
Plataformas e Serviços X-Ops
(16233)

Cloud-based Software

(adapted from Engineering Software Products: An Introduction to Modern Software Engineering , Ian Sommerville,

Pearson, 2020)

1Nuno Pombo - Plataformas e Serviços X-Ops, 2025/26

The cloud is made up of very large number of
remote servers that are offered for rent by

companies that own these servers.

▪ Cloud-based servers are ‘virtual servers’, which means that they

are implemented in software rather than hardware.

You can rent as many servers as you need, run your
software on these servers and make them available

to your customers.

▪ Your customers can access these servers from their own

computers or other networked devices such as a tablet or a TV.

▪ Cloud servers can be started up and shut down as demand

changes.

The cloud (1 of 2)

2

 You may rent a server and install your own software, or

you may pay for access to software products that are

available on the cloud.

The cloud (2 of 2)

3

Scalability, elasticity, and resilience

4

Scaleability, elasticity and resilience (1 of 2)

 Scaleability reflects the ability of your software to cope

with increasing numbers of users.

▪ As the load on your software increases, your software

automatically adapts so that the system performance and

response time is maintained.

 Elasticity is related to scaleability but also allows for

scaling-down as well as scaling-up.

▪ That is, you can monitor the demand on your application and

add or remove servers dynamically as the number of users

change.

5

Scaleability, elasticity and resilience (2 of 2)

 Resilience means that you can design your software

architecture to tolerate server failures.

▪ You can make several copies of your software concurrently

available. If one of these fails, the others continue to provide a

service.

6

Factor Benefit

Cost You avoid the initial capital costs of hardware procurement.

Startup time You don’t have to wait for hardware to be delivered before you

can start work. Using the cloud, you can have servers up and

running in a few minutes.

Server choice If you find that the servers you are renting are not powerful

enough, you can upgrade to more powerful systems. You can add

servers for short-term requirements, such as load testing.

Distributed

development

If you have a distributed development team, working from

different locations, all team members have the same

development environment and can seamlessly share all

information.

Benefits of using the cloud for software development

7

Virtual cloud servers (1 of 2)

A virtual server runs on an underlying physical

computer and is made up of an operating system

plus a set of software packages that provide the

server functionality required.

A virtual server is a stand-alone system that can

run on any hardware in the cloud.

▪ This ‘run anywhere’ characteristic is possible because

the virtual server has no external dependencies.

8

Virtual cloud servers (2 of 2)

Virtual machines (VMs), running on physical

server hardware, can be used to implement virtual

servers.

▪ A hypervisor provides hardware emulation that

simulates the operation of the underlying hardware.

If you use a virtual machine to implement virtual

servers, you have exactly the same hardware

platform as a physical server.

9

Implementing a virtual server as a virtual machine

10

Container-based virtualization (1 of 2)

 If you are running a cloud-based system with many

instances of applications or services, these all use the

same operating system, you can use a simpler

virtualization technology called ‘containers’.

 Using containers accelerates the process of deploying

virtual servers on the cloud.

▪ Containers are usually megabytes in size whereas

VMs are gigabytes.

▪ Containers can be started and shut down in a few

seconds rather than the few minutes required for a

VM.

11

Container-based virtualization (2 of 2)

 Containers are an operating system virtualization

technology that allows independent servers to share a

single operating system.

▪ They are particularly useful for providing isolated application

services where each user sees their own version of an

application.

12

Using containers to provide isolated services

13

Docker (1 of 2)

 Containers were developed by Google around 2007 but

containers became a mainstream technology around

2015.

 An open-source project called Docker provided a

standard means of container management that is fast

and easy to use.

14

Docker (2 of 2)

 Docker is a container management system that allows

users to define the software to be included in a container

as a Docker image.

 It also includes a run-time system that can create and

manage containers using these Docker images.

15

The Docker container system

16

Element Function

Docker daemon This is a process that runs on a host server and is used to set up, start, stop,

and monitor containers, as well as building and managing local images.

Docker client This software is used by developers and system managers to define and

control containers.

Dockerfiles Dockerfiles define runnable applications (images) as a series of setup

commands that specify the software to be included in a container. Each
container must be defined by an associated Dockerfile.

