FACULDADE
ENGENHARIA

N

Departamento de
Informatica

Plataformas e Servicos X-Ops
(16233)

Al-Assisted DevOps

Nuno Pombo - Plataformas e Servigos X-Ops, 2025/26

Challenges in DevOps today

< System complexity exploding, microservices,
distributed systems.

<>Data overload from logs, monitoring, telemetry
streams.

<> Pipeline scale, hundreds of commits and builds
daily.

<Triple pressure balancing speed 5 quality

B4, and cost ®.

<Human bottlenecks in reviews, testing, and
Incident response.

2

Why bring Al into DevOps?

<- Automation plateau: traditional scripts & rules
cannot scale.

< Al/LLMs capabilities:

= Learn from code & ops data.

= Predict pipeline failures (flaky tests, merge risks).

= Assist in root cause analysis & incident mitigation.

= Generate or repair code (Copilot, DeepFix,
CodeWhisperer).

< Shift from static automation — adaptive, learning
automation.

What is Al-DevOps? (1 of 2)

<> Definition: DevOps pipelines augmented with Al
& intelligent agents.

< Features:

* Predictive CI/CD (failure forecasting, test
prioritization).

= Al-generated & auto-repaired test cases.

= Anomaly detection & proactive incident
management (AlOps).

= Generative Al for code, documentation, infra configs.

<Human role shifts to oversight, design, trust
management.

4

What is Al-DevOps? (2 of 2)

< Examples:

= CI/CD: Predict flaky builds, optimize test
suites.

» Testing: LLM-based test generation.

= Operations: Cloud incident triage with LLMSs.
* Maintenance: Automated program repair.

= Security: Vulnerability detection with Al.

DevOps — Al-DevOps — NoOps

<-DevOps: Automated scripts + human
supervision.

<> Al-DevOps: Pipelines with Al-driven intelligence
& agents.

<NoOps (vision): Fully autonomous operation &
deployment.

» Al self-heals, scales, deploys
* Humans = exception handlers

Opportunities from Al-DevOps

<> Faster release cycles with less risk.

<Reduced manual toil in ops (tickets, log
analysis).

<> Better defect detection & predictive quality.

<Democratization of SE knowledge via Al
assistants.

<New roles: Al trainers, pipeline supervisors, Al
safety engineers.

Open challenges

<> Confabulations & incorrect Al outputs.
< Security & IP issues in generated artifacts.

<Ensuring fairness & accountability in Al
decisions.

<Human-in-the-Loop (HITL) vs. Human-on-the-
Loop (HOTL) oversight.

< Risk of over-reliance on Al — skill erosion.

Reflection question

< As DevOps evolves into Al-DevOps, should engineers
act as active collaborators with Al (HITL) or mainly
supervisors (HOTL)? How might this reshape
engineering roles?

Al in continuous testing

<Where Al transforms Quality Assurance in CI/CD
pipelines.

< From manual testing — automated scripts — Al-
augmented — autonomous testing.

Why continuous testing matters

<In DevOps, every commit can break the
system.

< Testing must run continuously to match
Agile/Cl speed.

< Traditional bottlenecks:

= Slow or incomplete test creation.
* Limited execution at scale.
= High maintenance cost of fragile test scripts.

11

Challenges in traditional test automation

< Fragile scripts, break often with small Ul/code
changes.

<Limited test coverage, mostly unit tests, less
on integration & UI.

<Test data pain, hard to generate realistic,
reusable datasets.

< Slow feedback, failures detected too late in the
CI/CD pipeline.

Al as a game-changer in testing

<>Learns continuously from codebases, commit
history, and telemetry.

<> Generates and repairs test
cases automatically (unit, integration, Ul).

<-Detects flaky builds and removes redundant
test executions.

<-Predicts risks, prioritizes the most valuable
tests in CI/CD.

Al test automation levels

Level

Description

=Q Lo: Manval

£[> L1: Scripted
é Auvtomation

|—ﬂ L2: CodelessfSemi-
&~ Automated

\i?!) L3: AI-Assisted Self-
oo Healing

Al L4: AI-Driven with
=1 HITL

fe} LS: Fully Auvtonomous

Humans write and
run tesks

Fixed scripts,
repeatable but
brittle

Record-playback,
low-code tools

Tests adapt
automatically to
changes

Al generates §
runs tests, humans
supervise

AT hondles all,
humans monitor

L0: Manual Testing — humans write &
run tests.

