
Plataformas e Serviços X-Ops
(16233)

Microservices Architecture

(adapted from Engineering Software Products: An Introduction to Modern Software Engineering , Ian Sommerville,

Pearson, 2020)

1Nuno Pombo - Plataformas e Serviços X-Ops, 2025/26

A software service is a software component that can
be accessed from remote computers over the

Internet. Given an input, a service produces a

corresponding output, without side effects.

▪ The service is accessed through its published interface

and all details of the service implementation are hidden.

▪ Services do not maintain any internal state. State

information is either stored in a database or is maintained

by the service requestor.

Software services (1 of 2)

2

 When a service request is made, the state information

may be included as part of the request and the updated

state information is returned as part of the service result.

 As there is no local state, services can be dynamically

reallocated from one virtual server to another and

replicated across several servers.

Software services (2 of 2)

3

After various experiments in the 1990s with service-

oriented computing, the idea of ‘big’ Web Services

emerged in the early 2000s.

 These were based on XML-based protocols and

standards such as SOAP for service interaction and

WSDL for interface description.

Most software services don’t need the generality that’s

inherent in the design of web service protocols.

Consequently, modern service-oriented systems, use

simpler, ‘lighter weight’ service-interaction protocols

that have lower overheads and, consequently, faster

execution.

Modern web services

4

Microservices are small-scale, stateless, services
that have a single responsibility. They are combined

to create applications.

They are completely independent with their own
database and UI management code.

Software products that use micro services have a
microservices architecture.

 If you need to create cloud-based software products

that are adaptable, scaleable and resilient then I
recommend that design them around a

microservices architecture.

Microservices

5

 System authentication

▪ User registration, where users provide information about their

identity, security information, mobile (cell) phone number and

email address.

▪ Authentication using UID/password.

▪ Two-factor authentication using code sent to mobile phone.

▪ User information management e.g. change password or mobile

phone number.

▪ Reset forgotten password.

A microservice example (1 of 2)

6

 Each of these features could be implemented as a

separate service that uses a central shared database to

hold authentication information.

 However, these features are too large to be

microservices. To identify the microservices that might

be used in the authentication system, you need to break

down the coarse-grain features into more detailed

functions.

A microservice example (2 of 2)

7

Functional breakdown of authentication features

8

Authentication microservices

9

Characteristic Explanation

Self-contained Microservices do not have external dependencies. They

manage their own data and implement their own user

interface.

Lightweight Microservices communicate using lightweight protocols, so

that service communication overheads are low.

Implementation

independent

Microservices may be implemented using different

programming languages and may use different

technologies (e.g., different types of database) in their

implementation.

Independently

Deployable

Each microservice runs in its own process and is

independently deployable, using automated systems.

Business-oriented Microservices should implement business capabilities and

needs, rather than simply provide a technical service.

Characteristics of microservices

10

Microservice communication (1 of 2)

 Microservices communicate by exchanging messages.

 A message that is sent between services includes some

administrative information, a service request and the

data required to deliver the requested service.

11

Microservice communication (2 of 2)

 Services return a response to service request messages.

▪ An authentication service may send a message to a login service

that includes the name input by the user.

▪ The response may be a token associated with a valid user name

or might be an error saying that there is no registered user.

12

Microservice characteristics (1 of 2)

 A well-designed microservice should have high cohesion

and low coupling.

▪ Cohesion is a measure of the number of relationships that parts

of a component have with each other. High cohesion means that

all of the parts that are needed to deliver the component’s

functionality are included in the component.

▪ Coupling is a measure of the number of relationships that one

component has with other components in the system. Low

coupling means that components do not have many

relationships with other components.

13

Microservice characteristics (2 of 2)

 Each microservice should have a single responsibility i.e.

it should do one thing only and it should do it well.

▪ However, ‘one thing only’ is difficult to define in a way that’s

applicable to all services.

▪ Responsibility does not always mean a single, functional activity.

14

Password management functionality

15

Microservice support code

16

Microservices architecture

 A microservices architecture is an architectural style – a

tried and tested way of implementing a logical software
architecture.

