FACULDADE
ENGENHARIA

N

Departamento de
Informatica

Plataformas e Servicos X-Ops
(16233)

Cloud-based Software

(adapted from Engineering Software Products: An Introduction to Modern Software Engineering, lan Sommerville,
Pearson, 2020)

Nuno Pombo - Plataformas e Servigos X-Ops, 2025/26

The cloud (1 of 2)

< The cloud is made up of very large number of
remote servers that are offered for rent by
companies that own these servers.

» Cloud-based servers are ‘virtual servers’, which means that they
are implemented in software rather than hardware.

< You can rent as many servers as you need, run your

software on these servers and make them available

to your customers.

= Your customers can access these servers from their own
computers or other networked devices such as a tabletora TV.

» Cloud servers can be started up and shut down as demand
changes.

The cloud (2 of 2)

< You may rent a server and install your own software, or
you may pay for access to software products that are
available on the cloud.

Scalability, elasticity, and resilience

Scaleability Elasticity
Maintain performance as Adapt the server configuration
load increases to changing demands

Cloud software
characteristics

Resilience
Maintain service in the
event of server failure

Scaleability, elasticity and resilience (1 of 2)

< Scaleability reflects the ability of your software to cope
with increasing numbers of users.
= As the load on your software increases, your software

automatically adapts so that the system performance and
response time is maintained.

< Elasticity is related to scaleability but also allows for
scaling-down as well as scaling-up.
= That is, you can monitor the demand on your application and

add or remove servers dynamically as the number of users
change.

Scaleability, elasticity and resilience (2 of 2)

< Resilience means that you can design your software
architecture to tolerate server failures.
= You can make several copies of your software concurrently

available. If one of these fails, the others continue to provide a
service.

Benefits of using the cloud for software development

Factor Benefit
Cost You avoid the initial capital costs of hardware procurement.
Startup time You don’t have to wait for hardware to be delivered before you

Server choice

Distributed
development

can start work. Using the cloud, you can have servers up and
running in a few minutes.

If you find that the servers you are renting are not powerful
enough, you can upgrade to more powerful systems. You can add
servers for short-term requirements, such as load testing.

If you have a distributed development team, working from
different locations, all team members have the same
development environment and can seamlessly share all
information.

Virtual cloud servers (1 of 2)

<A virtual server runs on an underlying physical
computer and is made up of an operating system
plus a set of software packages that provide the
server functionality required.

<A virtual server is a stand-alone system that can
run on any hardware in the cloud.

= This ‘run anywhere’ characteristic is possible because
the virtual server has no external dependencies.

Virtual cloud servers (2 of 2)

<Virtual machines (VMs), running on physical
server hardware, can be used to implement virtual
servers.

= A hypervisor provides hardware emulation that
simulates the operation of the underlying hardware.

<If you use a virtual machine to implement virtual
servers, you have exactly the same hardware
platform as a physical server.

Implementing a virtual server as a virtual machine

Virtual web Virtual mail
server server
C ————— 1 —
l < o . i
Apache 1 erver (I erver I Outlook

web server | | software : .| software :

: Lo :

| | | |

| I | |

: Guest . Guest .
Linux . 0S ¢ oS . Windows Server

I Lo :
Hypervisor
Host OS

Server hardware

Container-based virtualization (1 of 2)

< If you are running a cloud-based system with many
instances of applications or services, these all use the
same operating system, you can use a simpler
virtualization technology called ‘containers’.

< Using containers accelerates the process of deploying
virtual servers on the cloud.

= Containers are usually megabytes in size whereas
VMs are gigabytes.

= Containers can be started and shut down in a few
seconds rather than the few minutes required for a
VM.

11

Container-based virtualization (2 of 2)

< Containers are an operating system virtualization
technology that allows independent servers to share a
single operating system.

= They are particularly useful for providing isolated application
services where each user sees their own version of an
application.

12

Using containers to provide isolated services

Graphic design
software

Graphics
libraries
Photo manager

User 1

Container 1

Application
software

Server
software

User 2

Container 2

Application
software

Server
software

Container manager

Host OS

Server hardware

Graphic design
software

Graphics
libraries
Photo manager

13

Docker (1 of 2)

<> Containers were developed by Google around 2007 but

containers became a mainstream technology around
2015.

