
Plataformas e Serviços X-Ops
(16233)

Refactoring

(adapted from lecture notes of the “DIT 635 - Software Quality and Testing” unit,
delivered by Professor Gregory Gay, at the Chalmers and the University of Gothenburg, 2022)

1Nuno Pombo – Plataformas e Serviços X-Ops, 2023/24

Today’s Goals

² Cover the basics of refactoring

² Introduce the idea of “code smells”

2

The Software Lifecycle

3

Concept
Formation

Requirements
Specification

Design

Implementation
and Testing

Release and
Maintenance

The Real Lifecycle

4

Specification Implementati
on

Verification &
ValidationOperation

R1R2R3R4

Initial
Developme

nt

Evolution

Servicing

Phaseout

Software Maintenance

● Fault Repairs
○ Changes made in order to correct coding, design, or
requirements errors.

● Environmental Adaptations
○ Changes made to accommodate changes to the hardware, OS
platform, or external systems.

● Functionality Addition
○ New features are added to the system to meet new user
requirements.

5

Software Maintenance Effort

● Maintenance costs more than the initial development.
○ 2/3rds of budget goes to maintenance on average.
○ Up to four times the development cost to maintain critical
systems.

● General breakdown:
○ 65% of effort goes to functionality addition
○ 18% to environmental adaptation
○ 17% to fault repair

6

Maintenance is Hard

It is harder to maintain than to write new code.
● Must understand code written by another developer, or

code that you wrote long ago.
● Creates a “house of cards” effect.
● Developers tend to prioritize new development.

Smooth maintenance requires planning and design that
supports maintainability.

7

The Laws of Software Evolution

● Maintenance is an inevitable process.
○ Requirements change as the environment changes.
○ Changing the software causes environmental changes,
which leads to more requirement changes.

● As changes occur, the structure degrades.
○ When changes are made, the structure becomes more
complex.

○ To prevent this, resources must go into preventative
maintenance - refactoring to preserve and simplify the
structure without adding to functionality.

8

The Laws of Software Evolution

● The amount of change in each release is approximately
constant.
○ The more functionality introduced, the more faults.
○ A large functionality patch tends to be followed by a patch that
fixes faults without adding additional functionality. Small
functionality changes do not require a fault-correcting patch.

● Functionality must continually increase to maintain user
satisfaction.

9

The Laws of Software Evolution

● The quality of the system will decline unless updated to
work with changing environment.

● To improve quality, evolution must be treated as a
feedback system.
○ Stakeholders must be continually involved in evolution, and
changes should be influenced by their needs.

10

Refactoring

● Process of revising the code or design to improve its
structure, reduce complexity, or otherwise
accommodate change.

● When refactoring, you do not add functionality.
● Continuous process of improvement throughout the

evolution of the system.

11

Why Refactor?

Why fix what isn’t broken?
● Components have three purposes:
○ To perform a service.
○ To allow change.
○ To be understood by developers reading it.

● If it does not do any of these, it is “broken”.
● Enables change and improves understandability.

12

Refactoring is an Iterative Process

● Refactoring should take place as an iterative cycle of
small transformations.
○ Choose a small part of the system, redesign it, and make sure

it still works.
○ Choose a new section of the system and refactor it.

● Refactoring requires unit tests.
○ Make sure the code works before and after.

13

Choosing What to Refactor

● Refactor any piece of the system that:
○ Seems to work,
○ But isn’t well designed,
○ And now needs new functionality.

● There are stereotypical situations that indicate the need
for refactoring.
○ These are called “bad smells”.

14

Code Smells

● Code is duplicated in multiple places.
● A method is too long.
● Conditional statements control behavior based on an

object type.
● Groups of data attributes are duplicated.
● A class has poor cohesion or high coupling.
● A method has too many parameters.
● Speculative generality - adding functionality that “we

might need someday.”

15

More Code Smells

● Changes must be made in several places.
● Poor encapsulation of data that should be private.
● If a weak subclass does not use inherited functionality.
● If a class contains unused code.
● If a class contains potentially unused attributes that

are only set in particular circumstances.
● There are data classes containing only attributes,

getters, and setters, but nothing else - objects should
encapsulate data and behaviors.
○ Unless that data is used by multiple classes.