 This architectural style addresses two problems with

monolithic applications

▪ The whole system has to be rebuilt, re-tested and re-

deployed when any change is made. This can be a slow

process as changes to one part of the system can

adversely affect other components.

▪ As the demand on the system increases, the whole system

has to be scaled, even if the demand is localized to a small

number of system components that implement the most

popular system functions.

17

• Microservices are self-contained and run in separate

processes.

• In cloud-based systems, each microservice may be

deployed in its own container. This means a

microservice can be stopped and restarted without

affecting other parts of the system.

• If the demand on a service increases, service replicas

can be quickly created and deployed. These do not

require a more powerful server so ‘scaling-out’ is,

typically, much cheaper than ‘scaling up’.

Benefits of microservices architecture

18

Imagine that you are developing a photo-printing service for mobile devices.

Users can upload photos to your server from their phone or specify photos

from their Instagram account that they would like to be printed. Prints can be

made at different sizes and on different media.

Users can choose print size and print medium. For example, they may decide

to print a picture onto a mug or a T-shirt. The prints or other media are

prepared and then posted to their home. They pay for prints either using a

payment service such as Android or Apple Pay or by registering a credit card

with the printing service provider.

A photo-printing system for mobile devices

19

A microservices architecture for a photo-printing system

20

Key design questions for microservices architecture

21

• Balance fine-grain functionality and system performance
Single-function services mean that changes are limited to fewer

services but require service communications to implement user

functionality. This slows down a system because of the need for

each service to bundle and unbundle messages sent from other

services.

• Follow the ‘common closure principle’
Elements of a system that are likely to be changed at the same

time should be located within the same service. Most new and

changed requirements should therefore only affect a single

service.

Decomposition guidelines (1 of 2)

22

• Associate services with business capabilities

A business capability is a discrete area of business functionality

that is the responsibility of an individual or a group. You should

identify the services that are required to support each business

capability.

• Design services so that they only have access to the

data that they need

If there is an overlap between the data used by different services,

you need a mechanism to propagate data changes to all

services using the same data.

Decomposition guidelines (2 of 2)

23

Service communications (1 of 2)

 Services communicate by exchanging messages that

include information about the originator of the message,

as well as the data that is the input to or output from the

request.

24

Service communications (2 of 2)

 When you are designing a microservices architecture,

you have to establish a standard for communications

that all microservices should follow. Some of the key

decisions that you have to make are

▪ should service interaction be synchronous or asynchronous?

▪ should services communicate directly or via message broker

middleware?

▪ what protocol should be used for messages exchanged between

services?

25

Synchronous and asynchronous microservice interaction

26

Synchronous and asynchronous interaction (1 of 2)

 In a synchronous interaction, service A issues a request

to service B. Service A then suspends processing while

B is processing the request.

 It waits until service B has returned the required

information before continuing execution.

 In an asynchronous interaction, service A issues the

request that is queued for processing by service B. A

then continues processing without waiting for B to finish

its computations.

27

Synchronous and asynchronous interaction (2 of 2)

 Sometime later, service B completes the earlier request

from service A and queues the result to be retrieved by

A.

 Service A, therefore, has to check its queue periodically

to see if a result is available.

28

Direct and indirect service communication

29

Direct and indirect service communication

Direct service communication requires that

interacting services know each other’s address.

The services interact by sending requests directly

to these addresses.

 Indirect communication involves naming the

service that is required and sending that request to

a message broker (sometimes called a message

bus).

The message broker is then responsible for finding

the service that can fulfil the service request.

30

Microservice data design

 You should isolate data within each system service with

as little data sharing as possible.

 If data sharing is unavoidable, you should design

microservices so that most sharing is ‘read-only’, with a

minimal number of services responsible for data

updates.

 If services are replicated in your system, you must

include a mechanism that can keep the database copies

used by replica services consistent.

31

Inconsistency management (1 of 2)

 An ACID transaction bundles a set of data updates into a

single unit so that either all updates are completed or

none of them are. ACID transactions are impractical in a

microservices architecture.

