FACULDADE
ENGENHARIA

N

Departamento de
Informatica

Plataformas e Servicos X-Ops
(16233)

Microservices Architecture

(adapted from Engineering Software Products: An Introduction to Modern Software Engineering, lan Sommerville,
Pearson, 2020)

Nuno Pombo - Plataformas e Servigos X-Ops, 2025/26

Software services (1 of 2)

<> A software service is a software component that can
be accessed from remote computers over the
Internet. Given an input, a service produces a
corresponding output, without side effects.
= The service is accessed through its published interface
and all details of the service implementation are hidden.

= Services do not maintain any internal state. State
information is either stored in a database or is maintained
by the service requestor.

Software services (2 of 2)

< When a service request is made, the state information
may be included as part of the request and the updated
state information is returned as part of the service result.

< As there is no local state, services can be dynamically
reallocated from one virtual server to another and
replicated across several servers.

Modern web services

< After various experiments in the 1990s with service-
oriented computing, the idea of ‘big’ Web Services
emerged in the early 2000s.

< These were based on XML-based protocols and
standards such as SOAP for service interaction and
WSDL for interface description.

<> Most software services don’t need the generality that’s
inherent in the design of web service protocols.

<> Consequently, modern service-oriented systems, use
simpler, ‘lighter weight’ service-interaction protocols
that have lower overheads and, consequently, faster
execution.)

Microservices

<> Microservices are small-scale, stateless, services
that have a single responsibility. They are combined
to create applications.

< They are completely independent with their own
database and Ul management code.

< Software products that use micro services have a
microservices architecture.

< If you need to create cloud-based software products
that are adaptable, scaleable and resilient then |
recommend that design them around a
microservices architecture.

5

A microservice example (1 of 2)

< System authentication

User registration, where users provide information about their
identity, security information, mobile (cell) phone number and
email address.

Authentication using UID/password.
Two-factor authentication using code sent to mobile phone.

User information management e.g. change password or mobile
phone number.

Reset forgotten password.

A microservice example (2 of 2)

<> Each of these features could be implemented as a

separate service that uses a central shared database to
hold authentication information.

< However, these features are too large to be
microservices. To identify the microservices that might
be used in the authentication system, you need to break

down the coarse-grain features into more detailed
functions.

Functional breakdown of authentication features

User registration

Setup new login id

Setup new password

Setup password recovery information

Setup two-factor authentication

Confirm registration

Authenticate using UID/password

Get login id

Get password

Check credentials

Confirm authentication

Authentication microservices

uiD
management

Guthentication Password
management

User info
management

UID data

Password data

User data

Characteristics of microservices

Characteristic

Explanation

Self-contained

Lightweight

Implementation
independent

Independently
Deployable

Business-oriented

Microservices do not have external dependencies. They
manage their own data and implement their own user
interface.

Microservices communicate using lightweight protocols, so
that service communication overheads are low.

Microservices may be implemented using different
programming languages and may use different
technologies (e.g., different types of database) in their
implementation.

Each microservice runs in its own process and is
independently deployable, using automated systems.

Microservices should implement business capabilities and
needs, rather than simply provide a technical service.

10

Microservice communication (1 of 2)

<> Microservices communicate by exchanging messages.

< A message that is sent between services includes some
administrative information, a service request and the
data required to deliver the requested service.

11

Microservice communication (2 of 2)

<> Services return a response to service request messages.

= An authentication service may send a message to a login service
that includes the name input by the user.

= The response may be a token associated with a valid user name
or might be an error saying that there is no registered user.

12

Microservice characteristics (1 of 2)

< A well-designed microservice should have high cohesion
and low coupling.

= Cohesion is a measure of the number of relationships that parts
of a component have with each other. High cohesion means that
all of the parts that are needed to deliver the component’s
functionality are included in the component.

= Coupling is a measure of the number of relationships that one
component has with other components in the system. Low
coupling means that components do not have many
relationships with other components.

13

Microservice characteristics (2 of 2)

< Each microservice should have a single responsibility i.e.
it should do one thing only and it should do it well.