< An open-source project called Docker provided a
standard means of container management that is fast
and easy to use.

14

Docker (2 of 2)

< Docker is a container management system that allows
users to define the software to be included in a container
as a Docker image.

< It also includes a run-time system that can create and
manage containers using these Docker images.

15

The Docker container system

Docker client

Dockerfiles

Registries

Docker hub -H
I |

To=

Images

Docker
daemon

_ |

Containers/

Docker host

16

The elements of the Docker container system

Element

Function

Docker daemon

Docker client

Dockerfiles

Image

Docker hub

Containers

This is a process that runs on a host server and is used to set up, start, stop,
and monitor containers, as well as building and managing local images.

This software is used by developers and system managers to define and
control containers.

Dockerfiles define runnable applications (images) as a series of setup
commands that specify the software to be included in a container. Each
container must be defined by an associated Dockerfile.

A Dockerfile is interpreted to create a Docker image, which is a set of
directories with the specified software and data installed in the right places.
Images are set up to be runnable Docker applications.

This is a registry of images that has been created. These may be reused to set
up containers or as a starting point for defining new images.

Containers are executing images. An image is loaded into a container and the
application defined by the image starts execution. Containers may be moved
from server to server without modification and replicated across many servers.
You can make changes to a Docker container (e.g., by modifying files) but you
then must commit these changes to create a new image and restart the
container.

17

Docker images (1 of 2)

< Docker images are directories that can be archived,
shared and run on different Docker hosts. Everything
thats needed to run a software system - binaries,
libraries, system tools, etc. is included in the directory.

18

Docker images (2 of 2)

< A Docker image is a base layer, usually taken from the
Docker registry, with your own software and data added
as a layer on top of this.
= The layered model means that updating Docker applications is

fast and efficient. Each update to the filesystem is a layer on top
of the existing system.

= To change an application, all you have to do is to ship the
changes that you have made to its image, often just a small
number of files.

19

Benefits of containers (1 of 2)

< They solve the problem of software dependencies. You
don’t have to worry about the libraries and other software
on the application server being different from those on
your development server.
» |nstead of shipping your product as stand-alone software, you

can ship a container that includes all of the support software that
your product needs.

< They provide a mechanism for software portability
across different clouds. Docker containers can run on

any system or cloud provider where the Docker daemon
IS available.

20

Benefits of containers (2 of 2)

 They provide an efficient mechanism for implementing
software services and so support the development of
service-oriented architectures.

 They simplify the adoption of DevOps. This is an
approach to software support where the same team are
responsible for both developing and supporting
operational software.

21

Everything as a service (1 of 2)

< The idea of a service that is rented rather than owned is
fundamental to cloud computing.
<> Infrastructure as a service (laaS)

» Cloud providers offer different kinds of infrastructure service
such as a compute service, a network service and a storage
service that you can use to implement virtual servers.

22

Everything as a service (2 of 2)

< Platform as a service (PaaS)

= This is an intermediate level where you use libraries and
frameworks provided by the cloud provider to implement your
software. These provide access to a range of functions, including
SQL and NoSQL databases.

< Software as a service (SaaS)

* Your software product runs on the cloud and is accessed by
users through a web browser or mobile app.

23

Everything as a service

Photo
editing

Cloud management
Monitoring

Storage
Network

Software as a service

Platform as a service

Infrastructure as a service

Cloud data center

Logistics
management

Database
Software development

Computation
Virtualization

24

Management responsibilities for Saa$, laaS, and PaaS

Managed by
software provider

Managed by
software provider

Managed by
software provider

Managed by
cloud vendor

Infrastructure as a service

Software as a service

Application services
(database etc.)

Cloud management
services

Application services
(database etc.)

Cloud management
services

Basic computational
services

Basic computational

services

Platform as a service

Managed by
software provider

Managed by
cloud vendor

Managed by
cloud vendor

Managed by
cloud vendor

25

Software as a service (1 of 2)

< Increasingly, software products are being delivered as a
service, rather than installed on the buyer’s computers.

<> If you deliver your software product as a service, you run
the software on your servers, which you may rent from a
cloud provider.

< Customers don’t have to install software and they access
the remote system through a web browser or dedicated
mobile app.

26

Software as a service (2 of 2)

< The payment model for software as a service is usually a
subscription model.

= Users pay a monthly fee to use the software rather than buy it
outright.