L1: Scripted Automation — fixed
scripts, brittle but repeatable.

L2: Codeless / Semi-Automated —
record-playback, low-code tools.

L3: Al-Assisted Self-Healing — tests
adapt automatically to changes.

L4: Al-Driven with HITL — Al
generates & runs tests, humans
supervise.

L5: Fully Autonomous
(HOTL/NoOps) — Al handles all
testing, humans monitor outcomes.

14

Al techniques in test case generation

< Requirements — Test Code: LLMs generate unit tests
directly from user stories, specs, or acceptance criteria.

< Model-based testing: derive tests from UML diagrams,
state machines, or workflow graphs.

< Search-based Al: explore input space using
evolutionary algorithms (e.g.,, EvoSuite + Al
augmentation).

< Examples: TOGA, A3Test (Al-enhanced test generation
frameworks).

15

Al in test data management

< Synthetic data generation — Al creates realistic but
safe test datasets.

< Data masking & anonymization — protect privacy
while testing with production-like data.

< Reproducibility & compliance — Al ensures data
consistency across environments (GDPR, HIPAA).

< Pipeline integration — supports reproducible test runs
within CI/CD.

16

Al for self-healing test automation

< Dynamic locators — Al automatically adapts when Ul
elements change (IDs, labels, DOM structure).

< Example tools: Parasoft Selenic, Testim, Applitools
Ultrafast Grid.

<> Benefits:

» Reduces fragile test failures.
= Cuts test maintenance cost & effort.
= Keeps pipelines stable despite frequent Ul updates.

17

Al for defect analysis & program repair

< Root cause localization — Al mines logs & traces to
pinpoint failure lines.

< Bug triage automation — clusters duplicates, assigns
priority/severity.

< Program repair with LLMs — tools like DeepFix,
InferFix suggest patches automatically.

< Debugging co-pilot — Al recommends fixes, engineers
review & approve.

18

LLMs vs. SLMs in software testing

< Large Language Models (LLMs):

= Generate tests, assertions, and documentation.

» Evaluate coverage and detect bugs across
codebases.

= Examples: GPT-4, Codellama, DeepSeek-Coder.
< Small Language Models (SLMs):

= Lightweight, cost-efficient, and privacy-preserving.

= Specialized in narrow tasks (e.g., test smell
detection, unit-level bug fixing).

= Run on-premise or at the edge (lower data leakage
risk).

= Example: CodeT5.

19

Al testing tooling landscape

<> General Al assistants

» ChatGPT, GitHub Copilot — test generation, assertions,
documentation.

< Testing-specific tools

= SmartBear VisualTest — Al-powered visual regression.

= SonarQube Al, CodeQL — static analysis, security, code
quality.

= Testim, Parasoft Selenic — self-healing Ul test automation.
< Emerging trend

= 80% of enterprises will adopt Al-augmented testing by
2027 (Source: Gartner).

20

Integrating Al testing into CI/CD

<> Bake Al tests into the pipeline (templates for all repos).
< Run on every PR: unit, integration, Ul, performance.

< Risk-aware gating: Al flags/predicts risky merges
— block or require review.

< Close the loop: push results & insights to DevOps
dashboards (trendlines, flaky test heatmaps).

21

Benefits of Al in continuous testing

{ &7 Accelerated delivery — faster time-to-release.

< Improved coverage — fewer gaps, reduced test
debt.

$ & Reduced maintenance cost — self-healing &
automation lower overhead.

4 @ Stronger defect detection — especially critical bugs
before release.

< Continuous learning — Al adapts from past failures
& feedback.

22

Challenges & risks of Al in testing

< '@ Hallucinations — Al may generate incorrect or
irrelevant test cases.

4 Q Explainability gap — difficult to trust “black box” test
generation.

< @ Data privacy issues — sensitive code/data in
training & pipelines.

< /A Over-automation risk — engineers may lose critical
testing intuition.

