management

Figure 6.4 Microservice support code

16

Microservices architecture

² A microservices architecture is an architectural style – a
tried and tested way of implementing a logical software
architecture.

² This architectural style addresses two problems with
monolithic applications
§ The whole system has to be rebuilt, re-tested and re-
deployed when any change is made. This can be a slow
process as changes to one part of the system can
adversely affect other components.

§ As the demand on the system increases, the whole system
has to be scaled, even if the demand is localized to a small
number of system components that implement the most
popular system functions.

17

• Microservices are self-contained and run in separate
processes.

• In cloud-based systems, each microservice may be
deployed in its own container. This means a
microservice can be stopped and restarted without
affecting other parts of the system.

• If the demand on a service increases, service replicas
can be quickly created and deployed. These do not
require a more powerful server so ‘scaling-out’ is,
typically, much cheaper than ‘scaling up’.

Benefits of microservices architecture

18

Imagine that you are developing a photo-printing service for mobile devices.
Users can upload photos to your server from their phone or specify photos
from their Instagram account that they would like to be printed. Prints can be
made at different sizes and on different media.

Users can choose print size and print medium. For example, they may decide
to print a picture onto a mug or a T-shirt. The prints or other media are
prepared and then posted to their home. They pay for prints either using a
payment service such as Android or Apple Pay or by registering a credit card
with the printing service provider.

A photo-printing system for mobile devices

19

A microservices architecture for a photo-printing system

Mobile
app API gateway

Authentication

Figure 6.5 A microservices architecture for a photo printing system

SERVICES

Registration

Upload

Payment

Printing

Despatch

20

Key design questions for microservices architecture

What are the microservices that
make up the system?

How should microservices
communicate with each other?

How should the microservices
in the system be coordinated?

How should service failure be
detected, reported and managed?

How should data be
distributed and shared?

Microservices
architecture

design

Figure 6.6 Microservices architecture - key design questions

21

• Balance fine-grain functionality and system performance
Single-function services mean that changes are limited to fewer

services but require service communications to implement user
functionality. This slows down a system because of the need for
each service to bundle and unbundle messages sent from other
services.

• Follow the ‘common closure principle’
Elements of a system that are likely to be changed at the same

time should be located within the same service. Most new and
changed requirements should therefore only affect a single
service.

Decomposition guidelines (1 of 2)

22

• Associate services with business capabilities
A business capability is a discrete area of business functionality

that is the responsibility of an individual or a group. You should
identify the services that are required to support each business
capability.

• Design services so that they only have access to the
data that they need
If there is an overlap between the data used by different services,

you need a mechanism to propagate data changes to all
services using the same data.

Decomposition guidelines (2 of 2)

23

Service communications (1 of 2)

² Services communicate by exchanging messages that
include information about the originator of the message,
as well as the data that is the input to or output from the
request.

24

Service communications (2 of 2)

² When you are designing a microservices architecture,
you have to establish a standard for communications
that all microservices should follow. Some of the key
decisions that you have to make are
§ should service interaction be synchronous or asynchronous?
§ should services communicate directly or via message broker

middleware?
§ what protocol should be used for messages exchanged between

services?

25

Synchronous and asynchronous microservice interaction

Service A

Figure 6.7 Synchronous and asynchronous microservice interaction

Calls
Returns

Requests (B)

Synchronous - A waits for B

Asynchronous - A and B execute concurrently

Queue B Queue A

Requests (A)

Service B

Service A

Processing Waiting Processing

Processing Processing

Processing Processing

ProcessingProcessing

Service B

26

Synchronous and asynchronous interaction (1 of 2)

² In a synchronous interaction, service A issues a request
to service B. Service A then suspends processing while
B is processing the request.

² It waits until service B has returned the required
information before continuing execution.

² In an asynchronous interaction, service A issues the
request that is queued for processing by service B. A
then continues processing without waiting for B to finish
its computations.

27

Synchronous and asynchronous interaction (2 of 2)

² Sometime later, service B completes the earlier request
from service A and queues the result to be retrieved by
A.

² Service A, therefore, has to check its queue periodically
to see if a result is available.

