
Plataformas e Serviços X-Ops
(16233)

Automated Test Case Generation

adapted from lecture notes of the “DIT 635 - Software Quality and Testing” unit, 
delivered by Professor Gregory Gay, at the Chalmers and the University of Gothenburg, 2022)

1Nuno Pombo – Plataformas e Serviços X-Ops, 2023/24



Today’s Goals

² Introduce Search-Based Test Generation
§ (a.k.a. : Fuzzing)
§ Test Creation as a Search Problem
§ Metaheuristic Search
§ Fitness Functions

² Example - Generating Covering Arrays for Combinatorial
Interaction Testing

2



Automating Test Creation

² Testing is invaluable, but expensive.
§ We test for *many* purposes.
§ Near-infinite number of possible tests we could try.
§ Hard to achieve meaningful volume.

3



Automation of Test Creation

² Relieve cost by automating test creation.
§ Repetitive tasks that do not need human attention.
§ Generate test input.

• Need to add assertions.
• Or just look for crashes.

4

Automation!

Tests are 
generating!



Test Automation

² Test Automation is the development of software to 
separate repetitive tasks from the creative aspects of 
testing. 

² Automation allows control over how and when tests are 
executed. 
§ Control the environment and preconditions. 
§ Automatic comparison of predicted and actual output. 
§ Automatic hands-free re-execution of tests. 

5



Manual vs Automation

² Scaling
§ Manual generation can be an exhaustive and a time-consuming 

process. It scales with the size of the Project which can hinder 
the development speed of the software;

§ Automated generation, being an automated process, can help 
reduce the time needed to perform testing activities.

² Coverage and Mutation
• Automated generation of unit tests usually provides a higher 

capability of achieving better coverage values than the manual 
approach. 

• The ability to identify mutants in unit tests (identification of 
allocated defects) is generally better in unit tests generated 
automatically. 6



Test Creation as a Search Problem

² Do you have a goal in mind when testing?
§ Make the program crash, achieve code coverage, cover all 2-
way interactions, …

² You are searching for a test suite that achieves that
goal.
§ Algorithm samples possible test input to find those tests.

7



Test Creation as a Search Problem

² “I want to find all faults” cannot be measured.

² However, a lot of testing goals can be.
§ Check whether properties satisfied (boolean)
§ Measure code coverage (%)
§ Count the number of crashes or exceptions thrown (#)

² If goal can be measured, search can be automated.

8



Search-Based Test Generation

² Make one or more guesses.
§ Generate one or more individual test cases or full suites.

² Check whether goal is met.
§ Score each guess.

² Try until time runs out.
§ Alter the population based on strategy and try again!

9



Search Strategy

² The order that solutions are tried is the key to efficiently
finding a solution.

² A search follows some defined strategy.
§ Called a “heuristic”.

² Heuristics are used to choose solutions and to ignore
solutions known to be unviable.
§ Smarter than pure random guessing!

10



Heuristics - Graph Search

² Arrange nodes into a hierarchy.
§ Breadth-first search looks at all nodes on 

the same level.
§ Depth-first search drops down hierarchy 

until backtracking must occur.

² Attempt to estimate shortest path.
§ A* search examines distance traveled and estimates optimal

next step.
§ Requires domain-specific scoring function.

11



How Long Do We Spend Searching?

² Exhaustive search not viable.

² Search can be bound by a search budget.
§ Number of guesses.
§ Time allotted to the search (number of minutes/seconds).

² Optimization problem:
§ Best solution possible before running out of budget.

12



Generation as Optimization Problem

² Search heuristic becomes important.
§ If time bound: time to create, execute, and evaluate.
§ If attempt bound: strategy used to choose next solution.

• Ignoring bad solutions, learning what makes a solution good.
§ In practice, efficiency in both categories is desired.

13



Random Search

² Randomly formulate a solution. 
§ Unit testing: choose a class in the system, choose random 

methods, call with random parameter values.
§ System-level testing: choose an interface, choose random 

functions from interface, call with random values.

² Keep trying until goal attained or budget expires.

14



Random Search

² Sometime viable:
§ Extremely fast.
§ Easy to implement, easy to understand.
§ All inputs considered equal, so no designer bias.