Image A Dockerfile is interpreted to create a Docker image, which is a set of

directories with the specified software and data installed in the right places.
Images are set up to be runnable Docker applications.

Docker hub This is a registry of images that has been created. These may be reused to set

up containers or as a starting point for defining new images.

Containers Containers are executing images. An image is loaded into a container and the

application defined by the image starts execution. Containers may be moved
from server to server without modification and replicated across many servers.
You can make changes to a Docker container (e.g., by modifying files) but you

then must commit these changes to create a new image and restart the
container.

The elements of the Docker container system

17

Docker images (1 of 2)

 Docker images are directories that can be archived,

shared and run on different Docker hosts. Everything

that’s needed to run a software system - binaries,

libraries, system tools, etc. is included in the directory.

18

Docker images (2 of 2)

 A Docker image is a base layer, usually taken from the

Docker registry, with your own software and data added

as a layer on top of this.

▪ The layered model means that updating Docker applications is

fast and efficient. Each update to the filesystem is a layer on top

of the existing system.

▪ To change an application, all you have to do is to ship the

changes that you have made to its image, often just a small

number of files.

19

Benefits of containers (1 of 2)

 They solve the problem of software dependencies. You

don’t have to worry about the libraries and other software

on the application server being different from those on

your development server.

▪ Instead of shipping your product as stand-alone software, you

can ship a container that includes all of the support software that

your product needs.

 They provide a mechanism for software portability

across different clouds. Docker containers can run on

any system or cloud provider where the Docker daemon

is available.

20

• They provide an efficient mechanism for implementing

software services and so support the development of

service-oriented architectures.

• They simplify the adoption of DevOps. This is an

approach to software support where the same team are

responsible for both developing and supporting

operational software.

Benefits of containers (2 of 2)

21

Everything as a service (1 of 2)

 The idea of a service that is rented rather than owned is

fundamental to cloud computing.

 Infrastructure as a service (IaaS)

▪ Cloud providers offer different kinds of infrastructure service

such as a compute service, a network service and a storage

service that you can use to implement virtual servers.

22

Everything as a service (2 of 2)

 Platform as a service (PaaS)

▪ This is an intermediate level where you use libraries and

frameworks provided by the cloud provider to implement your

software. These provide access to a range of functions, including

SQL and NoSQL databases.

 Software as a service (SaaS)

▪ Your software product runs on the cloud and is accessed by

users through a web browser or mobile app.

23

Everything as a service

24

Management responsibilities for SaaS, IaaS, and PaaS

25

Software as a service (1 of 2)

 Increasingly, software products are being delivered as a

service, rather than installed on the buyer’s computers.

 If you deliver your software product as a service, you run

the software on your servers, which you may rent from a

cloud provider.

 Customers don’t have to install software and they access

the remote system through a web browser or dedicated

mobile app.

26

Software as a service (2 of 2)

 The payment model for software as a service is usually a

subscription model.

▪ Users pay a monthly fee to use the software rather than buy it

outright.

27

Software as a service

28

Benefit Explanation

Cash flow Customers either pay a regular subscription or pay as they use the software. This

means you have a regular cash flow, with payments throughout the year. You

don’t have a situation where you have a large cash injection when products are

purchased but very little income between product releases.

Update management You are in control of updates to your product, and all customers receive the

update at the same time. You avoid the issue of several versions being

simultaneously used and maintained. This reduces your costs and makes it easier

to maintain a consistent software code base.

Continuous deployment You can deploy new versions of your software as soon as changes have been

made and tested. This means you can fix bugs quickly so that your software

reliability can continuously improve.

Payment flexibility You can have several different payment options so that you can attract a wider

range of customers. Small companies or individuals need not be discouraged by

having to pay large upfront software costs.

Try before you buy You can make early free or low-cost versions of the software available quickly with

the aim of getting customer feedback on bugs and how the product could be

approved.

Data collection You can easily collect data on how the product is used and so identify areas for

improvement. You may also be able to collect customer data that allow you to

market other products to these customers.

