
Plataformas e Serviços X-Ops
(16233)

Reliable Programming

(adapted from Engineering Software Products: An Introduction to Modern Software Engineering, Ian Sommerville,
Pearson, 2020)

1Nuno Pombo – Plataformas e Serviços X-Ops, 2023/24

²Creating a successful software product does not
simply mean providing useful features for users.

²You need to create a high-quality product that
people want to use.

²Customers have to be confident that your product
will not crash or lose information, and users have to
be able to learn to use the software quickly and
without mistakes.

Software quality

2

Product quality attributes

Reliability

Security

MaintainabilityUsability

Figure 8.1 Product quality attributes

Responsiveness

Product quality
attributes

Availability

Resilience

3

Programming for reliability

² There are three simple techniques for reliability
improvement that can be applied in any software
company.
§ Fault avoidance You should program in such a way that you

avoid introducing faults into your program.
§ Input validation You should define the expected format for user

inputs and validate that all inputs conform to that format.
§ Failure management You should implement your software so

that program failures have minimal impact on product users.

4

Underlying causes of program errors

Technology

Programmers make mistakes because
they make simple slips or they do not
completely understand how multiple
program components work together and change
the program’s state.

Figure 8.2 Underlying causes of program errors

Programming language,
libraries, database, IDE, etc.

Program

Programmers make mistakes
because they don’t properly
understand the problem or the
application domain.

Programmers make mistakes
because they use unsuitable
technology or they don’t
properly understand the
technologies used.

Problem

5

Software complexity

The shaded node interacts, in some ways, with
the linked nodes shown by the dotted line

Figure 8.3 Software complexity

6

Program complexity (1 of 2)

² Complexity is related to the number of relationships
between elements in a program and the type and nature
of these relationships

² The number of relationships between entities is called
the coupling. The higher the coupling, the more complex
the system.
§ The shaded node in Figure 8.3 has a relatively high coupling

because it has relationships with six other nodes.

7

Program complexity (2 of 2)

² A static relationship is one that is stable and does not
depend on program execution.
§ Whether or not one component is part of another component is a

static relationship.

² Dynamic relationships, which change over time, are
more complex than static relationships.
§ An example of a dynamic relationship is the ‘calls’ relationship

between functions.

8

Types of complexity

² Reading complexity: this reflects how hard it is to read
and understand the program.

² Structural complexity: this reflects the number and
types of relationship between the structures (classes,
objects, methods or functions) in your program.

² Data complexity: this reflects the representations of
data used and relationships between the data elements
in your program.

² Decision complexity: this reflects the complexity of the
decisions in your program.

9

Type Guideline

Structural complexity Functions should do one thing and one thing only.
Functions should never have side effects.
Every class should have a single responsibility.
Minimize the depth of inheritance hierarchies.
Avoid multiple inheritance.
Avoid threads (parallelism) unless absolutely necessary.

Data complexity Define interfaces for all abstractions.
Define abstract data types.
Avoid using floating-point numbers.
Never use data aliases.

Decision complexity Avoid deeply nested conditional statements.
Avoid complex conditional expressions.

Complexity reduction guidelines

10

Ensure that every class has a single responsibility

² You should design classes so that there is only a single
reason to change a class.
§ If you adopt this approach, your classes will be smaller and more

cohesive.
§ They will therefore be less complex and easier to understand

and change.

² The notion of ‘a single reason to change’ is, I think, quite
hard to understand. So, the single responsibility principle
in a much better way:
§ Gather together the things that change for the same reasons.
§ Separate those things that change for different reasons.

11

The DeviceInventory class

DeviceInventory

laptops
tablets
phones
device_assignment

addDevice
removeDevice
assignDevice
unassignDevice
getDeviceAssignment

DeviceInventory

laptops
tablets
phones
device_assignment

addDevice
removeDevice
assignDevice
unassignDevice
getDeviceAssignment
printInventory

Figure 8.4 The DeviceInventory class

(a) (b)

12

Adding a printInventory method (1 of 2)

² One way of making this change is to add a
printInventory method.

² This change breaks the single responsibility principle
as it then adds an additional ‘reason to change’ the
class.
§ Without the printInventory method, the reason to change the
class is that there has been some fundamental change in the
inventory, such as recording who is using their personal
phone for business purposes.