² However…

15



Metaheuristic Search

² Random search is naive.
§ Only possible to cover a 

small % of full input space.

² Metaheuristic search adds
intelligence to random.
§ Feedback and sampling 

strategies.
§ Still fast, able to learn 

from bad guesses.

16



Mechanics of Optimization

17

AKA: How can I get a computer to search?

Fitness Function(s)Metaheuristic



Search-Based Test Generation

18

The Metaheuristic
(Sampling Strategy)

Genetic Algorithm
Simulated Annealing

Hill Climber
(...)

+

The Fitness Functions
(Feedback Strategies)

Distance to Coverage Goals 
Count of Executions Thrown

Input or Output Diversity
(...)

=

(Goals)

Cause Crashes
Cover Code Structure, 

Generate Covering 
Array,
(...)



The Metaheuristic

² Decides how to select and revise solutions.
§ Changes approach based on past guesses.
§ Fitness functions give feedback.
§ Population mechanisms choose new solutions and determine

how solutions evolve.

19



The Metaheuristic

² Decides how to select and revise solutions.
§ Small adjustments (local search) or sampling from the whole

space (global search).
§ One solution at a time or entire populations.
§ Often based on natural phenomena (swarm behavior, evolution).
§ Trade-off between speed, complexity, and understandability.

20



“Solutions”

² What is a solution?
§ Test Case: Evolved in isolation from other test cases.
§ Test Suite: A set of test cases, evolved together.

² Depends on how goal attainment measured.
§ Code Coverage

• Test Case: Target one code section at a time.
• Test Suite: Target coverage of entire class/system.

21



Local Search

² Generate and score a potential solution.

² Attempt to improve by looking at its neighborhood.
§ Make small, incremental improvements.

² Very fast, efficient if good initial guess.
§ Get “stuck” if bad guess.
§ Often include reset strategies.

22



Exploring the Neighborhood

² Small changes to solution.
§ For each call:

• Switch value of boolean, other values from an enumerated set, 
bounded range of numeric choices.

§ Full test case:
• Insert a new call.
• Delete or replace an existing call.

– Can replace by changing the function called or its parameters.

23



Hill Climbing

² Pick a initial solution at random.

² Examine the local neighborhood.
² Choose the best neighbor and “move” to it.

² Repeat until no better solution can be found.
§ Climbs mountains in fitness function landscape.
§ Restart when no improvement can be found.

24



Hill Climbing Strategies

² Steepest Ascent
§ Examine all neighbors
§ Pick one with highest improvement.

² Random Ascent
§ Examine random neighbors.
§ Choose first to show any improvement.

25



Simulated Annealing

² Choose a neighboring test case.
§ If better, select it. If not, select it at probability:

prob(score, newScore, time, temp) = e((score - newScore) * (time / temp))

§ Governed by temperature function:
temp(time, maxTime) = (maxTime - time) / maxTime

² Initially, large jumps around search space. 
§ Stabilizes over time.

26



Global Search

² Generate multiple solutions.

² Evolve by examining whole search space.
² Typically based on natural processes.

§ Swarm patterns, foraging behavior, evolution.
§ Models of how populations interact and change.

27



Genetic Algorithms

² Over multiple generations, evolve a population.
§ Good solutions persist and reproduce.
§ Bad solutions are filtered out.

² Diversity is introduced by:
§ Keeping the best solutions.
§ Some random solutions.
§ Creating “offspring” through mutation and crossover.

28



Genetic Algorithms - Mutation

² Copy a high-scoring solution.

² Impose a small change.
§ (add/delete/modify a function call, change an input value)
§ Follow the rules for determining the neighbors of a test.
§ Choose a neighbor from that set.

29



Genetic Algorithms - Crossover

² By “breeding” two good tests, we may produce better
tests.

² Form two new solutions.
§ Sample from probability distribution to decide which

parent to inherit from.

30



Genetic Algorithms - Crossover

² One Point Crossover
§ Splice at crossover point.

² Uniform Crossover
§ Flip coin at each line, second child gets other option.

² Discrete Recombination
§ Flip coin at each line for both children.

