
Plataformas e Serviços X-Ops
(16233)

DevOps and Code Management

(adapted from Engineering Software Products: An Introduction to Modern Software Engineering, Ian Sommerville,
Pearson, 2020)

1Nuno Pombo – Plataformas e Serviços X-Ops, 2023/24

Topics covered

² Software support

² DevOps principles
² Code management

² Code repositor

² Continuous integration
² DevOps measurement

2

Software support (1 of 2)

² Traditionally, separate teams were responsible software
development, software release and software support.

² The development team passed over a ‘final’ version of
the software to a release team. This team then built a
release version, tested this and prepared release
documentation before releasing the software to
customers.

3

Software support (2 of 2)

² A third team was responsible for providing customer
support.

§ The original development team were sometimes also
responsible for implementing software changes.

§ Alternatively, the software may have been maintained by a
separate ‘maintenance team’.

4

Development, release and support

Development

Tested software
ready for release

Release

Deployed software
ready for use

Support

Problem and bug
reports

Figure 10.1 Development, release and support

5

DevOps (1 of 2)

²There are inevitable delays and overheads in
the traditional support model.

²To speed up the release and support processes,
an alternative approach called DevOps
(Development+Operations) has been developed.

6

DevOps (2 of 2)

² Three factors led to the development and widespread
adoption of DevOps:
§ Agile software engineering reduced the development time for

software, but the traditional release process introduced a
bottleneck between development and deployment.

§ Amazon re-engineered their software around services and
introduced an approach in which a service was developed and
supported by the same team. Amazon’s claim that this led to
significant improvements in reliability was widely publicized.

§ It became possible to release software as a service, running on
a public or private cloud. Software products did not have to be
released to users on physical media or downloads.

7

DevOps

8

Principle Explanation
Everyone is responsible
for everything.

All team members have joint responsibility for
developing, delivering, and supporting the software.

Everything that can be
automated should be
automated.

All activities involved in testing, deployment, and
support should be automated if it is possible to do
so. There should be minimal manual involvement in
deploying software.

Measure first, change
later.

DevOps should be driven by a measurement
program where you collect data about the system
and its operation. You then use the collected data to
inform decisions about changing DevOps processes
and tools.

DevOps principles

9

Benefit Explanation

Faster deployment Software can be deployed to production more quickly
because communication delays between the people
involved in the process are dramatically reduced.

Reduced risk The increment of functionality in each release is small so
there is less chance of feature interactions and other
changes that cause system failures and outages.

Faster repair DevOps teams work together to get the software up and
running again as soon as possible. There is no need to
discover which team was responsible for the problem and
to wait for them to fix it.

More productive teams DevOps teams are happier and more productive than the
teams involved in the separate activities. Because team
members are happier, they are less likely to leave to find
jobs elsewhere.

Benefits of DevOps

10

Code management (1 of 2)

² During the development of a software product, the
development team will probably create tens of thousands
of lines of code and automated tests.

² These will be organized into hundreds of files. Dozens of
libraries may be used, and several, different programs
may be involved in creating and running the code.

² Code management is a set of software-supported
practices that is used to manage an evolving codebase.

11

Code management (2 of 2)

² You need code management to ensure that changes
made by different developers do not interfere with each
other, and to create different product versions.

² Code management tools make it easy to create an
executable product from its source code files and to run
automated tests on that product.

12

Alice and Bob worked for a company called FinanceMadeSimple and were team members
involved in developing a personal finance product. Alice discovered a bug in a module
called TaxReturnPreparation. The bug was that a tax return was reported as filed but
sometimes it was not actually sent to the tax office. She edited the module to fix the bug.
Bob was working on the user interface for the system and was also working on
TaxReturnPreparation. Unfortunately, he took a copy before Alice had fixed the bug and,
after making his changes, he saved the module.This overwrote Alice’s changes, but she
was not aware of this.

The product tests did not reveal the bug, as it was an intermittent failure that depended on
the sections of the tax return form that had been completed. The product was launched
with the bug. For most users, everything worked OK. However, for a small number of
users, their tax returns were not filed and they were fined by the revenue service. The
subsequent investigation showed the software company was negligent. This was widely
publicized and, as well as a fine from the tax authorities, users lost confidence in the
software. Many switched to a rival product. FinanceMadeSimple failed and both Bob and
Alice lost their jobs.

A code management problem

13

Code management and DevOps

² Source code management, combined with automated
system building, is essential for professional software
engineering.

² In companies that use DevOps, a modern code
management system is a fundamental requirement for
‘automating everything’.