§ However, if you add a print method, you are associating
another data type (a report) with the class. Another reason for
changing this class might then be to change the format of the
printed report.

13

Adding a printInventory method (2 of 2)

²Instead of adding a printInventory method to
DeviceInventory, it is better to add a new class to
represent the printed report as shown in next
figure.

14

The DeviceInventory and InventoryReport classes

DeviceInventory

laptops
tablets
phones
device_assignment

addDevice
removeDevice
assignDevice
unassignDevice
getDeviceAssignment

InventoryReport

report_data
report_format

updateData
updateFormat
print

Figure 8.5 The DeviceInventory and InventoryReport classes

15

Avoid deeply nested conditional statements

²Deeply nested conditional (if) statements are used
when you need to identify which of a possible set of
choices is to be made.

² For example, the function ‘agecheck’ in Program 3.1 is
a short Python function that is used to calculate an
age multiplier for insurance premiums.
§ The insurance company’s data suggests that the age and
experience of drivers affects the chances of them having an
accident, so premiums are adjusted to take this into account.

§ It is good practice to name constants rather than using
absolute numbers, so Program 8.1 names all constants that
are used.

16

YOUNG_DRIVER_AGE_LIMIT = 25
OLDER_DRIVER_AGE = 70
ELDERLY_DRIVER_AGE = 80
YOUNG_DRIVER_PREMIUM_MULTIPLIER = 2
OLDER_DRIVER_PREMIUM_MULTIPLIER = 1.5
ELDERLY_DRIVER_PREMIUM_MULTIPLIER = 2
YOUNG_DRIVER_EXPERIENCE_MULTIPLIER = 2
NO_MULTIPLIER = 1
YOUNG_DRIVER_EXPERIENCE = 2
OLDER_DRIVER_EXPERIENCE = 5
def agecheck (age, experience):

Assigns a premium multiplier depending on the age and experience of
the driver

Program 3.1 Deeply nested if-then-else statements (1 of 3)

17

multiplier = NO_MULTIPLIER

if age <= YOUNG_DRIVER_AGE_LIMIT:

if experience <= YOUNG_DRIVER_EXPERIENCE:

multiplier = YOUNG_DRIVER_PREMIUM_MULTIPLIER *
YOUNG_DRIVER_EXPERIENCE_MULTIPLIER

else:

multiplier = YOUNG_DRIVER_PREMIUM_MULTIPLIER

else:

if age > OLDER_DRIVER_AGE and age <=

Program 3.1 Deeply nested if-then-else statements (2 of 3)

18

ELDERLY_DRIVER_AGE:
if experience <= OLDER_DRIVER_EXPERIENCE:

multiplier =
OLDER_DRIVER_PREMIUM_MULTIPLIER

else:
multiplier = NO_MULTIPLIER

else:
if age > ELDERLY_DRIVER_AGE:

multiplier =
ELDERLY_DRIVER_PREMIUM_MULTIPLIER

return multiplier

Program 3.1 Deeply nested if-then-else statements (3 of 3)

19

Program 3.1 Using guards to make a selection (1 of 2)

def agecheck_with_guards (age, experience):

if age <= YOUNG_DRIVER_AGE_LIMIT and experience <=
YOUNG_DRIVER_EXPERIENCE:

return YOUNG_DRIVER_PREMIUM_MULTIPLIER *
YOUNG_DRIVER_EXPERIENCE_MULTIPLIER

if age <= YOUNG_DRIVER_AGE_LIMIT:

20

return YOUNG_DRIVER_PREMIUM_MULTIPLIER
if (age > OLDER_DRIVER_AGE and age <=

ELDERLY_DRIVER_AGE) and experience <=
OLDER_DRIVER_EXPERIENCE:

return OLDER_DRIVER_PREMIUM_MULTIPLIER
if age > ELDERLY_DRIVER_AGE:

return ELDERLY_DRIVER_PREMIUM_MULTIPLIER
return NO_MULTIPLIER

Program 3.1 Using guards to make a selection (2 of 2)

21

Avoid deep inheritance hierarchies (1 of 2)

² Inheritance allows the attributes and methods of a
class, such as RoadVehicle, can be inherited by
sub-classes, such as Truck, Car and MotorBike.

² Inheritance appears to be an effective and efficient
way of reusing code and of making changes that
affect all subclasses.