= However, ‘one thing only’ is difficult to define in a way that’s
applicable to all services.

» Responsibility does not always mean a single, functional activity.

14

Password management functionality

OsSer tanctons SUPDUI!IIIg rancuons

Create password Check password validity
Change password Delete password

Check password Backup password database
Recover password Recover password database

Check database integrity

Repair password DB

15

Microservice support code

Microservice X

Service functionality

Message Failure
management management
Ul Data consistency

implementation management

16

Microservices architecture

<> A microservices architecture is an architectural style — a
tried and tested way of implementing a logical software
architecture.

< This architectural style addresses two problems with
monolithic applications

= The whole system has to be rebuilt, re-tested and re-
deployed when any change is made. This can be a slow
process as changes to one part of the system can
adversely affect other components.

» As the demand on the system increases, the whole system
has to be scaled, even if the demand is localized to a small
number of system components that implement the most
popular system functions.

17

Benefits of microservices architecture

Microservices are self-contained and run in separate
processes.

In cloud-based systems, each microservice may be
deployed in its own container. This means a
microservice can be stopped and restarted without
affecting other parts of the system.

If the demand on a service increases, service replicas
can be quickly created and deployed. These do not
require a more powerful server so ‘scaling-out’ is,
typically, much cheaper than ‘scaling up’.

18

A photo-printing system for mobile devices

Imagine that you are developing a photo-printing service for mobile devices.
Users can upload photos to your server from their phone or specify photos
from their Instagram account that they would like to be printed. Prints can be
made at different sizes and on different media.

Users can choose print size and print medium. For example, they may decide
to print a picture onto a mug or a T-shirt. The prints or other media are
prepared and then posted to their home. They pay for prints either using a
payment service such as Android or Apple Pay or by registering a credit card
with the printing service provider.

19

A microservices architecture for a photo-printing system

SERVICES
- - \
Registration
_/
a)
Authentication
a)
«— > Upload
. \ _/
Mobile API gatewa
app gateway s ~
«—> Payment
\ _/
\/ ~N
Printing
- _J
Despatch j

20

Key design questions for microservices architecture

What are the microservices that
make up the system?

How should microservices
communicate with each other?

How should data be
distributed and shared?

Microservices
architecture
design

How should the microservices How should service failure be
in the system be coordinated? detected, reported and managed?

21

Decomposition guidelines (1 of 2)

« Balance fine-grain functionality and system performance
Single-function services mean that changes are limited to fewer
services but require service communications to implement user
functionality. This slows down a system because of the need for
each service to bundle and unbundle messages sent from other
services.

* Follow the ‘common closure principle’

Elements of a system that are likely to be changed at the same
time should be located within the same service. Most new and
changed requirements should therefore only affect a single
service.

22

Decomposition guidelines (2 of 2)

« Associate services with business capabilities

A business capability is a discrete area of business functionality
that is the responsibility of an individual or a group. You should
identify the services that are required to support each business
capability.

* Design services so that they only have access to the
data that they need

If there is an overlap between the data used by different services,
you need a mechanism to propagate data changes to all
services using the same data.

23

Service communications (1 of 2)

< Services communicate by exchanging messages that
include information about the originator of the message,
as well as the data that is the input to or output from the
request.

24

Service communications (2 of 2)

< When you are designing a microservices architecture,
you have to establish a standard for communications
that all microservices should follow. Some of the key
decisions that you have to make are

= should service interaction be synchronous or asynchronous?

= should services communicate directly or via message broker
middleware?

= what protocol should be used for messages exchanged between
services?

25

Synchronous and asynchronous microservice interaction

Synchronous - A waits for B

Service A
Returns

Calls

Service B

Asynchronous - A and B execute concurrently

Service A

Processing Processing

Requests (B)

Queue B Queue A

Requests (A)

Processing Processing

Service B

26

Synchronous and asynchronous interaction (1 of 2)

< In a synchronous interaction, service A issues a request
to service B. Service A then suspends processing while
B is processing the request.

< It waits until service B has returned the required
information before continuing execution.