31

A B C D

1 2 3 4

A B 3 4

1 2 C D

A B C D

1 2 3 4

A B C D

1 2 3 4

A

1 B

2 3

C

D

4

A

A B

2

3

C 4

4



Particle Swarm Optimization 

² A swarm of agents each attempt to search for good test 
cases.

² When another agent finds a better solution than the best 
known “worldwide”, they tell everybody. 

² Each agent mutates their solution based on their 
knowledge of the best local solution and the best global 
solution. 

² Over time, the agents converge on the best solutions. 

32



Particle Swarm Optimization 

² Each agent has velocity and position. 
• Position: Their current solution. 
• Velocity: The amount of change to be made to the solution. 

Bound by a maximum velocity. 
§ Vectors along all dimensions in the solution. (i.e., method 

parameters).

² Each round, velocity and position are updated based on 
current local and global knowledge. 

33



Fitness Functions

² Fitness functions play a crucial role in search-based test 
generation. 

² Fitness functions must adhere to the following 
requirements:
§ Return continuous scores as to offer better feedback for the 

metaheuristic algorithms.
§ Return only numeric values in order to properly evaluate the 

generation of test cases each time.
§ Indication of how close the generation was to being optimal. It 

should not indicate quality but a distance to optimal quality.
§

34



Fitness Functions

² Domain-based scoring functions that determine how
good a potential solution is.
§ Should offer feedback:

• Percentage of goal attained.
• Better - information on how to improve solution.

§ Can optimize more than one at once.
• Independently optimize functions
• Combine into single score.

35



Example - Branch Coverage

² Goal: Attain Branch Coverage over the code.
§ Tests reach branching point (i.e., if-statement) and execute all

possible outcomes.

² Fitness function (Attempt 1):
§ Measure coverage and try to maximize % covered.
§ Good: Measurable indicator of progress.
§ Bad: No information on how to improve coverage.

36



Example - Branch Coverage

² Attempt 2: Distance-Based Function

² fitness = branch distance + approach level
§ Approach level

• Number of branching points we need to execute to get to the target
branching point.

§ Branch distance
• If other outcome is taken, how “close” was the target outcome?
• How much do we need to change program values to get the

outcome we wanted?

37



Example - Branch Coverage

if(x < 10){ // Branch 1

// Do something.

}else if (x == 10){ // Branch 2

// Do something else.

}

38

Approach Level
● If Branch 1 is true, approach 

level = 1
● If Branch 1 is false, approach 

level = 0

Branch Distance
● If x==10 evaluates to false, 

branch distance = (abs(x-
10)+k).

● Closer x is to 10, closer the 
branch distance.

Goal: Branch 2, True Outcome



Other Common Fitness Functions

² Number of methods called by test suite

² Number of crashes or exceptions thrown
² Diversity of input or output

² Detection of planted faults

² Amount of energy consumed
² Amount of data downloaded/uploaded

² … (anything that reflects what a good test is)

39



What Do I Do With These Inputs?

² If looking for crashes, just run generated input.

² If you need to judge correctness, add assertions.
§ General properties, not specific output.

• No: assertEquals(output, 2)
• Yes: assertTrue(output % 2 == 0)

40



Automated Program Repair

² Produce patches for common bug types.

² Many bugs can be fixed with just a few changes to the
source code - inserting new code, and deleting or
moving existing code.
§ Add null values check.
§ Change conditional expression.
§ Move a line within a try-catch block.

41



Generate and Validate

² Genetic programming - solutions represent sequences
of edits to the source code.

² Generate and validate approach:
§ Fitness function: how many tests pass?
§ Patches that pass more tests create new population:

• Mutation: Change one edit into another.
• Crossover: Merge edits from two parent patches.

42



Risks of Automation

² Structural coverage is important.
§ Unless we execute a statement, we’re unlikely to detect a fault in

that statement.

² More important: how we execute the code.
§ Humans incorporate context from a project.
§ “Context” is difficult for automation to derive.
§ One-size-fits-all approaches.

43



Limitations of Automation

² Automation produces different tests than humans.
§ “shortest-path” approach to attaining coverage.
§ Apply input different from what humans would try.
§ Execute sequences of calls that a human might not try.

² Automation can be very effective, but more work is
needed to improve it.

44



45