27

Software as a service

Software customers

Software provider

Cloud provider

Software services

Cloud infrastructure

28

Benefits of SaaS for software product providers

Benefit

Explanation

Cash flow

Update management

Continuous deployment

Payment flexibility

Try before you buy

Data collection

Customers either pay a regular subscription or pay as they use the software. This
means you have a regular cash flow, with payments throughout the year. You
don’t have a situation where you have a large cash injection when products are
purchased but very little income between product releases.

You are in control of updates to your product, and all customers receive the
update at the same time. You avoid the issue of several versions being
simultaneously used and maintained. This reduces your costs and makes it easier
to maintain a consistent software code base.

You can deploy new versions of your software as soon as changes have been
made and tested. This means you can fix bugs quickly so that your software
reliability can continuously improve.

You can have several different payment options so that you can attract a wider
range of customers. Small companies or individuals need not be discouraged by
having to pay large upfront software costs.

You can make early free or low-cost versions of the software available quickly with
the aim of getting customer feedback on bugs and how the product could be
approved.

You can easily collect data on how the product is used and so identify areas for
improvement. You may also be able to collect customer data that allow you to
market other products to these customers.

29

Advantages and disadvantages of SaaS for customers

Advantages

No upfront costs
for software or
servers

Immediate Reduced software
software updates management costs

Mobile, laptop and
desktop access

Software
customer

Disadvantages

Privacy Network constraints Loss of control Service lock-in

regulation _ over updates
conformance Security concerns Data exchange

Data storage and management issues for SaaS

Issue

Explanation

Regulation

Data transfer

Data security

Data exchange

Some countries, such as EU countries, have strict laws on the storage of personal
information. These may be incompatible with the laws and regulations of the
country where the SaaS provider is based. If an SaaS provider cannot guarantee
that their storage locations conform to the laws of the customer’s country,
businesses may be reluctant to use their product.

If software use involves a lot of data transfer, the software response time may be
limited by the network speed. This is a problem for individuals and smaller
companies who can’t afford to pay for very high-speed network connections.

Companies dealing with sensitive information may be unwilling to hand over the
control of their data to an external software provider. As we have seen from a
number of high-profile cases, even large cloud providers have had security
breaches. You can't assume that they always provide better security than the
customer’s own servers.

If you need to exchange data between a cloud service and other services or local
software applications, this can be difficult unless the cloud service provides an API
that is accessible for external use.

31

Design issues for SaaS

Local/remote processing Authentication

Information leakage

SaaS design

issues

Multitenant or multi-instance
database management

32

SaaS design issues (1) (1 of 2)

< Local/remote processing

= A software product may be designed so that some features are
executed locally in the user’s browser or mobile app and some
on a remote server.

= Local execution reduces network traffic and so increases user
response speed. This is useful when users have a slow network
connection.

» |Local processing increases the electrical power needed to run
the system.

33

SaaS design issues (1) (2 of 2)

< Authentication

= |f you set up your own authentication system, users have to
remember another set of authentication credentials.

» Many systems allow authentication using the user’s Google,
Facebook or LinkedIn credentials.

= For business products, you may need to set up a federated
authentication system, which delegates authentication to the
business where the user works.

34

SaaS design issues (2) (1 of 2)

< Information leakage

» |f you have multiple users from multiple organizations, a security
risk is that information leaks from one organization to another.

= There are a number of different ways that this can happen, so
you need to be very careful in designing your security system to

avoid this.

35

SaaS design issues (2) (2 of 2)

< Multi-tenant and multi-instance systems

= |[n a multi-tenant system, all customers are served by a single
instance of the system and a multitenant database.

< In a multi-instance system, a separate copy of the
system and database is made available for each user.

36

Multi-tenant systems

* A multi-tenant database is partitioned so that customer

companies have their own space and can store and
access their own data.

* There is a single database schema, defined by the SaaS
provider, that is shared by all of the system’s users.

« ltems in the database are tagged with a tenant identifier,
representing a company that has stored data in the
system. The database access software uses this tenant
identifier to provide ‘logical isolation’, which means that
users seem to be working with their own database.