28

Direct and indirect service communication
Figure 6.8 Direct and indirect service communication

Direct communication - A and B send messages to each other

Indirect communication - A and B communicate through a message broker

Message broker

Service A Service B

Service A Service B

29

Direct and indirect service communication

²Direct service communication requires that
interacting services know each other’s address.

²The services interact by sending requests directly
to these addresses.

² Indirect communication involves naming the
service that is required and sending that request to
a message broker (sometimes called a message
bus).

²The message broker is then responsible for finding
the service that can fulfil the service request.

30

Microservice data design

² You should isolate data within each system service with
as little data sharing as possible.

² If data sharing is unavoidable, you should design
microservices so that most sharing is ‘read-only’, with a
minimal number of services responsible for data
updates.

² If services are replicated in your system, you must
include a mechanism that can keep the database copies
used by replica services consistent.

31

Inconsistency management (1 of 2)

² An ACID transaction bundles a set of data updates into a
single unit so that either all updates are completed or
none of them are. ACID transactions are impractical in a
microservices architecture.

² The databases used by different microservices or
microservice replicas need not be completely consistent
all of the time.

32

Inconsistency management (2 of 2)

² Dependent data inconsistency
§ The actions or failures of one service can cause the data

managed by another service to become inconsistent.

² Replica inconsistency
§ There are several replicas of the same service that are executing

concurrently. These all have their own database copy and each
updates its own copy of the service data. You need a way of
making these databases ‘eventually consistent’ so that all
replicas are working on the same data.

33

Eventual consistency

² Eventual consistency is a situation where the system
guarantees that the databases will eventually become
consistent.

² You can implement eventual consistency by maintaining
a transaction log.

² When a database change is made, this is recorded on a
‘pending updates’ log.

² Other service instances look at this log, update their own
database and indicate that they have made the change.

34

Using a pending transaction log

Pending transactions log

A1/DB update 1

A1/DB update 2

A2/DB update 1

Figure 6.9 Using a pending transactions log

Service A1
Database A

Service A2
Database A

35

Service coordination

² Most user sessions involve a series of interactions in
which operations have to be carried out in a specific
order.

² This is called a workflow.
§ An authentication workflow for UID/password authentication

shows the steps involved in authenticating a user.
§ In this example, the user is allowed 3 login attempts before the

system indicates that the login has failed.

36

Authentication workflow

End

Retry
login

Get login

Start

End

Check
login

Get
password

Check
password

Indicate
failure

login OK

login invalid

password OK

password
invalid

attempts > 3

attempts = 1
authfail = F

authfail=T

Figure 6.10 Authentication workflow

authfail = F
Increment
attempts

attempts <= 3

authfail = T

authfail=F

37

Orchestration and choreography

Authentication
controller

Service orchestration Service choreography

Figure 6.11 Orchestration and choreography

Authentication eventsLogin
service

Password
service

Login
service

Password
service

38

Failure type Explanation

Internal service failure These are conditions that are detected by the service and
can be reported to the service requestor in an error
message. An example of this type of failure is a service that
takes a URL as an input and discovers that this is an invalid
link.

External service failure These failures have an external cause that affects the
availability of a service. Failure may cause the service to
become unresponsive and actions have to be taken to restart
the service.

Service performance failure The performance of the service degrades to an unacceptable
level. This may be due to a heavy load or an internal problem
with the service. External service monitoring can be used to
detect performance failures and unresponsive services.

Failure types in a microservices system

39

Timeouts and circuit breakers (1 of 2)

² A timeout is a counter that this associated with the
service requests and starts running when the request is
made.

² Once the counter reaches some predefined value, such
as 10 seconds, the calling service assumes that the
service request has failed and acts accordingly.

40

Timeouts and circuit breakers (2 of 2)

² The problem with the timeout approach is that every
service call to a ‘failed service’ is delayed by the timeout
value so the whole system slows down.

² Instead of using timeouts explicitly when a service call is
made, he suggests using a circuit breaker. Like an
electrical circuit breaker, this immediately denies access
to a failed service without the delays associated with
timeouts.

