
Plataformas e Serviços X-Ops
(16233)

AI-Assisted DevOps

1Nuno Pombo - Plataformas e Serviços X-Ops, 2025/26

System complexity exploding, microservices,

distributed systems.

Data overload from logs, monitoring, telemetry

streams.

Pipeline scale, hundreds of commits and builds

daily.

Triple pressure balancing speed , quality

, and cost .

Human bottlenecks in reviews, testing, and

incident response.

Challenges in DevOps today

2

Automation plateau: traditional scripts & rules
cannot scale.

AI/LLMs capabilities:

▪ Learn from code & ops data.

▪ Predict pipeline failures (flaky tests, merge risks).

▪ Assist in root cause analysis & incident mitigation.

▪ Generate or repair code (Copilot, DeepFix,

CodeWhisperer).

Shift from static automation → adaptive, learning
automation.

Why bring AI into DevOps?

3

Definition: DevOps pipelines augmented with AI

& intelligent agents.

Features:

▪ Predictive CI/CD (failure forecasting, test

prioritization).

▪ AI-generated & auto-repaired test cases.

▪ Anomaly detection & proactive incident

management (AIOps).

▪ Generative AI for code, documentation, infra configs.

Human role shifts to oversight, design, trust

management.

What is AI-DevOps? (1 of 2)

4

Examples:

▪ CI/CD: Predict flaky builds, optimize test

suites.

▪ Testing: LLM-based test generation.

▪ Operations: Cloud incident triage with LLMs.

▪ Maintenance: Automated program repair.

▪ Security: Vulnerability detection with AI.

What is AI-DevOps? (2 of 2)

5

DevOps: Automated scripts + human

supervision.

AI-DevOps: Pipelines with AI-driven intelligence

& agents.

NoOps (vision): Fully autonomous operation &

deployment.

▪ AI self-heals, scales, deploys

▪ Humans = exception handlers

DevOps → AI-DevOps → NoOps

6

Faster release cycles with less risk.

Reduced manual toil in ops (tickets, log

analysis).

Better defect detection & predictive quality.

Democratization of SE knowledge via AI

assistants.

New roles: AI trainers, pipeline supervisors, AI

safety engineers.

Opportunities from AI-DevOps

7

Confabulations & incorrect AI outputs.

Security & IP issues in generated artifacts.

Ensuring fairness & accountability in AI

decisions.

Human-in-the-Loop (HITL) vs. Human-on-the-

Loop (HOTL) oversight.

Risk of over-reliance on AI → skill erosion.

Open challenges

8

Reflection question

 As DevOps evolves into AI-DevOps, should engineers

act as active collaborators with AI (HITL) or mainly

supervisors (HOTL)? How might this reshape

engineering roles?

9

Where AI transforms Quality Assurance in CI/CD

pipelines.

From manual testing → automated scripts → AI-

augmented → autonomous testing.

AI in continuous testing

10

In DevOps, every commit can break the

system.

Testing must run continuously to match

Agile/CI speed.

Traditional bottlenecks:

▪ Slow or incomplete test creation.

▪ Limited execution at scale.

▪ High maintenance cost of fragile test scripts.

Why continuous testing matters

11

Fragile scripts, break often with small UI/code

changes.

Limited test coverage, mostly unit tests, less

on integration & UI.

Test data pain, hard to generate realistic,

reusable datasets.

Slow feedback, failures detected too late in the

CI/CD pipeline.

Challenges in traditional test automation

12

Learns continuously from codebases, commit

history, and telemetry.

Generates and repairs test

cases automatically (unit, integration, UI).

Detects flaky builds and removes redundant

test executions.

Predicts risks, prioritizes the most valuable

tests in CI/CD.

AI as a game-changer in testing

13

AI test automation levels

L0: Manual Testing → humans write &
run tests.

L1: Scripted Automation → fixed
scripts, brittle but repeatable.

L2: Codeless / Semi-Automated →
record-playback, low-code tools.

L3: AI-Assisted Self-Healing → tests
adapt automatically to changes.

