FACULDADE
ENGENHARIA

N

Departamento de
Informatica

Plataformas e Servicos X-Ops
(16233)

Automated Test Case Generation

adapted from lecture notes of the “DIT 635 - Software Quality and Testing” unit,
delivered by Professor Gregory Gay, at the Chalmers and the University of Gothenburg, 2022)

Nuno Pombo — Plataformas e Servigos X-Ops, 2023/24

Today’s Goals

< Introduce Search-Based Test Generation

» (a.k.a.: Fuzzing)

= Test Creation as a Search Problem
= Metaheuristic Search

» Fitness Functions

< Example - Generating Covering Arrays for Combinatorial
Interaction Testing

Automating Test Creation

< Testing is invaluable, but expensive.

= We test for *many* purposes.
= Near-infinite number of possible tests we could try.
» Hard to achieve meaningful volume.

Automation of Test Creation

< Relieve cost by automating test creation.

= Repetitive tasks that do not need human attention.

= Generate test input.

* Need to add assertions.
* Or just look for crashes.

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

HEY! GET BACK
TOWORK! _/
]

2

Automation!

Test Automation

<> Test Automation is the development of software to
separate repetitive tasks from the creative aspects of
testing.

< Automation allows control over how and when tests are
executed.

= Control the environment and preconditions.
= Automatic comparison of predicted and actual output.
= Automatic hands-free re-execution of tests.

Manual vs Automation

< Scaling

= Manual generation can be an exhaustive and a time-consuming
process. It scales with the size of the Project which can hinder
the development speed of the software;

= Automated generation, being an automated process, can help
reduce the time needed to perform testing activities.

<> Coverage and Mutation

« Automated generation of unit tests usually provides a higher
capability of achieving better coverage values than the manual
approach.

 The ability to identify mutants in unit tests (identification of
allocated defects) is generally better in unit tests generated
automatically.)

Test Creation as a Search Problem

<> Do you have a goal in mind when testing?

= Make the program crash, achieve code coverage, cover all 2-
way interactions, ...

< You are searching for a test suite that achieves that
goal.

= Algorithm samples possible test input to find those tests.

Test Creation as a Search Problem

< “I want to find all faults” cannot be measured.

<> However, a lot of testing goals can be.

= Check whether properties satisfied (boolean)
= Measure code coverage (%)

= Count the number of crashes or exceptions thrown (#)

< If goal can be measured, search can be automated.

Search-Based Test Generation

<> Make one or more guesses.

= Generate one or more individual test cases or full suites.

<> Check whether goal is met.

= Score each guess.

< Try until time runs out.

= Alter the population based on strategy and try again!

Search Strategy

<> The order that solutions are tried is the key to efficiently
finding a solution.

< A search follows some defined strategy.
= Called a “heuristic”.

<> Heuristics are used to choose solutions and to ignore
solutions known to be unviable.

= Smarter than pure random guessing!

10

Heuristics - Graph Search

<> Arrange nodes into a hierarchy.

= Breadth-first search looks at all nodes on
the same level.

= Depth-first search drops down hierarchy
until backtracking must occur.

< Attempt to estimate shortest path.

= A* search examines distance traveled and estimates optimal
next step.

» Requires domain-specific scoring function.

11

How Long Do We Spend Searching?

<> Exhaustive search not viable.

<> Search can be bound by a search budget.

= Number of guesses.
= Time allotted to the search (number of minutes/seconds).

< Optimization problem:

= Best solution possible before running out of budget.

12

Generation as Optimization Problem

<> Search heuristic becomes important.

= |f time bound: time to create, execute, and evaluate.
= |f attempt bound: strategy used to choose next solution.

 Ignoring bad solutions, learning what makes a solution good.
* |n practice, efficiency in both categories is desired.

13

Random Search

< Randomly formulate a solution.

= Unit testing: choose a class in the system, choose random
methods, call with random parameter values.

= System-level testing: choose an interface, choose random
functions from interface, call with random values.

< Keep trying until goal attained or budget expires.

14

Random Search

<- Sometime viable:

= Extremely fast.
= Easy to implement, easy to understand.
= All inputs considered equal, so no designer bias.