 The databases used by different microservices or

microservice replicas need not be completely consistent

all of the time.

32

Inconsistency management (2 of 2)

 Dependent data inconsistency

▪ The actions or failures of one service can cause the data

managed by another service to become inconsistent.

 Replica inconsistency

▪ There are several replicas of the same service that are executing

concurrently. These all have their own database copy and each

updates its own copy of the service data. You need a way of

making these databases ‘eventually consistent’ so that all

replicas are working on the same data.

33

Eventual consistency

 Eventual consistency is a situation where the system

guarantees that the databases will eventually become

consistent.

 You can implement eventual consistency by maintaining

a transaction log.

 When a database change is made, this is recorded on a

‘pending updates’ log.

 Other service instances look at this log, update their own

database and indicate that they have made the change.

34

Using a pending transaction log

35

Service coordination

 Most user sessions involve a series of interactions in

which operations have to be carried out in a specific

order.

 This is called a workflow.

▪ An authentication workflow for UID/password authentication

shows the steps involved in authenticating a user.

▪ In this example, the user is allowed 3 login attempts before the

system indicates that the login has failed.

36

Authentication workflow

37

Orchestration and choreography

38

Failure type Explanation

Internal service failure These are conditions that are detected by the service and
can be reported to the service requestor in an error
message. An example of this type of failure is a service that
takes a URL as an input and discovers that this is an invalid
link.

External service failure These failures have an external cause that affects the
availability of a service. Failure may cause the service to
become unresponsive and actions have to be taken to restart
the service.

Service performance failure The performance of the service degrades to an unacceptable
level. This may be due to a heavy load or an internal problem
with the service. External service monitoring can be used to
detect performance failures and unresponsive services.

Failure types in a microservices system

39

Timeouts and circuit breakers (1 of 2)

 A timeout is a counter that this associated with the

service requests and starts running when the request is

made.

 Once the counter reaches some predefined value, such

as 10 seconds, the calling service assumes that the

service request has failed and acts accordingly.

40

Timeouts and circuit breakers (2 of 2)

 The problem with the timeout approach is that every

service call to a ‘failed service’ is delayed by the timeout

value so the whole system slows down.

 Instead of using timeouts explicitly when a service call is

made, he suggests using a circuit breaker. Like an

electrical circuit breaker, this immediately denies access

to a failed service without the delays associated with

timeouts.

41

Using a circuit breaker to cope with service failure

42

RESTful services (1 of 2)

 The REST (REpresentational State Transfer)

architectural style is based on the idea of transferring

representations of digital resources from a server to a

client.

▪ You can think of a resource as any chunk of data such as credit

card details, an individual’s medical record, a magazine or

newspaper, a library catalogue, and so on.

▪ Resources are accessed via their unique URI and RESTful

services operate on these resources.

43

RESTful services (2 of 2)

 This is the fundamental approach used in the web where

the resource is a page to be displayed in the user’s

browser.

▪ An HTML representation is generated by the server in response

to an HTTP GET request and is transferred to the client for

display by a browser or a special-purpose app.

44

Principle Explanation

Use HTTP verbs The basic methods defined in the HTTP protocol (GET,

PUT, POST, DELETE) must be used to access the

operations made available by the service.

Stateless services Services must never maintain internal state. As I have

already explained, microservices are stateless, so fit with

this principle.

URI addressable All resources must have a URI, with a hierarchical

structure, that is used to access subresources.

Use XML or JSON Resources should normally be represented in JSON or

XML or both. Other representations, such as audio and

video representations, may be used if appropriate.

RESTful service principles

45

Action Implementation

Create Implemented using HTTP POST, which creates the resource with

the given URI. If the resource has already been created, an error is

returned.

Read Implemented using HTTP GET, which reads the resource and

returns its value. GET operations should never update a resource

so that successive GET operations with no intervening PUT

operations always return the same value.

Update Implemented using HTTP PUT, which modifies an existing

resource. PUT should not be used for resource creation.