²However, inheritance increases the structural
complexity of code as it increases the coupling of
subclasses. For example, next figure shows part of
a 4-level inheritance hierarchy that could be defined
for staff in a hospital.

22

Avoid deep inheritance hierarchies (2 of 2)

²The problem with deep inheritance is that if you
want to make changes to a class, you have to look
at all of its superclasses to see where it is best to
make the change.

²You also have to look at all of the related subclasses
to check that the change does not have unwanted
consequences. It’s easy to make mistakes when you
are doing this analysis and introduce faults into your
program.

23

Part of the inheritance hierarchy for hospital staff

Hospital staff

Clinical staffParamedics Scientists Admin staffTechnicians Ancillary staff

Doctor PhysiotherapistNurse

Midwife Ward nurse
Nurse

manager

Figure 8.6 Part of the inheritance hierarchy for hospital staff

24

Design pattern definition

²Definition
§ A general reusable solution to a commonly-occurring

problem within a given context in software design.
²Design patterns are object-oriented and describe
solutions in terms of objects and classes. They are
not off-the-shelf solutions that can be directly
expressed as code in an object-oriented language.

²They describe the structure of a problem solution
but have to be adapted to suit your application and
the programming language that you are using.

25

Programming principles

² Separation of concerns

§ This means that each abstraction in the program (class, method,
etc.) should address a separate concern and that all aspects of
that concern should be covered there. For example, if
authentication is a concern in your program, then everything to
do with authentication should be in one place, rather than
distributed throughout your code.

² Separate the ‘what’ from the ‘how

§ If a program component provides a particular service, you should
make available only the information that is required to use that
service (the ‘what’). The implementation of the service (‘the how’)
should be of no interest to service users.

26

Common types of design patterns (1 of 2)

² Creational patterns
§ These are concerned with class and object creation. They define

ways of instantiating and initializing objects and classes that are
more abstract than the basic class and object creation
mechanisms defined in a programming language.

² Structural patterns
§ These are concerned with class and object composition.

Structural design patterns are a description of how classes and
objects may be combined to create larger structures.

27

Common types of design patterns (2 of 2)

² Behavioural patterns
§ These are concerned with class and object communication. They

show how objects interact by exchanging messages, the
activities in a process and how these are distributed amongst the
participating objects.

28

Pattern
name

Type Description

Factory Creational Used to create objects when slightly-different variants of the
object may be created.

Prototype Creational Used to create an object clone—that is, a new object with exactly
the same attribute values as the object being cloned.

Facade Structural Used to match semantically compatible interfaces of different
classes.

Facade Structural Used to provide a single interface to a group of classes in which
each class implements some functionality accessed through the
interface.

Mediator Behavioral Used to reduce the number of direct interactions between
objects. All object communications are handled through the
mediator.

State Behavioral Used to implement a state machine in which an object changes
its behavior when its internal state changes.

Examples of creational, structural, and behavioral patterns

29

List view and tree view of ancestors

List view Tree view

Family history data

Figure 8.7 List view and tree view of ancestors

30

Element Description
Name Observer
Description This pattern separates the display of an object from the object itself. There

may be multiple displays associated with the object. When one display is
changed, all others are notified and take action to update themselves.

Problem Many applications present multiple views (displays) of the same data with
the requirement that all views must be updated when any one view is
changed. You may also wish to add new views without the object whose
state is being displayed knowing about the new view or how the information
is presented.

Solution The state to be displayed (sometimes called the Model) is maintained in a
Subject class that includes methods to add and remove observers and to get
and set the state of the Model. An observer is created for each display and
registers with the Subject. When an observer uses the set method to change
the state, the Subject notifies all other Observers. They then use the
Subject’s getState() method to update their local copy of the state and so
change their display. Adding a new display simply involves notifying the
Subject that a new display has been created.

The Observer pattern (1 of 2)

31

Element Description
Implementation This pattern is implemented using abstract and concrete classes.

The abstract Subject class includes methods to register and deregister
observers and to notify all observers that a change has been made.
The abstract Observer class includes a method to update the local
state of each observer. Each Observer subclass implements these
methods and is responsible for managing its own display. When
notifications of a change are received, the Observer subclasses access
the model using the getState() method to retrieve the changed
information.

Things to
consider

The Subject does not know how the Model is displayed so cannot
organize its data to optimize the display performance. If a display
update fails, the Subject does not know that the update has been
unsuccessful.