< However...
IM THINKING OF A NUMBER | NOPE. SIX MILLION NOPE. NHKTS THE MATTER,
BETWEEN ONE GUESS . 7
SEEN INRED \\S’Caon. v g RO gi DONT YOU LIKE
- x

;

Lis}

o0

2

15

Metaheuristic Search

< Random search is naive.

= Only possible to cover a
small % of full input space.

<> Metaheuristic search adds

Intelligence to random.

= Feedback and sampling
strategies.

= Still fast, able to learn
from bad guesses.

Global maxima

i

7\

()
0
S\

N
\ D2
>

R

()
SR

e LOCal maxima
e % .

= /) N : e
TN

‘ & \."[/I/'V"”-“C
AN
|

W%

16

Mechanics of Optimization

AKA: How can | get a computer to search?

INPUT x
\7
{1: FUNCTION f:
[+

OUTPUT f(x)

Metaheuristic Fitness Function(s)

17

Search-Based Test Generation

INPUT x

-
7‘, \ﬁ
-
= + ‘ FUNCTION f:
—
[+

OUTPUT f(x)

The Metaheuristic The Fitness Functions
(Sampling Strategy) (Feedback Strategies)

Genetic Algorithm Distance to Coverage Goals
Simulated Annealing Count of Executions Thrown
Hill Climber Input or Output Diversity

(...) (...)

/

(Goals)

Cause Crashes
Cover Code Structure,
Generate Covering
Array,

(...)

18

The Metaheuristic

< Decides how to select and revise solutions.

= Changes approach based on past guesses.
» Fitness functions give feedback.

= Population mechanisms choose new solutions and determine
how solutions evolve.

19

The Metaheuristic

< Decides how to select and revise solutions.

= Small adjustments (local search) or sampling from the whole
space (global search).

= One solution at a time or entire populations.

= Often based on natural phenomena (swarm behavior, evolution).

» Trade-off between speed, complexity, and understandability.

20

“Solutions”

<> What is a solution?

= Test Case: Evolved in isolation from other test cases.
» Test Suite: A set of test cases, evolved together.

< Depends on how goal attainment measured.

= Code Coverage

» Test Case: Target one code section at a time.
» Test Suite: Target coverage of entire class/system.

21

Local Search

<> Generate and score a potential solution.

< Attempt to improve by looking at its neighborhood.
= Make small, incremental improvements.
< Very fast, efficient if good initial guess.

= Get “stuck” if bad guess.
= Often include reset strategies.

22

Exploring the Neighborhood

<> Small changes to solution.

For each call;

« Switch value of boolean, other values from an enumerated set,
bounded range of numeric choices.

Full test case:

* Insert a new call.
» Delete or replace an existing call.

— Can replace by changing the function called or its

%PacoMera\gu DISTRITO DE ¥

L @ Cotton House Hotel Afzde Triomf &
ENSANCHE El Nacional

Sorli Discau

@ Catrer de Buenavent
Muioz, 10

Ko lkibana Borne

Olé/Languages Passeig de Gracia Laie
& Font 3 e
Caravan Parroquia de Sant : .

Qo La | aberna del ESPIT ZarQiPldding Alicia D pe2 de les Pusties (€9 Carreride Sant

fis !
7 Loty Pere Mitja, 680,
Jordi @ Mercat del Ninot DE%C“"’" @ collseim ©La Masala Cafe CBORNISIMO
2 ApplejStore Espai Mesoladis
%, @ Roast Club Cafe 4 El Corte Inalés ') La Dolga Hermiinia Bodega Jané
Parroaliia de Santa A <NAP Antic & “Mosc o
Supermercado @ Wit oar @ Unversc@) :
%, Lid|Barcelona ¥ oo Y Cniversigad (s acais @ Carrendel Rec, 18/Q) Cockrailigar” - :
jerCal HOTEL PULITZER g Zar i ;
o ARCE '@ Plaga disidre Nopell