< € Human oversight required — HITL (supervision) vs
HOTL (monitoring).

23

Reflection question

< If Al reaches Level 5 autonomous testing, should testers
still design and review tests — or shift fully to
supervisors of Al-driven pipelines?

24

Why bugs matter in software engineering

& @& Rising costs — a bug caught in production can
cost 100x more than in development.

< (Y) Manual debugging bottleneck — time-consuming,
error-prone, slows down releases.

@ APR vision — Automated Program Repair aims
to reduce cost, speed up debugging, and improve
reliability.

25

Al in debugging

<> Q Fault localization — Al mines logs, traces, telemetry
to pinpoint failure lines.

<> [J Automated bug triage — clusters duplicate reports,
prioritizes severity.

< & Debugging co-pilot —» LLMs (ChatGPT, Copilot)
suggest fixes in natural language.

$ () Example — Al analyses logs to propose likely root
cause.

26

LLM-based program repair (APR)

4 8% Definition — LLMs automatically suggest or
generate bug fixes.

< @ Advantages:
» Understand program semantics (beyond syntax).

» | everage project history & context.

= Use natural language reasoning (link bugs to
specs/docs).

27

Taxonomy of LLM-based program repair (1 of 2)

< Fine-tuning approaches

= Task-aligned, strong accuracy.
= Costly retraining (VulMaster, MORepair).

< Prompting approaches

= Zero-/few-shot repair via LLMs.
= Fast, flexible, but limited by context size.

<> Procedural pipelines

= Multi-step repair: generate — validate — refine.

= Often include test-in-the-loop (ChatRepair,
ThinkRepair).

28

Taxonomy of LLM-based program repair (2 of 2)

< Agentic frameworks
= Autonomous Al agents navigating repos & fixing
bugs.
= Cross-file, multi-hunk repair (SWE-Agent,
RepairAgent).
< Enhancements

* RAG (Retrieval-Augmented Generation): add
external knowledge.

= AAG (Analysis-Augmented Generation): couple
static/dynamic analysis.

29

Analysis-augmented generation

< Concept. Combines LLMs’ generative power
with static/dynamic program analysis.

<> Workflow:

= Analysis tools (e.g., static analysers, symbolic execution, test
oracles) extract insights.

= LLM integrates results into its reasoning process.

= Code generation/repair guided by factual, program-aware
feedback.

< Benefits:

= Reduces hallucinations and nonsensical patches.
» Produces semantically valid, verifiable fixes.

= Bridges gap between Al creativity and software engineering
rigor. 30

Prompting & RAG-based repair

< % Prompting approaches

= Zero-/few-shot bug repair with natural language prompts.
= Fast, no retraining required.
= Limited by context window size.

< & Retrieval-augmented generation (RAG)

= Expands context with similar past bug-fix patterns.
» |mproves accuracy for real-world, multi-file bugs.

$- € Examples

= [-RAP — prompt tuning with retrieval.
» DSRepair — domain-specific RAG repair.
= TracePrompt — integrates execution traces into prompts.

31

Procedural pipelines for program repair

< & Multi-step repair workflows

= Structured process instead of “one-shot” LLM answers.
$ & Test-in-the-loop

» ChatRepair, ThinkRepair.

= Generate — run tests — refine patch until pass.

< 9 Human-in-the-loop (HITL)
» CREF, HULA.
= Human guides patching with feedback at checkpoints.

$ €93 Typical cycle
Generate — Validate — Refine — Approve

32

Agentic frameworks for bug repair

< & Autonomous Al agents

= Orchestrate debugging & repair across the whole repo.

= Can navigate codebases, run tools, and patch multiple
files/hunks.

$ € Examples

= SWE-Agent — repo-level debugging & repair.
» AutoCodeRover — exploration + multi-step patching.
» RepairAgent — integrates external tools for bug repair.

< 8B Trade-offs

. High autonomy, flexible workflows.
= X Higher latency, complexity, and resource usage.

33

Evaluation challenges in Al-based bug repair

< B4 Test suite limitations

» Passing tests # true correctness (hidden bugs
remain).

< [ull Benchmark overfitting

* Models optimized for Defects4J or SWE-bench may
fail in real-world repos.