L4: AI-Driven with HITL → AI
generates & runs tests, humans
supervise.

L5: Fully Autonomous
(HOTL/NoOps) → AI handles all
testing, humans monitor outcomes.

14

 Requirements → Test Code: LLMs generate unit tests

directly from user stories, specs, or acceptance criteria.

 Model-based testing: derive tests from UML diagrams,

state machines, or workflow graphs.

 Search-based AI: explore input space using

evolutionary algorithms (e.g., EvoSuite + AI

augmentation).

 Examples: TOGA, A3Test (AI-enhanced test generation

frameworks).

AI techniques in test case generation

15

 Synthetic data generation → AI creates realistic but

safe test datasets.

 Data masking & anonymization → protect privacy

while testing with production-like data.

 Reproducibility & compliance → AI ensures data

consistency across environments (GDPR, HIPAA).

 Pipeline integration → supports reproducible test runs

within CI/CD.

AI in test data management

16

 Dynamic locators → AI automatically adapts when UI

elements change (IDs, labels, DOM structure).

 Example tools: Parasoft Selenic, Testim, Applitools

Ultrafast Grid.

 Benefits:

▪ Reduces fragile test failures.

▪ Cuts test maintenance cost & effort.

▪ Keeps pipelines stable despite frequent UI updates.

AI for self-healing test automation

17

 Root cause localization → AI mines logs & traces to

pinpoint failure lines.

 Bug triage automation → clusters duplicates, assigns

priority/severity.

 Program repair with LLMs → tools like DeepFix,

InferFix suggest patches automatically.

 Debugging co-pilot → AI recommends fixes, engineers

review & approve.

AI for defect analysis & program repair

18

 Large Language Models (LLMs):

▪ Generate tests, assertions, and documentation.

▪ Evaluate coverage and detect bugs across
codebases.

▪ Examples: GPT-4, CodeLlama, DeepSeek-Coder.

 Small Language Models (SLMs):

▪ Lightweight, cost-efficient, and privacy-preserving.

▪ Specialized in narrow tasks (e.g., test smell
detection, unit-level bug fixing).

▪ Run on-premise or at the edge (lower data leakage
risk).

▪ Example: CodeT5.

LLMs vs. SLMs in software testing

19

 General AI assistants

▪ ChatGPT, GitHub Copilot → test generation, assertions,

documentation.

 Testing-specific tools

▪ SmartBear VisualTest → AI-powered visual regression.

▪ SonarQube AI, CodeQL → static analysis, security, code

quality.

▪ Testim, Parasoft Selenic → self-healing UI test automation.

 Emerging trend

▪ 80% of enterprises will adopt AI-augmented testing by

2027 (Source: Gartner).

AI testing tooling landscape

20

 Bake AI tests into the pipeline (templates for all repos).

 Run on every PR: unit, integration, UI, performance.

 Risk-aware gating: AI flags/predicts risky merges

→ block or require review.

 Close the loop: push results & insights to DevOps

dashboards (trendlines, flaky test heatmaps).

Integrating AI testing into CI/CD

21

 Accelerated delivery → faster time-to-release.

 Improved coverage → fewer gaps, reduced test

debt.

 Reduced maintenance cost → self-healing &

automation lower overhead.

 Stronger defect detection → especially critical bugs

before release.

 Continuous learning → AI adapts from past failures

& feedback.

Benefits of AI in continuous testing

22

 Hallucinations → AI may generate incorrect or

irrelevant test cases.

 Explainability gap → difficult to trust “black box” test

generation.

 Data privacy issues → sensitive code/data in

training & pipelines.

 Over-automation risk → engineers may lose critical

testing intuition.

 Human oversight required → HITL (supervision) vs

HOTL (monitoring).

Challenges & risks of AI in testing

23

Reflection question

 If AI reaches Level 5 autonomous testing, should testers

still design and review tests — or shift fully to

supervisors of AI-driven pipelines?

24

 Rising costs → a bug caught in production can

cost 100x more than in development.

 Manual debugging bottleneck → time-consuming,

error-prone, slows down releases.