< In an asynchronous interaction, service A issues the
request that is queued for processing by service B. A
then continues processing without waiting for B to finish
its computations.

27

Synchronous and asynchronous interaction (2 of 2)

< Sometime later, service B completes the earlier request

from service A and queues the result to be retrieved by
A.

< Service A, therefore, has to check its queue periodically
to see if a result is available.

28

Direct and indirect service communication

Direct communication - A and B send messages to each other

[Service A j [Service B j

Indirect communication - A and B communicate through a message broker

Message broker

[Service A j [Service B j

29

Direct and indirect service communication

<-Direct service communication requires that
iInteracting services know each other’s address.

<> The services interact by sending requests directly
to these addresses.

< Indirect communication involves naming the
service that is required and sending that request to
a message broker (sometimes called a message
bus).

< The message broker is then responsible for finding
the service that can fulfil the service request.

30

Microservice data design

< You should isolate data within each system service with
as little data sharing as possible.

< If data sharing is unavoidable, you should design
microservices so that most sharing is ‘read-only’, with a

minimal number of services responsible for data
updates.

< If services are replicated in your system, you must
Include a mechanism that can keep the database copies
used by replica services consistent.

31

Inconsistency management (1 of 2)

<> An ACID transaction bundles a set of data updates into a

single unit so that either all updates are completed or
none of them are. ACID transactions are impractical in a
microservices architecture.

< The databases used by different microservices or

microservice replicas need not be completely consistent
all of the time.

32

Inconsistency management (2 of 2)

<> Dependent data inconsistency

= The actions or failures of one service can cause the data
managed by another service to become inconsistent.

<> Replica inconsistency

» There are several replicas of the same service that are executing
concurrently. These all have their own database copy and each
updates its own copy of the service data. You need a way of
making these databases ‘eventually consistent’ so that all
replicas are working on the same data.

33

Eventual consistency

< Eventual consistency is a situation where the system
guarantees that the databases will eventually become
consistent.

< You can implement eventual consistency by maintaining
a transaction log.

< When a database change is made, this is recorded on a
‘pending updates’ log.

<> Other service instances look at this log, update their own
database and indicate that they have made the change.

34

Using a pending transaction log

:

Service A1l Service A2
Database A Database A

J

A1/DB update 1

A1/DB update 2

A2/DB update 1

Pending transactions log

35

Service coordination

<> Most user sessions involve a series of interactions in

which operations have to be carried out in a specific
order.

< This is called a workflow.

= An authentication workflow for UlD/password authentication
shows the steps involved in authenticating a user.

» |n this example, the user is allowed 3 login attempts before the
system indicates that the login has failed.

36

Authentication workflow

attempts <=3 attempts > 3

Retry | Indicate
@ login < >\ failure

authfail=F

Increment

l attempts

N

attempts = 1 logi 1
authfail = F Get login

login invalid
authfail =T
login OK
Get <
password -
authfail=T
authfail=F
password

password OK

Check invalid
password " l

Orchestration and choreography

Service orchestration Service choreography
. Login Password
controller
X
| |
\ 4

Y
Login Password Authentication events
service service

38

Failure types in a microservices system

Failure type

Explanation

Internal service failure

External service failure

Service performance failure

These are conditions that are detected by the service and
can be reported to the service requestor in an error
message. An example of this type of failure is a service that
takes a URL as an input and discovers that this is an invalid
link.

These failures have an external cause that affects the
availability of a service. Failure may cause the service to
become unresponsive and actions have to be taken to restart
the service.

The performance of the service degrades to an unacceptable
level. This may be due to a heavy load or an internal problem
with the service. External service monitoring can be used to
detect performance failures and unresponsive services.

39

Timeouts and circuit breakers (1 of 2)

< A timeout is a counter that this associated with the
service requests and starts running when the request is
made.

<> Once the counter reaches some predefined value, such
as 10 seconds, the calling service assumes that the
service request has failed and acts accordingly.

40

Timeouts and circuit breakers (2 of 2)

< The problem with the timeout approach is that every
service call to a ‘failed service’ is delayed by the timeout
value so the whole system slows down.