16

Common Refactorings
(more at http://www.refactoring.com)

Composing Methods

● Extract Method
● Inline Method; Inline Temp
● Introduce Explaining Variable
● Split Temporary Variable
● Remove Assignments to Parameters
● Substitute Algorithm

Moving Features Between Objects

● Move Method; Move Field
● Extract Class
● Inline Class
● Hide Delegate
● Remove Middleman
● Introduce Foreign Method

Organizing Data

● Replace Data Value with Object
● Change Value to Reference; Change Reference to Value
● Replace Array with Object
● Duplicate Observed Data
● Change Unidirectional Association to Bidirectional
● Change Bidirectional Association to to Unidirectional

Simplifying Conditional Expressions

● Decompose Conditional
● Consolidate Conditional Expression
● Consolidate Duplicate Conditional Fragments
● Replace Conditional with Polymorphism
● Introduce Null Object
● Introduce Assertion 17

Making Method Calls Simpler

● Rename Method
● Add/Remove Parameter
● Separate Query from Modifier
● Parameterize Method
● Replace Parameter with Explicit Methods
● Preserve Whole Object
● Replace Parameter with Method
● Introduce Parameter Object
● Remove Setting Method
● Hide Method
● Replace Constructor with Factory Method
● Encapsulate Downcast
● Replace Error Code with Exception
● Replace Exception with Test

Dealing with Generalization

● Pull Up Field; Method; Constructor Body
● Push Down Method; Push Down Field
● Extract Subclass; Extract Superclass; Interface
● Collapse Hierarchy
● Form Template Method
● Replace Inheritance with Delegation (or vice versa)

Big Refactorings

● Nature of the Game
● Tease Apart Inheritance
● Convert Procedural Design to Objects
● Separate Domain from Presentation
● Extract Hierarchy

http://www.refactoring.com/

Refactorings - Composing Methods

● If you have a complex code fragment that can exist
independently, extract it into its own method.

● If you have a method that is extremely simple, inline it
into locations where it is used.

● If you assign values to a temporary variable more than
once, split it into additional temporary variables.

● If assignments are made to parameter variables in a
method, instead assign to a temporary variable.

● If an algorithm is hard to understand, swap it for a
version that is clearer.

18

Refactorings - Moving Features Between Objects

● If a method or field is used more by a calling class than
the class it is placed in, move it.

● If a class is doing more work than it should (or has low
cohesion), extract a subset of related methods into a
new class.

● If a class is doing too little, combine it with another.
● If a class delegates too many calls to a middleman

class, get rid of the middleman and call the client
directly.

● If an imported class needs an additional method, but
you can’t modify it directly, create a method in the
client class with the imported object as a parameter.

19

Refactorings - Conditional Expressions & Data

● If your conditional statements are too complex, extract
methods from the if, then, and else conditions.

● If you have a sequence of conditional tests with the
same result or repeated conditions in each branch,
consolidate them into fewer conditional statements.

● If you have conditional statements to choose behavior
based on object type, instead use polymorphism.

● If you have an attribute that needs additional data or
operations, turn it into a new type of data object.

● If certain array values have special meaning, use a
class to store items instead.

20

Refactorings - Simplifying Method Calls and Generalization

● If a method both returns a value and changes the state
of a passed object, split into two methods and separate
the query from the modifier.

● If several methods do similar things - differentiated by
value - create one method that takes the value as a
parameter.

● If two classes have the same
attribute/method/constructor body, pull it up into the
parent. If an item is only used by some subclasses,
push it into the children.

● If a class has features only used situationally, extract
subclasses for those situations.

21

Dangers of Refactoring

● Code that used to be well commented, well tested,
and fully reviewed might not be any of these things
after refactoring.

● You might have inserted faults into code that
previously worked.
○ This is why unit tests are important. If the new
code is broken, revert back to the old code.

● What if the new design is not better?

22

“I Don’t Have Time”

● Most common excuse for not refactoring.
● Refactoring incurs an up-front cost.
○ Developers don’t want to do it.
○ Neither do managers - they lose time and get “nothing” (no new
features)

● Small companies (start-ups) avoid it.
○ “We can’t afford it.” “We don’t need it.”

● So do large companies.
○ “We’d rather add new features.”
○ “No one gets promoted for refactoring.”

23

“I Don’t Have Time”

● Refactoring is the key to effective evolution.
○ Enables rapid addition of new features, with fewer

faults (up to a 500% ROI).
○ Good for programmer morale.

● Refactoring is an investment in a company’s prime
asset - its code base.

● Many start-ups use cutting-edge tech and agile
processes that evolve rapidly. So should the code.

● Some of the most successful companies (Google)
reward and require refactoring.

24

25