37

An example of a multi-tenant database

Stock management
Tenant Key ltem Stock | Supplier Ordered
T516 100 Widg 1 27 S13 2017/2/12
T632 100 Obj 1 5 S13 2017/1/11
T973 100 Thing 1 241 S13 2017/2/7
1516 110 Widg 2 14 S13 2017/2/2
1516 120 Widg 3 17 S13 2017/1/24
T973 100 Thing 2 132 S26 2017/2/12

38

Advantages and disadvantages of multi-tenant databases

Advantages

Disadvantages

Resource utilization

The SaaS provider has control of all the
resources used by the software and can
optimize the software to make effective use of
these resources.

Security

Multi-tenant databases have to be designed for
security because the data for all customers are
held in the same database. They are, therefore,
likely to have fewer security vulnerabilities than
standard database products. Security
management is also simplified as there is only a
single copy of the database software to be
patched if a security vulnerability is discovered.

Update management

It is easier to update a single instance of
software rather than multiple instances.
Updates are delivered to all customers at the
same time so all use the latest version of the
software.

Inflexibility

Customers must all use the same database
schema with limited scope for adapting this
schema to individual needs. | explain possible
database adaptations later in this section.

Security

As data for all customers are maintained in the
same database, there is a theoretical possibility
that data will leak from one customer to another. In
fact, there are very few instances of this
happening. More seriously, perhaps, if there is a
database security breach, then it affects all
customers.

Complexity

Multi-tenant systems are usually more complex
than multi-instance systems because of the need
to manage many users. There is, therefore, an
increased likelihood of bugs in the database
software.

39

Possible customizations for SaaS

Customization

Business need

Authentication

Branding

Business rules

Data schemas

Access control

Businesses may want users to authenticate using their business
credentials rather than the account credentials set up by the
software provider. | explain in Chapter 7 how federated
authentication makes this possible.

Businesses may want a user interface that is branded to reflect
their own organization.

Businesses may want to be able to define their own business
rules and workflows that apply to their own data.

Businesses may want to be able to extend the standard data
model used in the system database to meet their own business
needs.

Businesses may want to be able to define their own access
control model that sets out the data that specific users or user
groups can access and the allowed operations on that data.

40

User profiles for SaaS access

Proflle
col

Proflle
co6

Proflle

c02
SaaS

application

Profile

Profi |e
! co5

C03

41

Database extensibility using additional fields

stock management
Tenant | Key [tem | Stock| Supplier| Ordered | Ext 1 |Ext 2|Ext 3
T516 | 100 |Widg 1 | 27 513 (2017/2/12
Te32 | 100 | 0bj 4 5 513 (201771711
T973 | 100 | Thing 1| 241 S13 | 2017/ 2/7
T516 | 110 |Widg 2 | 14 S13 | 2017/ 2/2
T516 | 120 |Widg 2 | 17 512 (2017/1/24
T972 | 100 | Thing 2| 132 526 (2017/2/12

42

Adding fields to extend the database (1 of 2)

<> You add some extra columns to each database table and
define a customer profile that maps the column names
that the customer wants to these extra columns.
However:
= |t is difficult to know how many extra columns you should

include. If you have too few, customers will find that there aren’t
enough for what they need to do.

= If you cater for customers who need a lot of extra columns,
however, you will find that most customers don’t use them, so
you will have a lot of wasted space in your database.

43

Adding fields to extend the database (2 of 2)

< Different customers are likely to need different types of
columns.

* For example, some customers may wish to have columns
whose items are string types, others may wish to have
columns that are integers.

* You can get around this by maintaining everything as strings.
However, this means that either you or your customer have
to provide conversion software to create items of the correct

type.

44

Extending a database using tables (1 of 2)

< An alternative approach to database extensibility is to
allow customers to add any number of additional fields
and to define the names, types and values of these
fields.

< The names and types of these values are held in a
separate table, accessed using the tenant identifier.

45

Extending a database using tables (2 of 2)

< Unfortunately, using tables in this way adds complexity
to the database management software.

= Extra tables must be managed and information from them
integrated into the database.