Rosses i Torrades -
Celler de Cerveses

" phﬁsy A i Hote)j1898;
@ celida Déner Kebab Amigg) ochs d&fSultan

Q aWimia 3 @ango Q 95" @shgu Gelatd) Baluard de M

Catedral de Barceldha

Jdanra Falces ¢
@P.E1Qmpaayet

Palau Dalmases Flamenco Estacion d

iMuralla de M
o Babelia 3 ‘6 @ Papit Qraj Chai ElFlakoCo@ . &
M ATt lento o X o Paella Bar Boqueria o O 0’ o oflakes g COO Psnke\: o e
@ omiiniia ©/Q 5ar ity Buers @:Can cllerer Correos

wrant Tandoor

Sant Any al i
Sant Antoni 4> 4

urant Bienvenido

© aanB: PG5

Tiicco Real Faad
id 5 3
o [~ @ Els Tres{Tombs Palacio sued?Amn S oo 5
@ Cerveseria la Més Petita @ 1gpodeross, ha
Q@ can Vilard Pizza Circus
Freedonia” Y. @ \isao de 82 -
Q Federal Cafi Q Trpico
9 Q'ear catdersY “2, Q
Q @ café Cometa 20, Drassanes @ vjirador de Colon
J Museo Man’wg S
adeEspana podega1900 de Barceld
03 4 Google
Escola Publica Mossén > v gt Con Eusdd g

«

BarE
Qo
ol

La Heladerfa' Mems

McDonald's

parameters.

23

Hill Climbing

< Pick a initial solution at random.
< Examine the local neighborhood.

<> Choose the best neighbor and “move” to it.

<> Repeat until no better solution can be found.

= Climbs mountains in fitness function landscape.
= Restart when no improvement can be found.

24

Hill Climbing Strategies

< Steepest Ascent

= Examine all neighbors
= Pick one with highest improvement.

<> Random Ascent

= Examine random neighbors.

» Choose first to show any improvement.

25

Simulated Annealing

<> Choose a neighboring test case.

= |f better, select it. If not, select it at probability:
prob(score, newScore, time, temp) = el(score - newScore) * (time / temp))

= Governed by temperature function:
temp(time, maxTime) = (maxTime - time) / maxTime

< Initially, large jumps around search space.

= Stabilizes over time.

26

Global Search

<> Generate multiple solutions.
< Evolve by examining whole search space.

< Typically based on natural processes.

= Swarm patterns, foraging behavior, evolution.
= Models of how populations interact and change.

'
v | Sy e

ppppp

27

Genetic Algorithms

<> Over multiple generations, evolve a population.
= Good solutions persist and reproduce.
= Bad solutions are filtered out.

< Diversity is introduced by:

= Keeping the best solutions.
= Some random solutions.
= Creating “offspring” through mutation and crossover.

Cond
ﬁ: O\001110
GLOMACS W

®
LI ==
8 o
N 10 \ .
\0\°°\°\ ° s @0\ 00“7 (4]

$
e 70]010\\°

o

28

Genetic Algorithms - Mutation

<> Copy a high-scoring solution.

< Impose a small change.

= (add/delete/modify a function call, change an input value)
= Follow the rules for determining the neighbors of a test.
= Choose a neighbor from that set.

Before t

After

gz

29

Genetic Algorithms - Crossover

< By “breeding” two good tests, we may produce better
tests.

< Form two new solutions.

= Sample from probability distribution to decide which
parent to inherit from.

Parent 2

Child 1 ‘ ' t
Child 2 l_ \ /\ M\
\ \/ -

Genetic Algorithms - Crossover

<> One Point Crossover

= Splice at crossover point.

< Uniform Crossover

= Flip coin at each line, second child gets other option.

< Discrete Recombination

= Flip coin at each line for both children.

A

C

D

1

23

4

A

B

C

D

1

2

3

4

31

Particle Swarm Optimization

< A swarm of agents each attempt to search for good test
cases.

< When another agent finds a better solution than the best
known “worldwide”, they tell everybody.

< Each agent mutates their solution based on their
knowledge of the best local solution and the best global
solution.

< Over time, the agents converge on the best solutions.

32

Particle Swarm Optimization

<> Each agent has velocity and position.