Delete Implemented using HTTP DELETE, which makes the resource

inaccessible using the specified URI. The resource may or may not

be physically deleted.

RESTful service operations

46

Road information system (1 of 2)

 Imagine a system that maintains information about

incidents, such as traffic delays, roadworks and

accidents on a national road network. This system can

be accessed via a browser using the URL:

▪ https://trafficinfo.net/incidents/

 Users can query the system to discover incidents on the

roads on which they are planning to travel.

47

Road information system (2 of 2)

 When implemented as a RESTful web service, you need

to design the resource structure so that incidents are

organized hierarchically.

▪ For example, incidents may be recorded according to the road

identifier (e.g. A90), the location (e.g. stonehaven), the

carriageway direction (e.g. north) and an incident number (e.g.

1). Therefore, each incident can be accessed using its URI:

▪ https://trafficinfo.net/incidents/A90/stonehaven/north/1

48

Incident ID: A90N17061714391

Date: 17 June 2017

Time reported: 1439

Severity: Significant

Description: Broken-down bus on north carriageway. One lane closed. Expect
delays of up to 30 minutes.

Incident description

49

• Retrieve

Returns information about a reported incident or

incidents. Accessed using the GET verb.

• Add

Adds information about a new incident. Accessed using

the POST verb.

• Update

Updates the information about a reported incident.

Accessed using the PUT verb.

• Delete

Deletes an incident. The DELETE verb is used when an

incident has been cleared.

Service operations

50

HTTP request and response processing

51

HTTP request and response message organization

52

XML JSON

<id>
A90N17061714391
</id>
<date>
20170617
</date>
<time>
1437
</time>
. . .
<description>
Broken-down bus on north
carriageway.One lane closed.
Expect delays of up to
30 minutes.
</description>

{
id: “A90N17061714391”,
“date”: “20170617”,
“time”: “1437”,
“road_id”: “A90”,
“place”: “Stonehaven”,
“direction”: “north”,
“severity”: “significant”,
“description”: “Broken-down
bus on north carriageway. One
lane closed. Expect
delays of up to 30 minutes.”
}

XML and JSON descriptions

53

A GET request and the associated response

54

• After a system has been developed and delivered, it has

to be deployed on servers, monitored for problems and

updated as new versions become available.

• When a system is composed of tens or even hundreds of

microservices, deployment of the system is more

complex than for monolithic systems.

• The service development teams decide which

programming language, database, libraries and other

support software should be used to implement their

service. Consequently, there is no ‘standard’ deployment

configuration for all services.

Service deployment (1 of 2)

55

• It is now normal practice for microservice development

teams to be responsible for deployment and service

management as well as software development and to

use continuous deployment.

• Continuous deployment means that as soon as a change

to a service has been made and validated, the modified

service is redeployed.

Service deployment (2 of 2)

56

• Continuous deployment depends on automation so that

as soon as a change is committed, a series of

automated activities is triggered to test the software.

• If the software ‘passes’ these tests, it then enters another

automation pipeline that packages and deploys the

software.

• The deployment of a new service version starts with the

programmer committing the code changes to a code

management system such as Git.

Deployment automation (1 of 2)

57

• This triggers a set of automated tests that run using the

modified service. If all service tests run successfully, a

new version of the system that incorporates the changed

service is created.

• Another set of automated system tests are then

executed. If these run successfully, the service is ready

for deployment.

Deployment automation (2 of 2)

58

A continuous deployment pipeline

59

Versioned services

60

• A microservice is an independent and self-contained

software component that runs in its own process and

communicates with other microservices using lightweight

protocols.

• Microservices in a system can be implemented using

different programming languages and database

technologies.

• Microservices have a single responsibility and should be

designed so that they can be easily changed without

having to change other microservices in the system.

Key points (1 of 4)

61

• Microservices architecture is an architectural style in

which the system is constructed from communicating

microservices. It is well-suited to cloud based systems

where each microservice can run in its own container.

• The two most important responsibilities of architects of a

microservices system are to decide how to structure the

system into microservices and to decide how

microservices should communicate and be coordinated.