< Instead of using timeouts explicitly when a service call is
made, he suggests using a circuit breaker. Like an
electrical circuit breaker, this immediately denies access
to a failed service without the delays associated with
timeouts.

41

Using a circuit breaker to cope with service failure

[Service S1 j [Service S2 j

Circuit breaker

Check S2 S2 available R . Route service
availability >| et timeout request
S2 unavailable
Respond S2 Set S2
unavailable unavailable
Increment
retries

Route service
<
response timeout ok

retries<=3

Check
timeout

Y

retries>3

timeout fail

A

RESTful services (1 of 2)

< The REST (REpresentational State Transfer)
architectural style is based on the idea of transferring

representations of digital resources from a server to a
client.

* You can think of a resource as any chunk of data such as credit
card details, an individual's medical record, a magazine or
newspaper, a library catalogue, and so on.

= Resources are accessed via their unigue URI and RESTful
services operate on these resources.

43

RESTful services (2 of 2)

< This is the fundamental approach used in the web where

the resource is a page to be displayed in the user’s
browser.

= An HTML representation is generated by the server in response

to an HTTP GET request and is transferred to the client for
display by a browser or a special-purpose app.

44

RESTful service principles

Principle

Explanation

Use HTTP verbs

Stateless services

URI addressable

Use XML or JSON

The basic methods defined in the HTTP protocol (GET,
PUT, POST, DELETE) must be used to access the
operations made available by the service.

Services must never maintain internal state. As | have
already explained, microservices are stateless, so fit with
this principle.

All resources must have a URI, with a hierarchical
structure, that is used to access subresources.

Resources should normally be represented in JSON or
XML or both. Other representations, such as audio and
video representations, may be used if appropriate.

45

RESTful service operations

Action

Implementation

Create

Read

Update

Delete

Implemented using HTTP POST, which creates the resource with
the given URI. If the resource has already been created, an error is
returned.

Implemented using HTTP GET, which reads the resource and
returns its value. GET operations should never update a resource
so that successive GET operations with no intervening PUT
operations always return the same value.

Implemented using HTTP PUT, which modifies an existing
resource. PUT should not be used for resource creation.

Implemented using HTTP DELETE, which makes the resource
inaccessible using the specified URI. The resource may or may not
be physically deleted.

46

Road information system (1 of 2)

< Imagine a system that maintains information about
incidents, such as ftraffic delays, roadworks and
accidents on a national road network. This system can
be accessed via a browser using the URL.:

= https://trafficinfo.net/incidents/

< Users can query the system to discover incidents on the
roads on which they are planning to travel.

47

Road information system (2 of 2)

< When implemented as a RESTful web service, you need

to design the resource structure so that incidents are
organized hierarchically.

= For example, incidents may be recorded according to the road

identifier (e.g. A90), the location (e.g. stonehaven), the

carriageway direction (e.g. north) and an incident number (e.g.
1). Therefore, each incident can be accessed using its URI:

= https://trafficinfo.net/incidents/A90/stonehaven/north/1

48

Incident description

Incident ID: ASON17061714391
Date: 17 June 2017

Time reported: 1439

Severity: Significant

Description: Broken-down bus on north carriageway. One lane closed. Expect
delays of up to 30 minutes.

49

Service operations

Retrieve
Returns information about a reported incident or
incidents. Accessed using the GET verb.
Add
Adds information about a new incident. Accessed using
the POST verb.
Update
Updates the information about a reported incident.
Accessed using the PUT verb.
Delete
Deletes an incident. The DELETE verb is used when an
iIncident has been cleared.

50

HTTP request and response processing

Microservice
HTTP Request
request processing

Gervice actiora

Response HTTP
generation response

HTTP request and response message organization

REQUEST

RESPONSE

[HTTP verb]

[UR]]

[HTTP version]

[HTTP version]

[Response code]

[Request header]

[Response header]

[Request body]

[Response body]

52

XML and JSON descriptions

XML JSON

<id> {

A90N17061714391 id: “A90N17061714391",
</id> “date”: “201706177,

<date> “time”: “1437",

20170617 “road_id”: “A90”,

</date> “place”: “Stonehaven”,
<time> “direction”: “north”,

1437 “severity”: “significant”,
</time> “description”: “Broken-down

<description>
Broken-down bus on north

carriageway.One lane closed.