 APR vision → Automated Program Repair aims

to reduce cost, speed up debugging, and improve

reliability.

Why bugs matter in software engineering

25

 Fault localization → AI mines logs, traces, telemetry

to pinpoint failure lines.

 Automated bug triage → clusters duplicate reports,

prioritizes severity.

 Debugging co-pilot → LLMs (ChatGPT, Copilot)

suggest fixes in natural language.

 Example → AI analyses logs to propose likely root

cause.

AI in debugging

26

 Definition → LLMs automatically suggest or

generate bug fixes.

 Advantages:

▪ Understand program semantics (beyond syntax).

▪ Leverage project history & context.

▪ Use natural language reasoning (link bugs to

specs/docs).

LLM-based program repair (APR)

27

 Fine-tuning approaches

▪ Task-aligned, strong accuracy.

▪ Costly retraining (VulMaster, MORepair).

 Prompting approaches

▪ Zero-/few-shot repair via LLMs.

▪ Fast, flexible, but limited by context size.

 Procedural pipelines

▪ Multi-step repair: generate → validate → refine.

▪ Often include test-in-the-loop (ChatRepair,

ThinkRepair).

Taxonomy of LLM-based program repair (1 of 2)

28

 Agentic frameworks

▪ Autonomous AI agents navigating repos & fixing

bugs.

▪ Cross-file, multi-hunk repair (SWE-Agent,

RepairAgent).

 Enhancements

▪ RAG (Retrieval-Augmented Generation): add

external knowledge.

▪ AAG (Analysis-Augmented Generation): couple

static/dynamic analysis.

Taxonomy of LLM-based program repair (2 of 2)

29

Analysis-augmented generation

 Concept: Combines LLMs’ generative power

with static/dynamic program analysis.

 Workflow:

▪ Analysis tools (e.g., static analysers, symbolic execution, test

oracles) extract insights.

▪ LLM integrates results into its reasoning process.

▪ Code generation/repair guided by factual, program-aware

feedback.

 Benefits:

▪ Reduces hallucinations and nonsensical patches.

▪ Produces semantically valid, verifiable fixes.

▪ Bridges gap between AI creativity and software engineering

rigor. 30

 Prompting approaches

▪ Zero-/few-shot bug repair with natural language prompts.

▪ Fast, no retraining required.

▪ Limited by context window size.

 Retrieval-augmented generation (RAG)

▪ Expands context with similar past bug-fix patterns.

▪ Improves accuracy for real-world, multi-file bugs.

 Examples

▪ T-RAP → prompt tuning with retrieval.

▪ DSRepair → domain-specific RAG repair.

▪ TracePrompt → integrates execution traces into prompts.

Prompting & RAG-based repair

31

 Multi-step repair workflows

▪ Structured process instead of “one-shot” LLM answers.

 Test-in-the-loop

▪ ChatRepair, ThinkRepair.

▪ Generate → run tests → refine patch until pass.

 Human-in-the-loop (HITL)

▪ CREF, HULA.

▪ Human guides patching with feedback at checkpoints.

 Typical cycle

Generate → Validate → Refine → Approve

Procedural pipelines for program repair

32

 Autonomous AI agents

▪ Orchestrate debugging & repair across the whole repo.

▪ Can navigate codebases, run tools, and patch multiple

files/hunks.

 Examples

▪ SWE-Agent → repo-level debugging & repair.

▪ AutoCodeRover → exploration + multi-step patching.

▪ RepairAgent → integrates external tools for bug repair.

 Trade-offs

▪ High autonomy, flexible workflows.

▪ Higher latency, complexity, and resource usage.

Agentic frameworks for bug repair

33

 Test suite limitations

▪ Passing tests ≠ true correctness (hidden bugs

remain).

 Benchmark overfitting

▪ Models optimized for Defects4J or SWE-bench may

fail in real-world repos.

 Hallucinated fixes

▪ Patches look plausible but silently introduce new

errors.