» Position: Their current solution.

» Velocity: The amount of change to be made to the solution.

Bound by a maximum velocity.

= Vectors along all dimensions in the solution. (i.e., method

parameters).

< Each round, velocity and position are updated based on

current local and global knowledge.

) The best experience
/ pbest. position *
! J \

| !
\ Y _—————

Current
position P;

\
gbest The best patticle

‘;. position /'
/
4

The new
N
~ position

Fithess Functions

<> Fitness functions play a crucial role in search-based test
generation.

< Fitness functions must adhere to the following
requirements:
= Return continuous scores as to offer better feedback for the
metaheuristic algorithms.

= Return only numeric values in order to properly evaluate the
generation of test cases each time.

* |ndication of how close the generation was to being optimal. It
should not indicate quality but a distance to optimal quality.

34

Fithess Functions

<> Domain-based scoring functions that determine how
good a potential solution is.

= Should offer feedback:

« Percentage of goal attained.

» Better - information on how to improve solution.
= Can optimize more than one at once.

 Independently optimize functions
« Combine into single score.

INPUT x

Y4

FUNCTION;J
v

OUTPUT f(x)

35

Example - Branch Coverage

< Goal: Attain Branch Coverage over the code.

= Tests reach branching point (i.e., if-statement) and execute all
possible outcomes.

<> Fitness function (Attempt 1):

= Measure coverage and try to maximize % covered.
» Good: Measurable indicator of progress.
= Bad: No information on how to improve coverage.

36

Example - Branch Coverage

< Attempt 2: Distance-Based Function

<> fithness = branch distance + approach level

= Approach level

« Number of branching points we need to execute to get to the target
branching point.

= Branch distance

« If other outcome is taken, how “close” was the target outcome?

« How much do we need to change program values to get the
outcome we wanted?

37

Example - Branch Coverage

if(x < 10){ // Branch 1

// Do something. Approach Level

telse if (x == 10){ // Branch 2 @® If Branch 1 is true, approach
// Do something else. level =1
@® If Branch 1 is false, approach
} level = 0

Branch Distance
@® If x==10 evaluates to false,

branch distance = (abs(x-
Goal: Branch 2, True Outcome 10)+k).

@® Closer x is to 10, closer the
branch distance.

38

Other Common Fitness Functions

<> Number of methods called by test suite
<> Number of crashes or exceptions thrown
<> Diversity of input or output

< Detection of planted faults

<> Amount of energy consumed

<> Amount of data downloaded/uploaded

< ... (anything that reflects what a good test is)

39

What Do | Do With These Inputs?

<> If looking for crashes, just run generated input.

<> If you need to judge correctness, add assertions.

= General properties, not specific output.

* No: assertEquals(output, 2)
* Yes: assertTrue(output % 2 == 0)

40

Automated Program Repair

<> Produce patches for common bug types.

< Many bugs can be fixed with just a few changes to the
source code - inserting new code, and deleting or
moving existing code.

= Add null values check.
= Change conditional expression.
= Move a line within a try-catch block.

41

Generate and Validate

< Genetic programming - solutions represent sequences
of edits to the source code.

<> Generate and validate approach:

= Fitness function: how many tests pass?
= Patches that pass more tests create new population:

« Mutation: Change one edit into another.
» Crossover: Merge edits from two parent patches.

42

Risks of Automation

<> Structural coverage is important.

» Unless we execute a statement, we're unlikely to detect a fault in
that statement.

< More important: how we execute the code.

= Humans incorporate context from a project.
= “Context” is difficult for automation to derive.
= One-size-fits-all approaches.

43

Limitations of Automation

<> Automation produces different tests than humans.

® “shortest-path” approach to attaining coverage.
" Apply input different from what humans would try.

® Execute sequences of calls that a human might not try.

<> Automation can be very effective, but more work is

needed to improve it.

44

—

= O WHERE:=
w"ﬁ“éﬁ‘cé WHEN Wy

—1 B 1 WHEN

WHAT = W ﬁEVI\\IIH AT
WHAT .. =
2WHEREZHOW

<