Benefits of SaaS for software product providers

29

Advantages and disadvantages of SaaS for customers

30

Issue Explanation

Regulation Some countries, such as EU countries, have strict laws on the storage of personal

information. These may be incompatible with the laws and regulations of the
country where the SaaS provider is based. If an SaaS provider cannot guarantee
that their storage locations conform to the laws of the customer’s country,

businesses may be reluctant to use their product.

Data transfer If software use involves a lot of data transfer, the software response time may be

limited by the network speed. This is a problem for individuals and smaller
companies who can’t afford to pay for very high-speed network connections.

Data security Companies dealing with sensitive information may be unwilling to hand over the

control of their data to an external software provider. As we have seen from a
number of high-profile cases, even large cloud providers have had security
breaches. You can’t assume that they always provide better security than the

customer’s own servers.

Data exchange If you need to exchange data between a cloud service and other services or local

software applications, this can be difficult unless the cloud service provides an API
that is accessible for external use.

Data storage and management issues for SaaS

31

Design issues for SaaS

32

SaaS design issues (1) (1 of 2)

 Local/remote processing

▪ A software product may be designed so that some features are

executed locally in the user’s browser or mobile app and some

on a remote server.

▪ Local execution reduces network traffic and so increases user

response speed. This is useful when users have a slow network

connection.

▪ Local processing increases the electrical power needed to run

the system.

33

SaaS design issues (1) (2 of 2)

 Authentication

▪ If you set up your own authentication system, users have to

remember another set of authentication credentials.

▪ Many systems allow authentication using the user’s Google,

Facebook or LinkedIn credentials.

▪ For business products, you may need to set up a federated

authentication system, which delegates authentication to the

business where the user works.

34

SaaS design issues (2) (1 of 2)

 Information leakage

▪ If you have multiple users from multiple organizations, a security

risk is that information leaks from one organization to another.

▪ There are a number of different ways that this can happen, so

you need to be very careful in designing your security system to

avoid this.

35

SaaS design issues (2) (2 of 2)

 Multi-tenant and multi-instance systems

▪ In a multi-tenant system, all customers are served by a single

instance of the system and a multitenant database.

 In a multi-instance system, a separate copy of the

system and database is made available for each user.

36

• A multi-tenant database is partitioned so that customer

companies have their own space and can store and

access their own data.

• There is a single database schema, defined by the SaaS

provider, that is shared by all of the system’s users.

• Items in the database are tagged with a tenant identifier,

representing a company that has stored data in the

system. The database access software uses this tenant

identifier to provide ‘logical isolation’, which means that

users seem to be working with their own database.

Multi-tenant systems

37

An example of a multi-tenant database

38

Advantages Disadvantages

Resource utilization

The SaaS provider has control of all the
resources used by the software and can
optimize the software to make effective use of

these resources.

Inflexibility

Customers must all use the same database
schema with limited scope for adapting this
schema to individual needs. I explain possible

database adaptations later in this section.

Security

Multi-tenant databases have to be designed for
security because the data for all customers are
held in the same database. They are, therefore,

likely to have fewer security vulnerabilities than
standard database products. Security

management is also simplified as there is only a
single copy of the database software to be
patched if a security vulnerability is discovered.

Security

As data for all customers are maintained in the
same database, there is a theoretical possibility
that data will leak from one customer to another. In

fact, there are very few instances of this
happening. More seriously, perhaps, if there is a

database security breach, then it affects all
customers.

Update management

It is easier to update a single instance of
software rather than multiple instances.
Updates are delivered to all customers at the

same time so all use the latest version of the
software.

Complexity

Multi-tenant systems are usually more complex
than multi-instance systems because of the need
to manage many users. There is, therefore, an

increased likelihood of bugs in the database
software.

Advantages and disadvantages of multi-tenant databases

39

Customization Business need

Authentication Businesses may want users to authenticate using their business

credentials rather than the account credentials set up by the

software provider. I explain in Chapter 7 how federated

authentication makes this possible.

Branding Businesses may want a user interface that is branded to reflect

their own organization.

Business rules Businesses may want to be able to define their own business

rules and workflows that apply to their own data.

Data schemas Businesses may want to be able to extend the standard data

model used in the system database to meet their own business

needs.

Access control Businesses may want to be able to define their own access

control model that sets out the data that specific users or user

groups can access and the allowed operations on that data.