< € Hallucinated fixes

= Patches look plausible but silently introduce new
errors.

34

Al agents

< Definition: Autonomous or semi-autonomous Al entities

that perceive, reason, and act in software engineering
tasks.

< Types of Agents:

» Task-specific bots — Cl bots, dependency checkers.
= Conversational copilots — ChatGPT, GitHub Copilot.

= Multi-agent frameworks - MetaGPT, ChatDeyv,
IReDev.

< Position in software engineering:

Automation — Al-DevOps — NoOps (increasing autonomy)

35

Al agents in DevOps — NoOps

< Generative Al + agents in pipelines
» Orchestrate build, test, deploy end-to-end.
= Perform integrated monitoring & remediation.
= Enable self-healing pipelines.

<> Human-Al collaboration

» HITL (Human-in-the-Loop) — Engineers review &
approve agent actions.

* HOTL (Human-on-the-Loop) - Agents act
autonomously, humans supervise.

36

Opportunities with Al agents

< (V) Always-on monitoring
= 24/7 anomaly detection, log analysis, and automated triage.

< & End-to-end workflow orchestration

= From requirements — build — test — deployment — monitoring.

$ 4> Accelerated delivery

= Shorter requirement-to-deployment cycles in CI/CD pipelines.

< k4 Scalable productivity

= Augments teams with virtual engineers, enabling larger-scale
projects.

37

Challenges of Al agents

$ @ Trust & explainability

= Black-box reasoning — hard to validate Al-driven fixes.

&> A\ Over-reliance risk

= Team skill erosion if humans defer too much to agents.
- & Integration complexity

= Tool sprawl, compatibility, and maintenance challenges.
{- (@ Security & governance

= Risks of autonomous decisions without proper oversight.

38

Examples of Al agents

$ 92 Code & debugging agents
= SWE-Agent, AutoCodeRover — repo-scale debugging & repair.
<> () Conversational copilots

» GitHub Copilot Chat — embedded LLM-bot for developer
workflows.

$ [E] Requirements agents

= [ReDev — multi-agent collaboration for requirements
engineering.

<~ &) Pipeline bots

= GitHub/GitLab bots — automate tests, merges, reviews,
deployments.

39

Evolution of Al agents (1 of 3)

<> From Copilots — Co-Workers
= Early stage: LLMs as copilots — assist developers
with code completion & suggestions.

= Emerging stage: Multi-agent orchestration — different
specialized Al agents (design, test, deploy)
collaborating like virtual team members.

= Vision: Al agents acting as “colleagues” coordinating
end-to-end tasks.

40

Evolution of Al agents (2 of 3)

< Pipeline autonomy

= Agents execute builds, run tests, deploy, monitor, and
rollback without human triggers.

= CI/CD pipelines move from “automated scripts” —
“self-driving systems.”

= Continuous optimization — pipelines learn from past
outcomes.

41

Evolution of Al agents (3 of 3)

< Al as “Platform Ops”

* |ntelligent management of infrastructure, scaling,
monitoring, and observability.

= Al dynamically reallocates resources, predicts
failures, and enforces compliance.

* Moves DevOps closer to the NoOps vision (goal-
driven ops, minimal manual work).

42

X-Ops convergence (1 of 2)

< Unified Al-driven platforms

= Al-enabled MLOps, DataOps, SecOps integration
into DevOps pipelines.

= Shared observability, compliance, and governance
layers managed by Al.

= Breaking silos — one ecosystem for engineering +
operations.

43

X-Ops convergence (2 of 2)

< Cross-domain orchestration

= Al agents coordinate workflows across DevOps,
MLOps, DataOps, SecOps.

= Examples:

 Data pipelines auto-trigger model retraining
(MLOps < DataOps).
« Al monitors for security drift, auto-patches
(SecOps < DevOps).
= Towards continuous intelligence loops.

44

Risks & open challenges (1 of 2)

< Over-reliance & skill erosion

» Engineers risk losing debugging and testing intuition if
Al dominates workflows.

< Al governance & security

= Adversarial threats against autonomous pipelines.
= | ack of clear accountability for Al-driven decisions.