The Observer pattern (2 of 2)

32

Pattern description

² Design patterns are usually documented in the stylized
way. This includes:
§ a meaningful name for the pattern and a brief description of what

it does;
§ a description of the problem it solves;
§ a description of the solution and its implementation;
§ the consequences and trade-offs of using the pattern and other

issues that you should consider.

33

Refactoring (1 of 2)

² Refactoring means changing a program to reduce its
complexity without changing the external behaviour of
that program.

² Refactoring makes a program more readable (so
reducing the ‘reading complexity’) and more
understandable.

34

Refactoring (2 of 2)

² It also makes it easier to change, which means that you
reduce the chances of making mistakes when you
introduce new features.

² The reality of programming is that as you make changes
and additions to existing code, you inevitably increase its
complexity.
§ The code becomes harder to understand and change. The

abstractions and operations that you started with become more
and more complex because you modify them in ways that you
did not originally anticipate.

35

A refactoring process

Identify code
‘smell’

Identify refactoring
strategy

Make small
improvement until
strategy completed

Run automated
code tests

Figure 8.8 A refactoring process

Start

36

Code smells

² Martin Fowler, a refactoring pioneer, suggests that the
starting point for refactoring should be to identify code
‘smells’.

² Code smells are indicators in the code that there might
be a deeper problem.
§ For example, very large classes may indicate that the class is

trying to do too much. This probably means that its structural
complexity is high.

37

Code smell Refactoring action
Large classes Large classes may mean that the single

responsibility principle is being violated. Break
down large classes into easier-to-understand,
smaller classes.

Long methods/functions Long methods or functions may indicate that the
function is doing more than one thing. Split into
smaller, more specific functions or methods.

Duplicated code Duplicated code may mean that when changes are
needed, these have to be made everywhere the
code is duplicated. Rewrite to create a single
instance of the duplicated code that is used as
required.

Examples of code smells (1 of 2)

38

Code smell Refactoring action
Meaningless names Meaningless names are a sign of programmer

haste.They make the code harder to understand.
Replace with meaningful names and check for
other shortcuts that the programmer may have
taken.

Unused code This simply increases the reading complexity of the
code. Delete it even if it has been commented out.
If you find you need it later, you should be able to
retrieve it from the code management system.

Examples of code smells (2 of 2)

39

Type of complexity Possible refactoring
Reading complexity You can rename variable, function, and class names

throughout your program to make their purpose more
obvious.

Structural complexity You can break long classes or functions into shorter
units that are likely to be more cohesive than the
original large class.

Data complexity You can simplify data by changing your database
schema or reducing their complexity. For example,
you can merge related tables in your database to
remove duplicated data held in these tables.

Decision complexity You can replace a series of deeply nested if-then-else
statements with guard clauses, as I explained earlier
in this chapter.

Examples of refactoring for complexity reduction

40

• Input validation involves checking that a user’s input is in
the correct format and that its value is within the range
defined by input rules.

• Input validation is critical for security and reliability. As
well as inputs from attackers that are deliberately invalid,
input validation catches accidentally invalid inputs that
could crash your program or pollute your database.

• User input errors are the most common cause of
database pollution.

Input validation (1 of 2)

41

• You should define rules for every type of input field and
you should include code that applies these rules to
check the field’s validity.

• If it does not conform to the rules, the input should be
rejected.

Input validation (2 of 2)

42

• The length of a name should be between 2 and 40
characters.

• The characters in the name must be alphabetic or
alphabetic characters with an accent, plus a small
number of special separator characters. Names must
start with a letter.

• The only non-alphabetic separator characters allowed
are hyphen, and apostrophe.

• If you use rules like these, it becomes impossible to input
very long strings that might lead to buffer overflow, or to
embed SQL commands in a name field.

Rules for name checking

43

Validation method Implementation
Built-in validation
functions

You can use input validator functions provided by
your web development framework. For example,
most frameworks include a validator function that
will check that an email address is of the correct
format. Web development frameworks such as
Django (Python), Rails (Ruby), and Spring (Java) all
include an extensive set of validator functions.

Type coercion functions You can use type coercion functions, such as int() in
Python, that convert the input string into the desired
type. If the input is not a sequence of digits, the
conversion will fail.