Possible customizations for SaaS

40

User profiles for SaaS access

41

Database extensibility using additional fields

42

Adding fields to extend the database (1 of 2)

 You add some extra columns to each database table and

define a customer profile that maps the column names

that the customer wants to these extra columns.

However:

▪ It is difficult to know how many extra columns you should

include. If you have too few, customers will find that there aren’t

enough for what they need to do.

▪ If you cater for customers who need a lot of extra columns,

however, you will find that most customers don’t use them, so

you will have a lot of wasted space in your database.

43

Adding fields to extend the database (2 of 2)

 Different customers are likely to need different types of

columns.

• For example, some customers may wish to have columns

whose items are string types, others may wish to have

columns that are integers.

• You can get around this by maintaining everything as strings.

However, this means that either you or your customer have

to provide conversion software to create items of the correct

type.

44

Extending a database using tables (1 of 2)

 An alternative approach to database extensibility is to

allow customers to add any number of additional fields

and to define the names, types and values of these

fields.

 The names and types of these values are held in a

separate table, accessed using the tenant identifier.

45

Extending a database using tables (2 of 2)

 Unfortunately, using tables in this way adds complexity

to the database management software.

▪ Extra tables must be managed and information from them

integrated into the database.

46

Database extensibility using tables

47

Database security (1 of 2)

 Information from all customers is stored in the same

database in a multi-multi-tenant system so a software

bug or an attack could lead to the data of some or all

customers being exposed to others.

 Key security issues are multilevel access control and

encryption.

▪ Multilevel access control means that access to data must be

controlled at both the organizational level and the individual

level.

▪ You need to have organizational level access control to ensure

that any database operations only act on that organization’s

data. The individual user accessing the data should also have

their own access permissions.

48

Database security (2 of 2)

 Encryption of data in a multitenant database reassures

corporate users that their data cannot be viewed by

people from other companies if some kind of system

failure occurs.

49

Multi-instance databases (1 of 2)

 Multi-instance systems are SaaS systems where each

customer has its own system that is adapted to its

needs, including its own database and security controls.

 Multi-instance, cloud-based systems are conceptually

simpler than multi-tenant systems and avoid security

concerns such as data leakage from one organization to

another.

50

Multi-instance databases (2 of 2)

 There are two types of multi-instance system:

▪ VM-based multi-instance systems are multi-instance systems

where the software instance and database for each customer

runs in its own virtual machine. All users from the same

customer may access the shared system database.

▪ Container-based multi-instance systems* These are multi-

instance systems where each user has an isolated version of the

software and database running in a set of containers.

• This approach is suited to products in which users mostly work

independently, with relatively little data sharing. Therefore, it is best

used for software that serves individuals rather than business

customers or for business products that are not data-intensive.

51

Advantages Disadvantages

Flexibility

Each instance of the software can be tailored and
adapted to a customer’s needs. Customers may
use completely different database schemas and it

is straightforward to transfer data from a customer
database to the product database.

Cost

It is more expensive to use multi-instance
systems because of the costs of renting many
VMs in the cloud and the costs of managing

multiple systems. Because of the slow startup
time, VMs may have to be rented and kept

running continuously, even if there is very little
demand for the service.

Security

Each customer has its own database so there is
no possibility of data leakage from one customer
to another.

Update management

Many instances have to be updated so updates
are more complex, especially if instances have
been tailored to specific customer needs.

Scalability

Instances of the system can be scaled according
to the needs of individual customers. For
example, some customers may require more

powerful servers than others.

Resilience

If a software failure occurs, this will probably
affect only a single customer. Other customers
can continue working as normal.

Advantages and disadvantages of multi-instance databases

52

Architectural decisions for cloud software engineering

53

Factor Key questions

Target customers Do customers require different database schemas and database

personalization? Do customers have security concerns about database
sharing? If so, use a multi-instance database.

Transaction requirements Is it critical that your products support ACID transactions where the data

are guaranteed to be consistent at all times? If so, use a multi-tenant
database or a VM-based multi-instance database.

Database size and

connectivity

How large is the typical database used by customers?

How many relationships are there between database items? A multi-tenant
model is usually best for very large databases, as you can focus effort on
optimizing performance.