² Not only does it store the project code that is ultimately
deployed, it also stores all other information that is used
in DevOps processes.

² DevOps automation and measurement tools all interact
with the code management system.

14

Code management and DevOps

Branching and merging

Save and
retrieve
versions

DevOps automation

Continuous
integration

Code management system

Continuous
deployment

Continuous
delivery

Infrastructure
as code

DevOps measurement

Report
generation

Data
analysis

Data
collection

Figure 10.3 Code management and DevOps

Code
repository

Transfer code to/from developer’s filestore

Recover
version
information

15

Code management fundamentals

² Code management systems provide a set of features
that support four general areas:
§ Code transfer Developers take code into their personal file store

to work on it then return it to the shared code management
system.

§ Version storage and retrieval Files may be stored in several
different versions and specific versions of these files can be
retrieved.

§ Merging and branching Parallel development branches may be
created for concurrent working. Changes made by developers in
different branches may be merged.

§ Version information Information about the different versions
maintained in the system may be stored and retrieved.

16

Code repository (1 of 2)

² All source code management systems have a shared
repository and a set of features to manage the files in
that repository:
§ All source code files and file versions are stored in the repository,

as are other artefacts such as configuration files, build scripts,
shared libraries and versions of tools used.

§ The repository includes a database of information about the
stored files such as version information, information about who
has changed the files, what changes were made at what times,
and so on.

17

Code repository (2 of 2)

² Files can be transferred to and from the repository and
information about the different versions of files and their
relationships may be updated.
§ Specific versions of files and information about these versions

can always be retrieved from the repository.

18

Feature Description

Version and release
Identification

Managed versions of a code file are uniquely identified when
they are submitted to the system and can be retrieved using
their identifier and other file attributes.

Change history recording The reasons changes to a code file have been made are
recorded and maintained.

Independent development Several developers can work on the same code file at the
same time. When this is submitted to the code management
system, a new version is created

Project support All of the files associated with a project may be checked out
at the same time. There is no need to check out files one at
a time.

Storage management The code management system includes efficient storage
mechanisms so that it doesn’t keep multiple copies of files
that have only small differences.

Features of code management systems

19

Git

² In 2005, Linus Torvalds, the developer of Linux,
revolutionized source code management by developing
a distributed version control system (DVCS) called Git to
manage the code of the Linux kernel.

² This was geared to supporting large-scale open-source
development. It took advantage of the fact that storage
costs had fallen to such an extent that most users did not
have to be concerned with local storage management.

² Instead of only keeping the copies of the files that users
are working on, Git maintains a clone of the repository
on every user’s computer.

20

Repository cloning in Git

Shared Git repository

Master branch

F1 F2 F3 F4 F5 F6
F7 F8 F9 F10 F11
F12 F13 F14 F15
F16 F17 F18 F19
F20 F21 F22 F23
F24 F25 F26 F27

Commit and branch information

Branch 1

Branch 2

F7 F9 F21

F2 F3

Clone

Master branch

F1 F2 F3 F4 F5 F6
F7 F8 F9 F10 F11
F12 F13 F14 F15
F16 F17 F18 F19
F20 F21 F22 F23
F24 F25 F26 F27

Commit and branch information

Figure 10.5 Repository cloning in Git

Alice’s repository

21

Benefits of distributed code management (1 of 2)

² Resilience
§ Everyone working on a project has their own copy of the

repository. If the shared repository is damaged or subjected to a
cyberattack, work can continue, and the clones can be used to
restore the shared repository. People can work offline if they
don’t have a network connection.

² Speed
§ Committing changes to the repository is a fast, local operation

and does not need data to be transferred over the network.

22

Benefits of distributed code management (2 of 2)

² Flexibility
§ Local experimentation is much simpler. Developers can safely

experiment and try different approaches without exposing these
to other project members. With a centralized system, this may
only be possible by working outside the code management
system.

23

Git repositories

24

Branching and merging (1 of 2)

² Branching and merging are fundamental ideas that are
supported by all code management systems.

² A branch is an independent, stand-alone version that is
created when a developer wishes to change a file.

² The changes made by developers in their own branches
may be merged to create a new shared branch.

25

Branching and merging (2 of 2)

² The repository ensures that branch files that have been
changed cannot overwrite repository files without a
merge operation.

§ If Alice or Bob make mistakes on the branch they are working
on, they can easily revert to the master file.