Evaluation challenges in AI-based bug repair

34

 Definition: Autonomous or semi-autonomous AI entities

that perceive, reason, and act in software engineering

tasks.

 Types of Agents:

▪ Task-specific bots – CI bots, dependency checkers.

▪ Conversational copilots – ChatGPT, GitHub Copilot.

▪ Multi-agent frameworks – MetaGPT, ChatDev,

iReDev.

 Position in software engineering:

Automation → AI-DevOps → NoOps (increasing autonomy)

AI agents

35

 Generative AI + agents in pipelines

▪ Orchestrate build, test, deploy end-to-end.

▪ Perform integrated monitoring & remediation.

▪ Enable self-healing pipelines.

 Human–AI collaboration

▪ HITL (Human-in-the-Loop) – Engineers review &

approve agent actions.

▪ HOTL (Human-on-the-Loop) – Agents act

autonomously, humans supervise.

AI agents in DevOps → NoOps

36

 Always-on monitoring

▪ 24/7 anomaly detection, log analysis, and automated triage.

 End-to-end workflow orchestration

▪ From requirements → build → test → deployment → monitoring.

 Accelerated delivery

▪ Shorter requirement-to-deployment cycles in CI/CD pipelines.

 Scalable productivity

▪ Augments teams with virtual engineers, enabling larger-scale

projects.

Opportunities with AI agents

37

 Trust & explainability

▪ Black-box reasoning → hard to validate AI-driven fixes.

 Over-reliance risk

▪ Team skill erosion if humans defer too much to agents.

 Integration complexity

▪ Tool sprawl, compatibility, and maintenance challenges.

 Security & governance

▪ Risks of autonomous decisions without proper oversight.

Challenges of AI agents

38

 Code & debugging agents

▪ SWE-Agent, AutoCodeRover → repo-scale debugging & repair.

 Conversational copilots

▪ GitHub Copilot Chat → embedded LLM-bot for developer

workflows.

 Requirements agents

▪ iReDev → multi-agent collaboration for requirements

engineering.

 Pipeline bots

▪ GitHub/GitLab bots → automate tests, merges, reviews,

deployments.

Examples of AI agents

39

 From Copilots → Co-Workers

▪ Early stage: LLMs as copilots → assist developers

with code completion & suggestions.

▪ Emerging stage: Multi-agent orchestration → different

specialized AI agents (design, test, deploy)

collaborating like virtual team members.

▪ Vision: AI agents acting as “colleagues” coordinating

end-to-end tasks.

Evolution of AI agents (1 of 3)

40

 Pipeline autonomy

▪ Agents execute builds, run tests, deploy, monitor, and

rollback without human triggers.

▪ CI/CD pipelines move from “automated scripts” →

“self-driving systems.”

▪ Continuous optimization → pipelines learn from past

outcomes.

Evolution of AI agents (2 of 3)

41

 AI as “Platform Ops”

▪ Intelligent management of infrastructure, scaling,

monitoring, and observability.

▪ AI dynamically reallocates resources, predicts

failures, and enforces compliance.

▪ Moves DevOps closer to the NoOps vision (goal-

driven ops, minimal manual work).

Evolution of AI agents (3 of 3)

42

 Unified AI-driven platforms

▪ AI-enabled MLOps, DataOps, SecOps integration

into DevOps pipelines.

▪ Shared observability, compliance, and governance

layers managed by AI.

▪ Breaking silos → one ecosystem for engineering +

operations.

X-Ops convergence (1 of 2)

43

 Cross-domain orchestration

▪ AI agents coordinate workflows across DevOps,

MLOps, DataOps, SecOps.

▪ Examples:

• Data pipelines auto-trigger model retraining

(MLOps DataOps).

• AI monitors for security drift, auto-patches

(SecOps DevOps).

▪ Towards continuous intelligence loops.

X-Ops convergence (2 of 2)

44

 Over-reliance & skill erosion

▪ Engineers risk losing debugging and testing intuition if

AI dominates workflows.

 AI governance & security

▪ Adversarial threats against autonomous pipelines.

▪ Lack of clear accountability for AI-driven decisions.