Database interoperability Will customers wish to transfer information from existing databases? What

are the differences in schemas between these and a possible multi-tenant
database? What software support will they expect to do the data transfer?
If customers have many different schemas, a multi-instance database

should be used.

System structure Are you using a service-oriented architecture for your system? Can

customer databases be split into a set of individual service databases? If
so, use containerized, multi-instance databases.

Questions to ask when choosing a database organization

54

• The scaleability of a system reflects its ability to adapt

automatically to changes in the load on that system.

• The resilience of a system reflects its ability to continue

to deliver critical services in the event of system failure

or malicious system use.

• You achieve scaleability in a system by making it

possible to add new virtual servers (scaling-out) or

increase the power of a system server (scaling-up) in

response to increasing load.

Scalability and resilience (1 of 2)

55

• In cloud-based systems, scaling-out rather than scaling-

up is the normal approach used. Your software has to be

organized so that individual software components can be

replicated and run in parallel.

• To achieve resilience, you need to be able to restart your

software quickly after a hardware or software failure.

Scalability and resilience (2 of 2)

56

Using a standby system to provide resilience

57

Resilience (1 of 2)

 Resilience relies on redundancy:

▪ Replicas of the software and data are maintained in different

locations.

▪ Database updates are mirrored so that the standby database is a

working copy of the operational database.

▪ A system monitor continually checks the system status. It can

switch to the standby system automatically if the operational

system fails.

58

Resilience (2 of 2)

 You should use redundant virtual servers that are not

hosted on the same physical computer and locate

servers in different locations.

▪ Ideally, these servers should be located in different data centers.

▪ If a physical server fails or if there is a wider data center failure,

then operation can be switched automatically to the software

copies elsewhere.

59

System structure (1 of 2)

 An object-oriented approach to software engineering has

been that been extensively used for the development of

client-server systems built around a shared database.

 The system itself is, logically, a monolithic system with

distribution across multiple servers running large

software components. The traditional multi-tier client

server architecture is based on this distributed system

model.

60

System structure (2 of 2)

 The alternative to a monolithic approach to software

organization is a service-oriented approach where the

system is decomposed into fine-grain, stateless

services.

▪ Because it is stateless, each service is independent and can be

replicated, distributed and migrated from one server to another.

▪ The service-oriented approach is particularly suitable for cloud-

based software, with services deployed in containers.

61

Cloud platform (1 of 2)

 Cloud platforms include general-purpose clouds such as

Amazon Web Services or lesser known platforms

oriented around a specific application, such as the SAP

Cloud Platform.

 There are also smaller national providers that provide

more limited services but who may be more willing to

adapt their services to the needs of different customers.

62

Cloud platform (2 of 2)

 There is no ‘best’ platform and you should choose a

cloud provider based on your background and

experience, the type of product that you are developing

and the expectations of your customers.

 You need to consider both technical issues and business

issues when choosing a cloud platform for your product.

63

Technical issues in cloud platform choice

64

Business issues in cloud platform choice

65

Key points (1 of 4)

 The cloud is made up of a large number of virtual servers that

you can rent for your own use. You and your customers

access these servers remotely over the internet and pay for

the amount of server time used.

 Virtualization is a technology that allows multiple server

instances to be run on the same physical computer. This

means that you can create isolated instances of your software

for deployment on the cloud.

 Virtual machines are physical server replicas on which you

run your own operating system, technology stack and

applications.

66

Key points (2 of 4)

Containers are a lightweight virtualization technology

that allow rapid replication and deployment of virtual

servers. All containers run the same operating system.

Docker is currently the most widely used container

technology.

A fundamental feature of the cloud is that ‘everything’

can be delivered as a service and accessed over the

internet. A service is rented rather than owned and is

shared with other users.

67

Key points (3 of 4)

Infrastructure as a service (IaaS) means computing,

storage and other services are available over the cloud.

There is no need to run your own physical servers.

Platform as a service (PaaS) means using services

provided by a cloud platform vendor to make it possible

to auto-scale your software in response to demand.

Software as a service (SaaS) means that application

software is delivered as a service to users. This has

important benefits for users, such as lower capital costs,

and software vendors, such as simpler deployment of

new software releases.