§ If they commit changes, while working, they can revert to earlier
versions of the work they have done. When they have finished
and tested their code, they can then replace the master file by
merging the work they have done with the master branch

26

Branching and merging

Merge

Figure 10.7 Branching and merging

Alice

Bob

Feature experiment branch

Bug fix branch

Master branch

27

DevOps automation

² By using DevOps with automated support, you can
dramatically reduce the time and costs for integration,
deployment and delivery.

² Everything that can be, should be automated is a
fundamental principle of DevOps.

² As well as reducing the costs and time required for
integration, deployment and delivery, process
automation also makes these processes more reliable
and reproducible.

² Automation information is encoded in scripts and system
models that can be checked, reviewed, versioned and
stored in the project repository. 28

Aspect Description

Continuous integration Each time a developer commits a change to the project’s
master branch, an executable version of the system is built
and tested.

Continuous delivery A simulation of the product’s operating environment is
created and the executable software version is tested.

Continuous deployment A new release of the system is made available to users
every time a change is made to the master branch of the
software.

Infrastructure as code Machine-readable models of the infrastructure (network,
servers, routers, etc.) on which the product executes are
used by configuration management tools to build the
software’s execution platform. The software to be installed,
such as compilers and libraries and a DBMS, are included
in the infastructure model.

Aspects of DevOps automation

29

System integration (1 of 2)

² System integration (system building) is the process of
gathering all of the elements required in a working
system, moving them into the right directories, and
putting them together to create an operational system.

30

System integration (2 of 2)

² Typical activities that are part of the system integration
process include:
§ Installing database software and setting up the database with the

appropriate schema.
§ Loading test data into the database.
§ Compiling the files that make up the product.
§ Linking the compiled code with the libraries and other

components used.
§ Checking that external services used are operational.
§ Deleting old configuration files and moving configuration files to

the correct locations.
§ Running a set of system tests to check that the integration has

been successful.
31

Continuous integration (1 of 2)

² Continuous integration simply means that an integrated
version of the system is created and tested every time a
change is pushed to the system’s shared repository.

² On completion of the push operation, the repository
sends a message to an integration server to build a new
version of the product

² The advantage of continuous integration compared to
less frequent integration is that it is faster to find and fix
bugs in the system.

32

Continuous integration (2 of 2)

² If you make a small change and some system tests then
fail, the problem almost certainly lies in the new code
that you have pushed to the project repo.

² You can focus on this code to find the bug that’s causing
the problem.

33

Continuous integration

GET
COMPILE

AND BUILD TEST

Executable
system

Figure 10.9 Continuous integration

Source code files
from code management

Libraries Configuration
files

Database
files

Executable
tests

Deployable
system

Trigger
from repo

34

Breaking the build (1 of 2)

² In a continuous integration environment, developers
have to make sure that they don’t ‘break the build’.

² Breaking the build means pushing code to the project
repository which, when integrated, causes some of the
system tests to fail.

² If this happens to you, your priority should be to discover
and fix the problem so that normal development can
continue.

35

Breaking the build (2 of 2)

² To avoid breaking the build, you should always adopt an
‘integrate twice’ approach to system integration.
§ You should integrate and test on your own computer before

pushing code to the project repository to trigger the integration
server

36

Local integration

Make changes
to code

Commit changes
to local repo

Pull changes
to master branch

Merge master
with local repo

Compile and
build system

Test
system

Executable
system

Test failure

Push code
to project repo

Test
success

Executable
tests

Figure 10.10 Local integration

From project repo

37

System building

² Continuous integration is only effective if the integration
process is fast and developers do not have to wait for
the results of their tests of the integrated system.

² However, some activities in the build process, such as
populating a database or compiling hundreds of system
files, are inherently slow.

² It is therefore essential to have an automated build
process that minimizes the time spent on these activities.

² Fast system building is achieved using a process of
incremental building, where only those parts of the
system that have been changed are rebuilt.

38

A dependency model

Test execution

Program object
 code files

Figure 10.11 A dependency model

Test source
code files

Program source
code files

Test object
code files

depends on

depends on

39

Dependencies (1 of 2)

² The upward-pointing arrow means ‘depends on’ and
shows the information required to complete the task
shown in the rectangle at the base of the model.

² Running a set of system tests depends on the existence
of executable object code for both the program being
tested and the system tests.

40

Dependencies (2 of 2)

² In turn, these depend on the source code for the system
and the tests that are compiled to create the object code.

² Next figure is a lower-level dependency model that
shows the dependencies involved in creating the object
code for a source code files called Mycode.