Methods of implementing input validation (1 of 2)

44

Validation method Implementation
Explicit comparisons You can define a list of allowed values and possible

abbreviations and check inputs against this list. For
example, if a month is expected, you can check this
against a list of all months and their recognized
abbreviations.

Regular expressions You can use regular expressions to define a pattern
that the input should match and reject inputs that do
not match that pattern. Regular expressions are a
powerful technique.

Methods of implementing input validation (2 of 2)

45

Regular expressions (1 of 2)

² Regular expressions (REs) are a way of defining
patterns.

² A search can be defined as a pattern and all items
matching that pattern are returned. For example, the
following Unix command will list all the JPEG files in a
directory:

² ls | grep ..*\.jpg$

46

Regular expressions (2 of 2)

² A single dot means ‘match any character’ and * means
zero or more repetitions of the previous character.
Therefore ..* means ‘one or more characters’. The file
prefix is .jpg and the $ character means that it must
occur at the end of a line.

² In Program 3.3, REs are used to check the validity of
names.

47

Program 3.3 A name-checking function

def namecheck (s):

checks that a name only includes alphabetic characters, -, or single quote

names must be between 2 and 40 characters long

quoted strings and -- are disallowed

namex = r"^[a-zA-Z][a-zA-Z-']{1,39}$"

if re.match (namex, s):

if re.search ("'.*'", s) or re.search ("--", s):

return False

else:

return True

else:

return False

48

Number checking (1 of 2)

² Number checking is used with numeric inputs to check
that these are not too large or small and that they are
sensible values for the type of input.
§ For example, if the user is expected to input their height in

meters then you should expect a value between 0.6m (a very
small adult) and 2.6m (a very tall adult).

49

Number checking (2 of 2)

² Number checking is important for two reasons:
§ If numbers are too large or too small to be represented, this may

lead to unpredictable results and numeric overflow or underflow
exceptions. If these exceptions are not properly handled, very
large or very small inputs can cause a program to crash.

§ The information in a database may be used by several other
programs and these may make assumptions about the numeric
values stored. If the numbers are not as expected, this may lead
to unpredictable results.

50

Input range checks (1 of 2)

² As well as checking the ranges of inputs, you may also
perform checks on these inputs to ensure that these
represent sensible values.

² These protect your system from accidental input errors
and may also stop intruders who have gained access
using a legitimate user’s credentials from seriously
damaging their account.

51

Input range checks (2 of 2)

² For example, if a user is expected to enter the reading
from an electricity meter, then you should

a) check this is equal to or larger than the previous meter reading
and

b) consistent with the user’s normal consumption.

52

• Software is so complex that, irrespective of how much
effort you put into fault avoidance, you will make
mistakes. You will introduce faults into your program that
will sometimes cause it to fail.

• Program failures may also be a consequence of the
failure of an external service or component that your
software depends on.

• Whatever the cause, you have to plan for failure and
make provisions in your software for that failure to be as
graceful as possible.

Failure management

53

Failure categories (1 of 3)

² Data failures

§ The outputs of a computation are incorrect. For example, if
someone’s year of birth is 1981 and you calculate their age by
subtracting 1981 from the current year, you may get an incorrect
result. Finding this kind of error relies on users reporting data
anomalies that they have noticed.

54

Failure categories (2 of 3)

² Program exceptions

§ The program enters a state where normal continuation is
impossible. If these exceptions are not handled, then control is
transferred to the run-time system which halts execution. For
example, if a request is made to open a file that does not exist
then an IOexception has occurred.

55

Failure categories (3 of 3)

² Timing failures

§ Interacting components fail to respond on time or where the
responses of concurrently-executing components are not
properly synchronized. For example, if service S1 depends on
service S2 and S2 does not respond to a request, then S1 will
fail.

56

Failure effect minimisation

² Persistent data (i.e. data in a database or files) should
not be lost or corrupted;

² The user should be able to recover the work that they’ve
done before the failure occurred;

² Your software should not hang or crash;
² You should always ‘fail secure’ so that confidential data

is not left in a state where an attacker can gain access to
it.

57

Exception handling

²Exceptions are events that disrupt the normal flow of
processing in a program.

²When an exception occurs, control is automatically
transferred to exception management code.

²Most modern programming languages include a
mechanism for exception handling.