Expect delays of up to
30 minutes.
</description>

bus on north carriageway. One
lane closed. Expect
delays of up to 30 minutes.”

}

53

REQUEST

A GET request and the associated response

RESPONSE

GET |incidents/A90/stonehaven/| HTTP/1.1

Host: trafficinfo.net

Accept: text/json, text/xml, text/plain
Content-Length: O

HTTP/1.1 200

Content-Length: 461
Content-Type: text/json

{
“number”: “A90N17061714391",
“date”: “20170617",
“time": “1437",
“road_id": "A90",
“place”: “Stonehaven”,
“direction”: “north”,
“severity”: “significant”,
“description”: “Broken-down bus on north
carriageway. One lane closed. Expect delays

of up to 30 minutes.”

}

{
“number”: “A90517061713001°",
"date": “20170617",
“time”: “1300",
“road_id": "A90",

", u

“place”: “Stonehaven”,

", u

“direction”: “south”,

“severity”: “minor”,

“description”: “Grass cutting on verge. Minor
delays”

}

54

Service deployment (1 of 2)

» After a system has been developed and delivered, it has

to be deployed on servers, monitored for problems and
updated as new versions become available.

* When a system is composed of tens or even hundreds of
microservices, deployment of the system is more
complex than for monolithic systems.

- The service development teams decide which
programming language, database, libraries and other
support software should be used to implement their
service. Consequently, there is no ‘standard’ deployment
configuration for all services.

55

Service deployment (2 of 2)

« It is now normal practice for microservice development
teams to be responsible for deployment and service
management as well as software development and to

use continuous deployment.

« Continuous deployment means that as soon as a change
to a service has been made and validated, the modified
service is redeployed.

56

Deployment automation (1 of 2)

« Continuous deployment depends on automation so that
as soon as a change is committed, a series of
automated activities is triggered to test the software.

 If the software ‘passes’ these tests, it then enters another
automation pipeline that packages and deploys the
software.

* The deployment of a new service version starts with the
programmer committing the code changes to a code
management system such as Git.

57

Deployment automation (2 of 2)

» This triggers a set of automated tests that run using the
modified service. If all service tests run successfully, a
new version of the system that incorporates the changed
service Is created.

 Another set of automated system tests are then
executed. If these run successfully, the service is ready
for deployment.

58

A continuous deployment pipeline

Commit change to
version manage-

ment
Reject change Reject change Reject change
A
Triggers
58 fail fail fail
o e e Pass (- Build test Pass [Run integration >
ests system tests
pass
pass

Contalnerlze Deploy service Run acceptance eplace current

service container tests service

fail

Reject change

59

Versioned services

Service
monitor

monitor service
response response
service request _
for cameras service curren’g ver5|on(~
APl link | cameras 002
atewa cameras >
. e i ™~ \ Y,
cameras service ~__ e -
~—
response >
P cameras 001
J

(

60

Key points (1 of 4)

* A microservice is an independent and self-contained
software component that runs in its own process and
communicates with other microservices using lightweight
protocols.

* Microservices in a system can be implemented using
different programming languages and database
technologies.

* Microservices have a single responsibility and should be
designed so that they can be easily changed without
having to change other microservices in the system.

61

Key points (2 of 4)

* Microservices architecture is an architectural style in
which the system is constructed from communicating
microservices. It is well-suited to cloud based systems
where each microservice can run in its own container.

« The two most important responsibilities of architects of a
microservices system are to decide how to structure the
system into microservices and to decide how
microservices should communicate and be coordinated.

62

Key points (3 of 4)

« Communication and coordination decisions include
deciding on microservice communication protocols, data
sharing, whether services should be centrally
coordinated, and failure management.

