
Unit Testing with Python

1Nuno Pombo - Plataformas e Serviços X-Ops, 2024/25



Introduction to Unit Testing in Python

• Unit testing involves testing individual units of
code to ensure they function as expected.

• Helps catch bugs early, simplifies debugging, and
improves code quality.

• unittest is Python’s built-in framework for writing
and running tests (Tutorial)

2

https://realpython.com/python-unittest/


Basics of the unittest Framework

• TestCase Class: Inherit from unittest.TestCase to
create test cases.

• Assertions: Use various assert methods (e.g.,
assertEqual, assertTrue, ...) to check code
behavior.

• Example:
def test_addition(self):

self.assertEqual(1 + 1, 2)

3



Structuring Tests

• Test Organization: Group related tests in a single
class.

• setUp and tearDown: Methods to prepare a
consistent environment before/after each test.

def setUp(self):
self.obj = MyClass()

def tearDown(self):
del self.obj

4



Best Practices

• Write Clear Test Names: Use descriptive names
for your test methods.

• Test Small Units: Focus on small, independent
units.

• Regularly Run Tests: Integrate tests into your
development workflow.

5



Exercises

1. Basic Test Case: Create a function that adds two
numbers. Write a unit test to verify the result.

2. Test Fixtures: Implement setUp and tearDown methods to
initialize and clean up resources (e.g., open/close files).

3. Test Assertions: Write a function that reverses a string,
then create unit tests using different `assert` methods like
assertEqual, assertTrue, and assertIn.

6



Exercises

4. Handling Exceptions: Write a function that raises a
ValueError for invalid inputs, and write a test case that checks
if the exception is raised correctly.

5. Skipping Tests: Write tests for a function that multiplies
numbers, but skip one of the tests under certain conditions
(e.g., skip if a number is negative).

6. Test Discovery: Create multiple test files and use Python’s
test discovery feature to run them together.

7



Exercises

Role-playing: Form a group with another student. One group
member assumes the role of the Python programmer, while
the other becomes the tester, who will develop unit tests
using the unittest framework.
Once the task is completed and validated, switch roles with
your group member (i.e., the programmer becomes the tester
and vice versa).

8



9