41

File dependencies

Mycode (compiled)

Mycode (source)

Lib 2

Figure 10.12 File dependencies

Classdef (compiled)Lib 2

42

Continuous integration

² An automated build system uses the specification of
dependencies to work out what needs to be done. It uses the
file modification timestamp to decide if a source code file has
been changed.
§ The modification date of the compiled code is after the modification date

of the source code. The build system infers that no changes have been
made to the source code and does nothing.

§ The modification date of the compiled code is before the modification
date of the compiled code. The build system recompiles the source and
replaces the existing file of compiled code with an updated version.

§ The modification date of the compiled code is after the modification date
of the source code. However, the modification date of Classdef is after
the modification date of the source code of Mycode. Therefore, Mycode
has to be recompiled to incorporate these changes.

43

Continuous delivery and deployment (1 of 2)

² Continuous integration means creating an executable
version of a software system whenever a change is
made to the repository. The CI tool builds the system and
runs tests on your development computer or project
integration server.

² However, the real environment in which software runs
will inevitably be different from your development
system.

² When your software runs in its real, operational
environment bugs may be revealed that did not show up
in the test environment.

44

Continuous delivery and deployment (2 of 2)

²Continuous delivery means that, after making changes to
a system, you ensure that the changed system is ready
for delivery to customers.

²This means that you have to test it in a production
environment to make sure that environmental factors do
not cause system failures or slow down its performance.

45

Continuous delivery and deployment

Continuous delivery

Tested
system

Configure
 test server

Install system
on test server

Run acceptance
tests

Install software on
production servers

Switch operation to
new software

Continuous deployment

All tests pass

Figure 10.13 Continuous delivery and deployment

Required
software

Test
set

46

The deployment pipeline (1 of 2)

² After initial integration testing, a staged test environment
is created.

² This is a replica of the actual production environment in
which the system will run.

² The system acceptance tests, which include
functionality, load and performance tests, are then run to
check that the software works as expected. If all of these
tests pass, the changed software is installed on the
production servers.

47

The deployment pipeline (2 of 2)

² To deploy the system, you then momentarily stop all new
requests for service and leave the older version to
process the outstanding transactions.

² Once these have been completed, you switch to the new
version of the system and restart processing.

48

Benefit Explanation
Reduced costs If you use continuous deployment, you have no option but to invest

in a completely automated deployment pipeline. Manual
deployment is a time-consuming and error-prone process. Setting
up an automated system is expensive and takes time, but you can
recover these costs quickly if you make regular updates to your
product.

Faster problem
solving

If a problem occurs, it will probably affect only a small part of the
system and the source of that problem will be obvious. If you
bundle many changes into a single release, finding and fixing
problems are more difficult.

Benefits of continuous deployment (1 of 2)

49

Benefit Explanation
Faster customer
feedback

You can deploy new features when they are ready for customer
use. You can ask them for feedback on these features and use this
feedback to identify improvements that you need to make.

A/B testing This is an option if you have a large customer base and use
several servers for deployment. You can deploy a new version of
the software on some servers and leave the older version running
on others. You then use the load balancer to divert some
customers to the new version while others use the older version.
You can measure and assess how new features are used to see if
they do what you expect.

Benefits of continuous deployment (2 of 2)

50

Infrastructure as code (1 of 2)

² In an enterprise environment, there are usually many
different physical or virtual servers (web servers,
database servers, file servers, etc.) that do different
things. These have different configurations and run
different software packages.

² It is therefore difficult to keep track of the software
installed on each machine.

51

Infrastructure as code (2 of 2)

² The idea of infrastructure as code was proposed as a
way to address this problem. Rather than manually
updating the software on a company’s servers, the
process can be automated using a model of the
infrastructure written in a machine-processable
language.

² Configuration management (CM) tools such as Puppet
and Chef can automatically install software and services
on servers according to the infrastructure definition.

52

Infrastructure as code

S1:

S2:

S3, S4:

Infrastructure
definition

CM tool

Software to be
installed

Servers

S1

S2

S3

Figure 10.14 Infrastructure as code

S4

53

Benefits of infrastructure as code (1 of 2)

² Defining your infrastructure as code and using a
configuration management system solves two key
problems of continuous deployment.
§ Your testing environment must be exactly the same as your

deployment environment. If you change the deployment
environment, you have to mirror those changes in your testing
environment.

§ When you change a service, you have to be able to roll that
change out to all of your servers quickly and reliably. If there is a
bug in your changed code that affects the system’s reliability, you
have to be able to seamlessly roll back to the older system.