68

Key points (4 of 4)

Multitenant systems are SaaS systems where all users

share the same database, which may be adapted at

run-time to their individual needs. Multi-instance

systems are SaaS applications where each user has

their own separate database.

The key architectural issues for cloud-based software

are the cloud platform to be used, whether to use a

multitenant or multi-instance database, the scaleability

and resilience requirements, and whether to use objects

or services as the basic components in the system.

69

70

	Slide 1: Plataformas e Serviços X-Ops (16233) Cloud-based Software (adapted from Engineering Software Products: An Introduction to Modern Software Engineering, Ian Sommerville, Pearson, 2020)
	Slide 2: The cloud (1 of 2)
	Slide 3: The cloud (2 of 2)
	Slide 4: Scalability, elasticity, and resilience
	Slide 5: Scaleability, elasticity and resilience (1 of 2)
	Slide 6: Scaleability, elasticity and resilience (2 of 2)
	Slide 7: Benefits of using the cloud for software development
	Slide 8: Virtual cloud servers (1 of 2)
	Slide 9: Virtual cloud servers (2 of 2)
	Slide 10: Implementing a virtual server as a virtual machine
	Slide 11: Container-based virtualization (1 of 2)
	Slide 12: Container-based virtualization (2 of 2)
	Slide 13: Using containers to provide isolated services
	Slide 14: Docker (1 of 2)
	Slide 15: Docker (2 of 2)
	Slide 16: The Docker container system
	Slide 17: The elements of the Docker container system
	Slide 18: Docker images (1 of 2)
	Slide 19: Docker images (2 of 2)
	Slide 20: Benefits of containers (1 of 2)
	Slide 21: Benefits of containers (2 of 2)
	Slide 22: Everything as a service (1 of 2)
	Slide 23: Everything as a service (2 of 2)
	Slide 24: Everything as a service
	Slide 25: Management responsibilities for SaaS, IaaS, and PaaS
	Slide 26: Software as a service (1 of 2)
	Slide 27: Software as a service (2 of 2)
	Slide 28: Software as a service
	Slide 29: Benefits of SaaS for software product providers
	Slide 30: Advantages and disadvantages of SaaS for customers
	Slide 31: Data storage and management issues for SaaS
	Slide 32: Design issues for SaaS
	Slide 33: SaaS design issues (1) (1 of 2)
	Slide 34: SaaS design issues (1) (2 of 2)
	Slide 35: SaaS design issues (2) (1 of 2)
	Slide 36: SaaS design issues (2) (2 of 2)
	Slide 37: Multi-tenant systems
	Slide 38: An example of a multi-tenant database
	Slide 39: Advantages and disadvantages of multi-tenant databases
	Slide 40: Possible customizations for SaaS
	Slide 41: User profiles for SaaS access
	Slide 42: Database extensibility using additional fields
	Slide 43: Adding fields to extend the database (1 of 2)
	Slide 44: Adding fields to extend the database (2 of 2)
	Slide 45: Extending a database using tables (1 of 2)
	Slide 46: Extending a database using tables (2 of 2)
	Slide 47: Database extensibility using tables
	Slide 48: Database security (1 of 2)
	Slide 49: Database security (2 of 2)
	Slide 50: Multi-instance databases (1 of 2)
	Slide 51: Multi-instance databases (2 of 2)
	Slide 52: Advantages and disadvantages of multi-instance databases
	Slide 53: Architectural decisions for cloud software engineering
	Slide 54: Questions to ask when choosing a database organization
	Slide 55: Scalability and resilience (1 of 2)
	Slide 56: Scalability and resilience (2 of 2)
	Slide 57: Using a standby system to provide resilience
	Slide 58: Resilience (1 of 2)
	Slide 59: Resilience (2 of 2)
	Slide 60: System structure (1 of 2)
	Slide 61: System structure (2 of 2)
	Slide 62: Cloud platform (1 of 2)
	Slide 63: Cloud platform (2 of 2)
	Slide 64: Technical issues in cloud platform choice
	Slide 65: Business issues in cloud platform choice
	Slide 66: Key points (1 of 4)
	Slide 67: Key points (2 of 4)
	Slide 68: Key points (3 of 4)
	Slide 69: Key points (4 of 4)
	Slide 70