Risks & open challenges (1 of 2)

45

 Tool fragmentation & standardization

▪ Diverse ecosystem of AI-SE tools → interoperability

gaps.

▪ Urgent need for standards, APIs, and benchmarks.

 Sustainability concerns

▪ Energy/cost implications of large AI models in CI/CD.

▪ How to balance speed, accuracy, and

environmental cost?

Risks & open challenges (2 of 2)

46

Reflection question

 As AI agents move DevOps towards NoOps, what

should the future role of human engineers be — strategic

designers, ethical overseers, or creative problem-

solvers?

47

• Why AI in DevOps: tackles scale, complexity, and

bottlenecks in modern pipelines.

• AI-DevOps Definition: pipelines augmented with

predictive, generative, and autonomous AI agents.

• Continuous Testing & Debugging: AI for test

generation, self-healing automation, and program repair.

• AI Agents: from copilots → co-workers → orchestrators

(towards NoOps).

• HITL vs HOTL: balance between oversight and autonomy

remains critical.

Key points (1 of 2)

48

• X-Ops Convergence: DevOps, MLOps, DataOps, and

SecOps merging into unified AI-driven platforms.

• Challenges: trust, explainability, over-reliance, security,

and sustainability.

• Opportunities: faster releases, end-to-end automation,

scalable productivity.

• Vision: Goal-driven software engineering → humans

define what, AI defines how.

• Reflection: If pipelines reach full autonomy (NoOps), how

should engineers evolve their roles?

Key points (2 of 2)

49

50

	Slide 1: Plataformas e Serviços X-Ops (16233) AI-Assisted DevOps
	Slide 2: Challenges in DevOps today
	Slide 3: Why bring AI into DevOps?
	Slide 4: What is AI-DevOps? (1 of 2)
	Slide 5: What is AI-DevOps? (2 of 2)
	Slide 6: DevOps → AI-DevOps → NoOps
	Slide 7: Opportunities from AI-DevOps
	Slide 8: Open challenges
	Slide 9: Reflection question
	Slide 10: AI in continuous testing
	Slide 11: Why continuous testing matters
	Slide 12: Challenges in traditional test automation
	Slide 13: AI as a game-changer in testing
	Slide 14: AI test automation levels
	Slide 15: AI techniques in test case generation
	Slide 16: AI in test data management
	Slide 17: AI for self-healing test automation
	Slide 18: AI for defect analysis & program repair
	Slide 19: LLMs vs. SLMs in software testing
	Slide 20: AI testing tooling landscape
	Slide 21: Integrating AI testing into CI/CD
	Slide 22: Benefits of AI in continuous testing
	Slide 23: Challenges & risks of AI in testing
	Slide 24: Reflection question
	Slide 25: Why bugs matter in software engineering
	Slide 26: AI in debugging
	Slide 27: LLM-based program repair (APR)
	Slide 28: Taxonomy of LLM-based program repair (1 of 2)
	Slide 29: Taxonomy of LLM-based program repair (2 of 2)
	Slide 30: Analysis-augmented generation
	Slide 31: Prompting & RAG-based repair
	Slide 32: Procedural pipelines for program repair
	Slide 33: Agentic frameworks for bug repair
	Slide 34: Evaluation challenges in AI-based bug repair
	Slide 35: AI agents
	Slide 36: AI agents in DevOps → NoOps
	Slide 37: Opportunities with AI agents
	Slide 38: Challenges of AI agents
	Slide 39: Examples of AI agents
	Slide 40: Evolution of AI agents (1 of 3)
	Slide 41: Evolution of AI agents (2 of 3)
	Slide 42: Evolution of AI agents (3 of 3)
	Slide 43: X-Ops convergence (1 of 2)
	Slide 44: X-Ops convergence (2 of 2)
	Slide 45: Risks & open challenges (1 of 2)
	Slide 46: Risks & open challenges (2 of 2)
	Slide 47: Reflection question
	Slide 48: Key points (1 of 2)
	Slide 49: Key points (2 of 2)
	Slide 50