² In Python, you use **try-except** keywords to
indicate exception handling code; in Java, the
equivalent keywords are **try-catch.**

58

Exception handling

Exception-handling block

Executing code

Normal processing

Exception raised

Normal processing

Exit

Exception-handling code

Exception re-raised or
abnormal exit

Figure 8.9 Exception handling

59

Auto-save and activity logging

² Activity logging
§ You keep a log of what the user has done and provide a way to

replay that against their data. You don’t need to keep a complete
session record, simply a list of actions since the last time the
data was saved to persistent store.

² Auto-save
§ You automatically save the user’s data at set intervals - say

every 5 minutes. This means that, in the event of a failure, you
can restore the saved data with the loss of only a small amount
of work.

§ Usually, you don’t have to save all of the data but simply save
the changes that have been made since the last explicit save.

60

Auto-save and activity logging

Auto-save Command
logger

Last
saved state

Commands
executed

Crash
recovery

Figure 8.10 Auto-save and activity logging

Restored
state

61

External service failure (1 of 2)

² If your software uses external services, you have no
control over these services and the only information that
you have on service failure is whatever is provided in the
service’s API.

² As services may be written in different programming
languages, these errors can’t be returned as exception
types but are usually returned as a numeric code.

62

External service failure (2 of 2)

² When you are calling an external service, you should
always check that the return code of the called service
indicates that it has operated successfully.

² You should, also, if possible, check the validity of the
result of the service call as you cannot be certain that the
external service has carried out its computation correctly.

63

Program 3.5 Using assertions to check results
from an external service (1 of 2)

def credit_checker (name, postcode, dob):
Assume that the function check_credit_rating calls an external service
to get a person's credit rating. It takes a name, postcode (zip code)
and date of birth as parameters and returns a sequence with the database
information (name, postcode, date of birth) plus a credit score between 0 and
600. The final element in the sequence is an error_code which may
be 0 (successful completion), 1 or 2.
NAME = 0
POSTCODE = 1
DOB = 2
RATING = 3
RETURNCODE = 4
REQUEST_FAILURE = True
ASSERTION_ERROR = False

64

cr = ['', '', '', -1, 2]

Check credit rating simulates call to external service
cr = check_credit_rating (name, postcode, dob)
try:

assert cr [NAME] == name and cr [POSTCODE] == postcode and cr [DOB] == dob \
and (cr [RATING] >= 0 and cr [RATING] <= 600) and \
(cr[RETURNCODE] >= 0 and cr[RETURNCODE] <= 2)

if cr[RETURNCODE] == 0:
do_normal_processing (cr)

else:
do_exception_processing (cr, name, postcode, dob, REQUEST_FAILURE)

except AssertionError:
do_exception_processing (cr, name, postcode, dob, ASSERTION_ERROR)

Program 3.5 Using assertions to check results
from an external service (2 of 2)

65

• The most important quality attributes for most software
products are reliability, security, availability, usability,
responsiveness and maintainability.

• To avoid introducing faults into your program, you should
use programming practices that reduce the probability
that you will make mistakes.

• You should always aim to minimize complexity in your
programs. Complexity makes programs harder to
understand. It increases the chances of programmer
errors and makes the program more difficult to change.

Key points (1 of 4)

66

• Design patterns are tried and tested solutions to
commonly occurring problems. Using patterns is an
effective way of reducing program complexity.

• Refactoring is the process of reducing the complexity of
an existing program without changing its functionality. It
is good practice to refactor your program regularly to
make it easier to read and understand.

• Input validation involves checking all user inputs to
ensure that they are in the format that is expected by
your program. Input validation helps avoid the
introduction of malicious code into your system and traps
user errors that can pollute your database.

Key points (2 of 4)

67

Key points (3 of 4)

² Regular expressions are a way of defining patterns that
can match a range of possible input strings. Regular
expression matching is a compact and fast way of
checking that an input string conforms to the rules you
have defined.

² You should check that numbers have sensible values
depending on the type of input expected. You should
also check number sequences for feasibility.

² You should assume that your program may fail and to
manage these failures so that they have minimal impact
on the user.

68

Key points (4 of 4)

² Exception management is supported in most modern
programming languages. Control is transferred to your
own exception handler to deal with the failure when a
program exception is detected.

² You should log user updates and maintain user data
snapshots as your program executes. In the event of a
failure, you can use these to recover the work that the
user has done. You should also include ways of
recognizing and recovering from external service
failures.

69

70

70