46

Database extensibility using tables

Tab2

Tab1 Stock management
Tenant | ID | Item | Stock | Supplier | Ordered Ext 1
1516 100 | Widg 1 27 S13 [2017/2/12 | E123 —
1632 100 | Obj 1 5 S13 |2017/1/11 | E200
T973 100 | Thing 1| 241 S13 | 2017/2/7 | E346
1516 110 | Widg 2 14 S13 2017/2/2 | E124
1516 120 | Widg 3 17 S13 |2017/1/24 | E125
T973 100 | Thing 2| 132 S26 [2017/2/12 | E347
Field names Field values
Tenant | Name Type Record | Tenant Value
T516 | ‘Location’ | String T E123 T516 ‘A17/S6'
T516 ‘Weight' | Integer E123 T516 ‘4’
1516 ‘Fragile’ | Bool E123 T516 ‘False’
T632 | ‘Delivered’| Date —> E200 T632 | 2017/1/15
T632 ‘Place’ | String E200 | Té32 ‘Dublin’
T973 | ‘Delivered’| Date > E346 T973 | 2017/2/10'
Extension table showing the

Main database table

field names for each company
that needs database extensions

Value table showing the value of
extension fields for each record

Tab3

47

Database security (1 of 2)

< Information from all customers is stored in the same
database in a multi-multi-tenant system so a software
bug or an attack could lead to the data of some or all
customers being exposed to others.

< Key security issues are multilevel access control and
encryption.

= Multilevel access control means that access to data must be
controlled at both the organizational level and the individual
level.

= You need to have organizational level access control to ensure
that any database operations only act on that organization’s
data. The individual user accessing the data should also have
their own access permissions.

48

Database security (2 of 2)

< Encryption of data in a multitenant database reassures
corporate users that their data cannot be viewed by
people from other companies if some kind of system
failure occurs.

49

Multi-instance databases (1 of 2)

< Multi-instance systems are SaaS systems where each
customer has its own system that is adapted to its
needs, including its own database and security controls.

< Multi-instance, cloud-based systems are conceptually
simpler than multi-tenant systems and avoid security
concerns such as data leakage from one organization to
another.

50

Multi-instance databases (2 of 2)

< There are two types of multi-instance system:

= VM-based multi-instance systems are multi-instance systems
where the software instance and database for each customer
runs in its own virtual machine. All users from the same
customer may access the shared system database.

= Container-based multi-instance systems® These are multi-
instance systems where each user has an isolated version of the
software and database running in a set of containers.

* This approach is suited to products in which users mostly work
independently, with relatively little data sharing. Therefore, it is best
used for software that serves individuals rather than business
customers or for business products that are not data-intensive.

51

Advantages and disadvantages of multi-instance databases

Advantages

Disadvantages

Flexibility

Each instance of the software can be tailored and
adapted to a customer’s needs. Customers may
use completely different database schemas and it
is straightforward to transfer data from a customer
database to the product database.

Security

Each customer has its own database so there is
no possibility of data leakage from one customer
to another.

Scalability

Instances of the system can be scaled according
to the needs of individual customers. For
example, some customers may require more
powerful servers than others.

Resilience

If a software failure occurs, this will probably
affect only a single customer. Other customers
can continue working as normal.

Cost

It is more expensive to use multi-instance
systems because of the costs of renting many
VMs in the cloud and the costs of managing
multiple systems. Because of the slow startup
time, VMs may have to be rented and kept
running continuously, even if there is very little
demand for the service.

Update management

Many instances have to be updated so updates
are more complex, especially if instances have
been tailored to specific customer needs.

52

Architectural decisions for cloud software engineering

Database organization Scaleability and resilience Software structure
Should the software What are the Should the software
use a multitenant or software scaleability structure be mono-

multi-instance and resilience lithic or service-
database? requirements? oriented?

What cloud platform
should be used for
development and

delivery?

Cloud platform

53

Questions to ask when choosing a database organization

Factor

Key questions

Target customers

Transaction requirements

Database size and
connectivity

Database interoperability

System structure

Do customers require different database schemas and database
personalization? Do customers have security concerns about database
sharing? If so, use a multi-instance database.

Is it critical that your products support ACID transactions where the data
are guaranteed to be consistent at all times? If so, use a multi-tenant
database or a VM-based multi-instance database.

How large is the typical database used by customers?

How many relationships are there between database items? A multi-tenant
model is usually best for very large databases, as you can focus effort on
optimizing performance.

Will customers wish to transfer information from existing databases? What
are the differences in schemas between these and a possible multi-tenant
database? What software support will they expect to do the data transfer?
If customers have many different schemas, a multi-instance database
should be used.