45

Risks & open challenges (2 of 2)

< Tool fragmentation & standardization

» Diverse ecosystem of Al-SE tools — interoperability
gaps.
= Urgent need for standards, APls, and benchmarks.
<> Sustainability concerns

» Energy/cost implications of large Al models in CI/CD.

= How to balance speed, accuracy, and
environmental cost”?

46

Reflection question

< As Al agents move DevOps towards NoOps, what
should the future role of human engineers be — strategic
designers, ethical overseers, or creative problem-
solvers?

47

Key points (1 of 2)

g7 Why Al in DevOps: tackles scale, complexity, and
bottlenecks in modern pipelines.

- @ Al-DevOps Definition: pipelines augmented with
predictive, generative, and autonomous Al agents.

: Continuous Testing & Debugging: Al for test
generation, self-healing automation, and program repair.

. Al Agents: from copilots — co-workers — orchestrators
(towards NoOps).

- (® HITL vs HOTL: balance between oversight and autonomy
remains critical.

48

Key points (2 of 2)

@ X-Ops Convergence: DevOps, MLOps, DataOps, and
SecOps merging into unified Al-driven platforms.

- © Challenges: trust, explainability, over-reliance, security,
and sustainability.

L4 Opportunities: faster releases, end-to-end automation,
scalable productivity.

- (@ Vision: Goal-driven software engineering — humans
define what, Al defines how.

- Q Reflection: If pipelines reach full autonomy (NoOps), how
should engineers evolve their roles?

49

;

w"ﬁ“éﬁ% N WHY

‘T '_]: WHEN

WHAT = W%EVIV\]HAT
1 >
WH_{/\\/: r:EEHOVV

<

	Slide 1: Plataformas e Serviços X-Ops (16233) AI-Assisted DevOps
	Slide 2: Challenges in DevOps today
	Slide 3: Why bring AI into DevOps?
	Slide 4: What is AI-DevOps? (1 of 2)
	Slide 5: What is AI-DevOps? (2 of 2)
	Slide 6: DevOps → AI-DevOps → NoOps
	Slide 7: Opportunities from AI-DevOps
	Slide 8: Open challenges
	Slide 9: Reflection question
	Slide 10: AI in continuous testing
	Slide 11: Why continuous testing matters
	Slide 12: Challenges in traditional test automation
	Slide 13: AI as a game-changer in testing
	Slide 14: AI test automation levels
	Slide 15: AI techniques in test case generation
	Slide 16: AI in test data management
	Slide 17: AI for self-healing test automation
	Slide 18: AI for defect analysis & program repair
	Slide 19: LLMs vs. SLMs in software testing
	Slide 20: AI testing tooling landscape
	Slide 21: Integrating AI testing into CI/CD
	Slide 22: Benefits of AI in continuous testing
	Slide 23: Challenges & risks of AI in testing
	Slide 24: Reflection question
	Slide 25: Why bugs matter in software engineering
	Slide 26: AI in debugging
	Slide 27: LLM-based program repair (APR)
	Slide 28: Taxonomy of LLM-based program repair (1 of 2)
	Slide 29: Taxonomy of LLM-based program repair (2 of 2)
	Slide 30: Analysis-augmented generation
	Slide 31: Prompting & RAG-based repair
	Slide 32: Procedural pipelines for program repair
	Slide 33: Agentic frameworks for bug repair
	Slide 34: Evaluation challenges in AI-based bug repair
	Slide 35: AI agents
	Slide 36: AI agents in DevOps → NoOps
	Slide 37: Opportunities with AI agents
	Slide 38: Challenges of AI agents
	Slide 39: Examples of AI agents
	Slide 40: Evolution of AI agents (1 of 3)
	Slide 41: Evolution of AI agents (2 of 3)
	Slide 42: Evolution of AI agents (3 of 3)
	Slide 43: X-Ops convergence (1 of 2)
	Slide 44: X-Ops convergence (2 of 2)
	Slide 45: Risks & open challenges (1 of 2)
	Slide 46: Risks & open challenges (2 of 2)
	Slide 47: Reflection question
	Slide 48: Key points (1 of 2)
	Slide 49: Key points (2 of 2)
	Slide 50