41

Using a circuit breaker to cope with service failure

Circuit breaker

Check S2
availability

retries>3

retries<=3

timeout ok

timeout fail

S2 available

S2 unavailable

Figure 6.12 Using a circuit breaker to cope with service failure

Service S1 Service S2

Set timeout Route service
request

Respond S2
unavailable

Set S2
unavailable

Route service
response

Increment
retries

Check
timeout

42

RESTful services (1 of 2)

² The REST (REpresentational State Transfer)
architectural style is based on the idea of transferring
representations of digital resources from a server to a
client.
§ You can think of a resource as any chunk of data such as credit

card details, an individual’s medical record, a magazine or
newspaper, a library catalogue, and so on.

§ Resources are accessed via their unique URI and RESTful
services operate on these resources.

43

RESTful services (2 of 2)

² This is the fundamental approach used in the web where
the resource is a page to be displayed in the user’s
browser.
§ An HTML representation is generated by the server in response

to an HTTP GET request and is transferred to the client for
display by a browser or a special-purpose app.

44

Principle Explanation

Use HTTP verbs The basic methods defined in the HTTP protocol (GET,
PUT, POST, DELETE) must be used to access the
operations made available by the service.

Stateless services Services must never maintain internal state. As I have
already explained, microservices are stateless, so fit with
this principle.

URI addressable All resources must have a URI, with a hierarchical
structure, that is used to access subresources.

Use XML or JSON Resources should normally be represented in JSON or
XML or both. Other representations, such as audio and
video representations, may be used if appropriate.

RESTful service principles

45

Action Implementation

Create Implemented using HTTP POST, which creates the resource with
the given URI. If the resource has already been created, an error is
returned.

Read Implemented using HTTP GET, which reads the resource and
returns its value. GET operations should never update a resource
so that successive GET operations with no intervening PUT
operations always return the same value.

Update Implemented using HTTP PUT, which modifies an existing
resource. PUT should not be used for resource creation.

Delete Implemented using HTTP DELETE, which makes the resource
inaccessible using the specified URI. The resource may or may not
be physically deleted.

RESTful service operations

46

Road information system (1 of 2)

² Imagine a system that maintains information about
incidents, such as traffic delays, roadworks and
accidents on a national road network. This system can
be accessed via a browser using the URL:
§ https://trafficinfo.net/incidents/

² Users can query the system to discover incidents on the
roads on which they are planning to travel.

47

Road information system (2 of 2)

² When implemented as a RESTful web service, you need
to design the resource structure so that incidents are
organized hierarchically.
§ For example, incidents may be recorded according to the road

identifier (e.g. A90), the location (e.g. stonehaven), the
carriageway direction (e.g. north) and an incident number (e.g.
1). Therefore, each incident can be accessed using its URI:

§ https://trafficinfo.net/incidents/A90/stonehaven/north/1

48

Incident ID: A90N17061714391

Date: 17 June 2017

Time reported: 1439

Severity: Significant

Description: Broken-down bus on north carriageway. One lane closed. Expect
delays of up to 30 minutes.

Incident description

49

• Retrieve
Returns information about a reported incident or

incidents. Accessed using the GET verb.
• Add

Adds information about a new incident. Accessed using
the POST verb.

• Update
Updates the information about a reported incident.

Accessed using the PUT verb.
• Delete

Deletes an incident. The DELETE verb is used when an
incident has been cleared.

Service operations

50

HTTP request and response processing

HTTP
request

HTTP
response

Service actions

Microservice

Figure 6.13 HTTP request and response processing

Request
processing

Response
generation

51

HTTP request and response message organization

 [Request header]

 [Request body]

REQUEST

[HTTP verb] [URI] [HTTP version]

Figure 6.14 HTTP request and response message organisation

 [Response header]

 [Response body]

RESPONSE

[Response code][HTTP version]

52

XML JSON
<id>
A90N17061714391
</id>
<date>
20170617
</date>
<time>
1437
</time>
. . .
<description>
Broken-down bus on north
carriageway.One lane closed.
Expect delays of up to
30 minutes.
</description>

{
id: “A90N17061714391”,
“date”: “20170617”,
“time”: “1437”,
“road_id”: “A90”,
“place”: “Stonehaven”,
“direction”: “north”,
“severity”: “significant”,
“description”: “Broken-down
bus on north carriageway. One
lane closed. Expect
delays of up to 30 minutes.”
}