Are you using a service-oriented architecture for your system? Can
customer databases be split into a set of individual service databases? If
SO, use containerized, multi-instance databases.

54

Scalability and resilience (1 of 2)

« The scaleability of a system reflects its ability to adapt
automatically to changes in the load on that system.

* The resilience of a system reflects its ability to continue
to deliver critical services in the event of system failure
or malicious system use.

* You achieve scaleability in a system by making it
possible to add new virtual servers (scaling-out) or
increase the power of a system server (scaling-up) in
response to increasing load.

55

Scalability and resilience (2 of 2)

* In cloud-based systems, scaling-out rather than scaling-
up is the normal approach used. Your software has to be
organized so that individual software components can be
replicated and run in parallel.

» To achieve resilience, you need to be able to restart your
software quickly after a hardware or software failure.

56

Using a standby system to provide resilience

System monitor

Location A I

Location B I

Active system

Standby system

Database
mirror

Database 1

Database 2

57

Resilience (1 of 2)

< Resilience relies on redundancy:

= Replicas of the software and data are maintained in different
locations.

= Database updates are mirrored so that the standby database is a
working copy of the operational database.

= A system monitor continually checks the system status. It can
switch to the standby system automatically if the operational
system fails.

58

Resilience (2 of 2)

<> You should use redundant virtual servers that are not
hosted on the same physical computer and locate
servers in different locations.
= |deally, these servers should be located in different data centers.

= |If a physical server fails or if there is a wider data center failure,
then operation can be switched automatically to the software

copies elsewhere.

59

System structure (1 of 2)

<> An object-oriented approach to software engineering has
been that been extensively used for the development of
client-server systems built around a shared database.

< The system itself is, logically, a monolithic system with
distribution across multiple servers running large
software components. The traditional multi-tier client

server architecture is based on this distributed system
model.

60

System structure (2 of 2)

<> The alternative to a monolithic approach to software
organization is a service-oriented approach where the
system is decomposed into fine-grain, stateless
services.

= Because it is stateless, each service is independent and can be
replicated, distributed and migrated from one server to another.

= The service-oriented approach is particularly suitable for cloud-
based software, with services deployed in containers.

61

Cloud platform (1 of 2)

< Cloud platforms include general-purpose clouds such as
Amazon Web Services or lesser known platforms
oriented around a specific application, such as the SAP
Cloud Platform.

< There are also smaller national providers that provide
more limited services but who may be more willing to
adapt their services to the needs of different customers.

62

Cloud platform (2 of 2)

< There is no ‘best’ platform and you should choose a
cloud provider based on vyour background and
experience, the type of product that you are developing
and the expectations of your customers.

<> You need to consider both technical issues and business
Issues when choosing a cloud platform for your product.

63

Technical issues in cloud platform choice

Expected load and

load predictability Resilience

Cloud platform

choice

Supported cloud Privacy and
services data protection

64

Business issues in cloud platform choice

Cost

Target
customers

Developer
experience

Business
issues

Service-level Portability and
agreements cloud migration

65

Key points (1 of 4)

< The cloud is made up of a large number of virtual servers that
you can rent for your own use. You and your customers
access these servers remotely over the internet and pay for
the amount of server time used.

< Virtualization is a technology that allows multiple server
instances to be run on the same physical computer. This
means that you can create isolated instances of your software
for deployment on the cloud.

< Virtual machines are physical server replicas on which you
run your own operating system, technology stack and

applications.

66

Key points (2 of 4)

< Containers are a lightweight virtualization technology
that allow rapid replication and deployment of virtual
servers. All containers run the same operating system.
Docker is currently the most widely used container
technology.

< A fundamental feature of the cloud is that ‘everything’
can be delivered as a service and accessed over the
iInternet. A service is rented rather than owned and is
shared with other users.

67

Key points (3 of 4)

<Infrastructure as a service (laaS) means computing,
storage and other services are available over the cloud.
There is no need to run your own physical servers.

<Platform as a service (PaaS) means using services
provided by a cloud platform vendor to make it possible
to auto-scale your software in response to demand.

<Software as a service (SaaS) means that application
software is delivered as a service to users. This has
important benefits for users, such as lower capital costs,
and software vendors, such as simpler deployment of
new software releases.

68

Key points (4 of 4)

<Multitenant systems are SaaS systems where all users

share the same database, which may be adapted at
run-time to their individual needs. Multi-instance
systems are SaaS applications where each user has
their own separate database.