54

Benefits of infrastructure as code (2 of 2)

² The business benefits of defining your infrastructure as
code are lower costs of system management and lower
risks of unexpected problems arising when infrastructure
changes are implemented.

55

Characteristic Explanation

Visibility Your infrastructure is defined as a stand-alone model that can be
read, discussed, understood, and reviewed by the whole DevOps
team.

Reproducibility Using a configuration management tool means that the installation
tasks will always be run in the same sequence so that the same
environment is always created. You are not reliant on people
remembering the order that they need to do things.

Reliability In managing a complex infrastructure, system administrators often
make simple mistakes, especially when the same changes have to
be made to several servers. Automating the process avoids these
mistakes.

Recovery Like any other code, your infrastructure model can be versioned
and stored in a code management system. If infrastructure
changes cause problems, you can easily revert to an older version
and reinstall the environment that you know works.

Characteristics of infrastructure as code

56

Containers (1 of 2)

² A container provides a stand-alone execution
environment running on top of an operating system such
as Linux.

² The software installed in a Docker container is specified
using a Dockerfile, which is, essentially, a definition of
your software infrastructure as code.

² You build an executable container image by processing
the Dockerfile.

57

Containers (2 of 2)

² Using containers makes it very simple to provide
identical execution environments.
§ For each type of server that you use, you define the environment

that you need and build an image for execution. You can run an
application container as a test system or as an operational
system; there is no distinction between them.

§ When you update your software, you rerun the image creation
process to create a new image that includes the modified
software. You can then start these images alongside the existing
system and divert service requests to them

58

DevOps measurement (1 of 2)

² After you have adopted DevOps, you should try to
continuously improve your DevOps process to achieve
faster deployment of better-quality software.

59

DevOps measurement (2 of 2)

²There are four types of software development
measurement:
§ Process measurement You collect and analyse data
about your development, testing and deployment
processes.

§ Service measurement You collect and analyse data about
the software’s performance, reliability and acceptability to
customers.

§ Usage measurement You collect and analyse data about
how customers use your product.

§ Business success measurement You collect and
analyse data about how your product contributes to the
overall success of the business.

60

Automating measurement (1 of 2)

² As far as possible, the DevOps principle of automating
everything should be applied to software measurement.

² You should instrument your software to collect data
about itself and you should use a monitoring system, to
collect data about your software’s performance and
availability.

61

Automating measurement (2 of 2)

² Some process measurements can also be automated.
§ However, there are problems in process measurement because

people are involved. They work in different ways, may record
information differently and are affected by outside influences that
affect the way they work.

62

Metrics used in the DevOps scorecard

Figure 10.15 Metrics used in the DevOps scorecard

Deployment
frequency

Change
volume

DevOps
metrics

Lead time from
development to deployment

Percentage of
failed deployments

Mean time to
recovery

Number of
customer complaints

Availability

Performance

Percentage increase
in customer numbers

Process metrics

Service metrics
63

Logging and analysis

Executing
software

Log 2

Log 1

Log 3

Log
analyser

Metrics
dashboard

Figure 10.17 Logging and analysis

64

Key points (1 of 4)

² DevOps is the integration of software development and
the management of that software once it has been
deployed for use. The same team is responsible for
development, deployment and software support.

² The benefits of DevOps are faster deployment, reduced
risk, faster repair of buggy code and more productive
teams.

² Source code management is essential to avoid changes
made by different developers interfering with each other.

65

Key points (2 of 4)

² All code management systems are based around a
shared code repository with a set of features that support
code transfer, version storage and retrieval, branching
and merging and maintaining version information.

² Git is a distributed code management system that is the
most widely used system for software product
development. Each developer works with their own copy
of the repository which may be merged with the shared
project repository.

66

Key points (3 of 4)

² Continuous integration means that as soon as a change
is committed to a project repository, it is integrated with
existing code and a new version of the system is created
for testing.

² Automated system building tools reduce the time needed
to compile and integrate the system by only recompiling
those components and their dependents that have
changed.

² Continuous deployment means that as soon as a change
is made, the deployed version of the system is
automatically updated. This is only possible when the
software product is delivered as a cloud-based service.

67

Key points (4 of 4)

² Infrastructure as code means that the infrastructure
(network, installed software, etc.) on which software
executes is defined as a machine-readable model.
Automated tools, such as Chef and Puppet, can
provision servers based on the infrastructure model.

² Measurement is a fundamental principle of DevOps. You
may make both process and product measurements.
Important process metrics are deployment frequency,
percentage of failed deployments, and mean time to
recovery from failure.

68

69