XML and JSON descriptions

53

A GET request and the associated response

REQUEST

GET HTTP/1.1

...
Content-Length: 461
Content-Type: text/json

RESPONSE

HTTP/1.1

Figure 6.15 A GET request and the associated response

200incidents/A90/stonehaven/

Host: trafficinfo.net
...
Accept: text/json, text/xml, text/plain
Content-Length: 0

{
 “number”: “A90N17061714391”,
 “date”: “20170617”,
 “time”: “1437”,
 “road_id”: “A90”,
 “place”: “Stonehaven”,
 “direction”: “north”,
 “severity”: “significant”,
 “description”: “Broken-down bus on north
 carriageway. One lane closed. Expect delays
of up to 30 minutes.”
}
{
 “number”: “A90S17061713001”,
 “date”: “20170617”,
 “time”: “1300”,
 “road_id”: “A90”,
 “place”: “Stonehaven”,
 “direction”: “south”,
 “severity”: “minor”,
 “description”: “Grass cutting on verge. Minor
delays”
}

54

• After a system has been developed and delivered, it has
to be deployed on servers, monitored for problems and
updated as new versions become available.

• When a system is composed of tens or even hundreds of
microservices, deployment of the system is more
complex than for monolithic systems.

• The service development teams decide which
programming language, database, libraries and other
support software should be used to implement their
service. Consequently, there is no ‘standard’ deployment
configuration for all services.

Service deployment (1 of 2)

55

• It is now normal practice for microservice development
teams to be responsible for deployment and service
management as well as software development and to
use continuous deployment.

• Continuous deployment means that as soon as a change
to a service has been made and validated, the modified
service is redeployed.

Service deployment (2 of 2)

56

• Continuous deployment depends on automation so that
as soon as a change is committed, a series of
automated activities is triggered to test the software.

• If the software ‘passes’ these tests, it then enters another
automation pipeline that packages and deploys the
software.

• The deployment of a new service version starts with the
programmer committing the code changes to a code
management system such as Git.

Deployment automation (1 of 2)

57

• This triggers a set of automated tests that run using the
modified service. If all service tests run successfully, a
new version of the system that incorporates the changed
service is created.

• Another set of automated system tests are then
executed. If these run successfully, the service is ready
for deployment.

Deployment automation (2 of 2)

58

A continuous deployment pipeline

Commit change to
version manage-

ment

Triggers

pass

Reject change Reject change Reject change

Reject change

pass

pass

fail

fail

fail

Figure 6.16 A continuous deployment pipeline

Run unit tests

Containerize
service

Run integration
tests

Build test
system

Replace current
service

Deploy service
container

Run acceptance
tests

fail

pass

59

Versioned services

API
gateway cameras

service request
for cameras service

Figure 6.17 Versioned services

current version
link

service
response

cameras service
response

monitor
 response

Service
monitor

cameras 001

cameras 002

60

• A microservice is an independent and self-contained
software component that runs in its own process and
communicates with other microservices using lightweight
protocols.

• Microservices in a system can be implemented using
different programming languages and database
technologies.

• Microservices have a single responsibility and should be
designed so that they can be easily changed without
having to change other microservices in the system.

Key points (1 of 4)

61

• Microservices architecture is an architectural style in
which the system is constructed from communicating
microservices. It is well-suited to cloud based systems
where each microservice can run in its own container.

• The two most important responsibilities of architects of a
microservices system are to decide how to structure the
system into microservices and to decide how
microservices should communicate and be coordinated.

Key points (2 of 4)

62

• Communication and coordination decisions include
deciding on microservice communication protocols, data
sharing, whether services should be centrally
coordinated, and failure management.

• The RESTful architectural style is widely used in
microservice-based systems. Services are designed so
that the HTTP verbs, GET, POST, PUT and DELETE,
map onto the service operations.

• The RESTful style is based on digital resources that, in a
microservices architecture, may be represented using
XML or, more commonly, JSON.

Key points (3 of 4)

63

• Continuous deployment is a process where new versions
of a service are put into production as soon as a service
change has been made. It is a completely automated
process that relies on automated testing to check that
the new version is of ‘production quality’.

• If continuous deployment is used, you may need to
maintain multiple versions of deployed services so that
you can switch to an older version if problems are
discovered in a newly-deployed service.

Key points (4 of 4)

64

65