Key points (2 of 4)

62

• Communication and coordination decisions include

deciding on microservice communication protocols, data

sharing, whether services should be centrally

coordinated, and failure management.

• The RESTful architectural style is widely used in

microservice-based systems. Services are designed so

that the HTTP verbs, GET, POST, PUT and DELETE,

map onto the service operations.

• The RESTful style is based on digital resources that, in a

microservices architecture, may be represented using

XML or, more commonly, JSON.

Key points (3 of 4)

63

• Continuous deployment is a process where new versions

of a service are put into production as soon as a service

change has been made. It is a completely automated

process that relies on automated testing to check that

the new version is of ‘production quality’.

• If continuous deployment is used, you may need to

maintain multiple versions of deployed services so that

you can switch to an older version if problems are

discovered in a newly-deployed service.

Key points (4 of 4)

64

65

	Slide 1: Plataformas e Serviços X-Ops (16233) Microservices Architecture (adapted from Engineering Software Products: An Introduction to Modern Software Engineering, Ian Sommerville, Pearson, 2020)
	Slide 2: Software services (1 of 2)
	Slide 3: Software services (2 of 2)
	Slide 4: Modern web services
	Slide 5: Microservices
	Slide 6: A microservice example (1 of 2)
	Slide 7: A microservice example (2 of 2)
	Slide 8: Functional breakdown of authentication features
	Slide 9: Authentication microservices
	Slide 10: Characteristics of microservices
	Slide 11: Microservice communication (1 of 2)
	Slide 12: Microservice communication (2 of 2)
	Slide 13: Microservice characteristics (1 of 2)
	Slide 14: Microservice characteristics (2 of 2)
	Slide 15: Password management functionality
	Slide 16: Microservice support code
	Slide 17: Microservices architecture
	Slide 18: Benefits of microservices architecture
	Slide 19: A photo-printing system for mobile devices
	Slide 20: A microservices architecture for a photo-printing system
	Slide 21: Key design questions for microservices architecture
	Slide 22: Decomposition guidelines (1 of 2)
	Slide 23: Decomposition guidelines (2 of 2)
	Slide 24: Service communications (1 of 2)
	Slide 25: Service communications (2 of 2)
	Slide 26: Synchronous and asynchronous microservice interaction
	Slide 27: Synchronous and asynchronous interaction (1 of 2)
	Slide 28: Synchronous and asynchronous interaction (2 of 2)
	Slide 29: Direct and indirect service communication
	Slide 30: Direct and indirect service communication
	Slide 31: Microservice data design
	Slide 32: Inconsistency management (1 of 2)
	Slide 33: Inconsistency management (2 of 2)
	Slide 34: Eventual consistency
	Slide 35: Using a pending transaction log
	Slide 36: Service coordination
	Slide 37: Authentication workflow
	Slide 38: Orchestration and choreography
	Slide 39: Failure types in a microservices system
	Slide 40: Timeouts and circuit breakers (1 of 2)
	Slide 41: Timeouts and circuit breakers (2 of 2)
	Slide 42: Using a circuit breaker to cope with service failure
	Slide 43: RESTful services (1 of 2)
	Slide 44: RESTful services (2 of 2)
	Slide 45: RESTful service principles
	Slide 46: RESTful service operations
	Slide 47: Road information system (1 of 2)
	Slide 48: Road information system (2 of 2)
	Slide 49: Incident description
	Slide 50: Service operations
	Slide 51: HTTP request and response processing
	Slide 52: HTTP request and response message organization
	Slide 53: XML and JSON descriptions
	Slide 54: A GET request and the associated response
	Slide 55: Service deployment (1 of 2)
	Slide 56: Service deployment (2 of 2)
	Slide 57: Deployment automation (1 of 2)
	Slide 58: Deployment automation (2 of 2)
	Slide 59: A continuous deployment pipeline
	Slide 60: Versioned services
	Slide 61: Key points (1 of 4)
	Slide 62: Key points (2 of 4)
	Slide 63: Key points (3 of 4)
	Slide 64: Key points (4 of 4)
	Slide 65