« The RESTful architectural style is widely used in
microservice-based systems. Services are designed so

that the HTTP verbs, GET, POST, PUT and DELETE,
map onto the service operations.

- The RESTful style is based on digital resources that, in a
microservices architecture, may be represented using
XML or, more commonly, JSON.

63

Key points (4 of 4)

« Continuous deployment is a process where new versions
of a service are put into production as soon as a service
change has been made. It is a completely automated
process that relies on automated testing to check that
the new version is of ‘production quality’.

« If continuous deployment is used, you may need to
maintain multiple versions of deployed services so that
you can switch to an older version if problems are
discovered in a newly-deployed service.

64

;

w"ﬁ“éﬁ% N WHY

‘T '_]: WHEN

WHAT = W%EVIV\]HAT
1 >
WH_{/\\/: r:EEHOVV

<

	Slide 1: Plataformas e Serviços X-Ops (16233) Microservices Architecture (adapted from Engineering Software Products: An Introduction to Modern Software Engineering, Ian Sommerville, Pearson, 2020)
	Slide 2: Software services (1 of 2)
	Slide 3: Software services (2 of 2)
	Slide 4: Modern web services
	Slide 5: Microservices
	Slide 6: A microservice example (1 of 2)
	Slide 7: A microservice example (2 of 2)
	Slide 8: Functional breakdown of authentication features
	Slide 9: Authentication microservices
	Slide 10: Characteristics of microservices
	Slide 11: Microservice communication (1 of 2)
	Slide 12: Microservice communication (2 of 2)
	Slide 13: Microservice characteristics (1 of 2)
	Slide 14: Microservice characteristics (2 of 2)
	Slide 15: Password management functionality
	Slide 16: Microservice support code
	Slide 17: Microservices architecture
	Slide 18: Benefits of microservices architecture
	Slide 19: A photo-printing system for mobile devices
	Slide 20: A microservices architecture for a photo-printing system
	Slide 21: Key design questions for microservices architecture
	Slide 22: Decomposition guidelines (1 of 2)
	Slide 23: Decomposition guidelines (2 of 2)
	Slide 24: Service communications (1 of 2)
	Slide 25: Service communications (2 of 2)
	Slide 26: Synchronous and asynchronous microservice interaction
	Slide 27: Synchronous and asynchronous interaction (1 of 2)
	Slide 28: Synchronous and asynchronous interaction (2 of 2)
	Slide 29: Direct and indirect service communication
	Slide 30: Direct and indirect service communication
	Slide 31: Microservice data design
	Slide 32: Inconsistency management (1 of 2)
	Slide 33: Inconsistency management (2 of 2)
	Slide 34: Eventual consistency
	Slide 35: Using a pending transaction log
	Slide 36: Service coordination
	Slide 37: Authentication workflow
	Slide 38: Orchestration and choreography
	Slide 39: Failure types in a microservices system
	Slide 40: Timeouts and circuit breakers (1 of 2)
	Slide 41: Timeouts and circuit breakers (2 of 2)
	Slide 42: Using a circuit breaker to cope with service failure
	Slide 43: RESTful services (1 of 2)
	Slide 44: RESTful services (2 of 2)
	Slide 45: RESTful service principles
	Slide 46: RESTful service operations
	Slide 47: Road information system (1 of 2)
	Slide 48: Road information system (2 of 2)
	Slide 49: Incident description
	Slide 50: Service operations
	Slide 51: HTTP request and response processing
	Slide 52: HTTP request and response message organization
	Slide 53: XML and JSON descriptions
	Slide 54: A GET request and the associated response
	Slide 55: Service deployment (1 of 2)
	Slide 56: Service deployment (2 of 2)
	Slide 57: Deployment automation (1 of 2)
	Slide 58: Deployment automation (2 of 2)
	Slide 59: A continuous deployment pipeline
	Slide 60: Versioned services
	Slide 61: Key points (1 of 4)
	Slide 62: Key points (2 of 4)
	Slide 63: Key points (3 of 4)
	Slide 64: Key points (4 of 4)
	Slide 65