<The key architectural issues for cloud-based software

are the cloud platform to be used, whether to use a
multitenant or multi-instance database, the scaleability
and resilience requirements, and whether to use objects
or services as the basic components in the system.

69

;

w"ﬁ“éﬁ% N WHY

‘T '_]: WHEN

WHAT = W%EVIV\]HAT
1 >
WH_{/\\/: r:EEHOVV

<

	Slide 1: Plataformas e Serviços X-Ops (16233) Cloud-based Software (adapted from Engineering Software Products: An Introduction to Modern Software Engineering, Ian Sommerville, Pearson, 2020)
	Slide 2: The cloud (1 of 2)
	Slide 3: The cloud (2 of 2)
	Slide 4: Scalability, elasticity, and resilience
	Slide 5: Scaleability, elasticity and resilience (1 of 2)
	Slide 6: Scaleability, elasticity and resilience (2 of 2)
	Slide 7: Benefits of using the cloud for software development
	Slide 8: Virtual cloud servers (1 of 2)
	Slide 9: Virtual cloud servers (2 of 2)
	Slide 10: Implementing a virtual server as a virtual machine
	Slide 11: Container-based virtualization (1 of 2)
	Slide 12: Container-based virtualization (2 of 2)
	Slide 13: Using containers to provide isolated services
	Slide 14: Docker (1 of 2)
	Slide 15: Docker (2 of 2)
	Slide 16: The Docker container system
	Slide 17: The elements of the Docker container system
	Slide 18: Docker images (1 of 2)
	Slide 19: Docker images (2 of 2)
	Slide 20: Benefits of containers (1 of 2)
	Slide 21: Benefits of containers (2 of 2)
	Slide 22: Everything as a service (1 of 2)
	Slide 23: Everything as a service (2 of 2)
	Slide 24: Everything as a service
	Slide 25: Management responsibilities for SaaS, IaaS, and PaaS
	Slide 26: Software as a service (1 of 2)
	Slide 27: Software as a service (2 of 2)
	Slide 28: Software as a service
	Slide 29: Benefits of SaaS for software product providers
	Slide 30: Advantages and disadvantages of SaaS for customers
	Slide 31: Data storage and management issues for SaaS
	Slide 32: Design issues for SaaS
	Slide 33: SaaS design issues (1) (1 of 2)
	Slide 34: SaaS design issues (1) (2 of 2)
	Slide 35: SaaS design issues (2) (1 of 2)
	Slide 36: SaaS design issues (2) (2 of 2)
	Slide 37: Multi-tenant systems
	Slide 38: An example of a multi-tenant database
	Slide 39: Advantages and disadvantages of multi-tenant databases
	Slide 40: Possible customizations for SaaS
	Slide 41: User profiles for SaaS access
	Slide 42: Database extensibility using additional fields
	Slide 43: Adding fields to extend the database (1 of 2)
	Slide 44: Adding fields to extend the database (2 of 2)
	Slide 45: Extending a database using tables (1 of 2)
	Slide 46: Extending a database using tables (2 of 2)
	Slide 47: Database extensibility using tables
	Slide 48: Database security (1 of 2)
	Slide 49: Database security (2 of 2)
	Slide 50: Multi-instance databases (1 of 2)
	Slide 51: Multi-instance databases (2 of 2)
	Slide 52: Advantages and disadvantages of multi-instance databases
	Slide 53: Architectural decisions for cloud software engineering
	Slide 54: Questions to ask when choosing a database organization
	Slide 55: Scalability and resilience (1 of 2)
	Slide 56: Scalability and resilience (2 of 2)
	Slide 57: Using a standby system to provide resilience
	Slide 58: Resilience (1 of 2)
	Slide 59: Resilience (2 of 2)
	Slide 60: System structure (1 of 2)
	Slide 61: System structure (2 of 2)
	Slide 62: Cloud platform (1 of 2)
	Slide 63: Cloud platform (2 of 2)
	Slide 64: Technical issues in cloud platform choice
	Slide 65: Business issues in cloud platform choice
	Slide 66: Key points (1 of 4)
	Slide 67: Key points (2 of 4)
	Slide 68: Key points (3 of 4)
	Slide 69: Key points (4 of 4)
	Slide 70

