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Sequence Alignment

• Objectives for today's lesson:
• Understand the concept of sequence alignment.
• Explore multiple algorithms and scenarios.
• Hands-on exercises and in-class activities.
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Similarity?
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Sequence Alignment in Biology

• Biological Question

The purpose of a sequence alignment is to line up all
residues in the inputted sequence(s) for maximal level of
similarity, on the sense of their functional or evolutionary
relationship.
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Why Scoring?

• Scoring matrices in bioinformatics are tools used to 
quantify the similarity between biological sequences, 
which can be DNA, RNA, or proteins. 

• To understand scoring matrices, let's first dive into 
what they are and then use an analogy to make the 
concept more accessible.
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Why Scoring?

• Scoring matrices are tables used in sequence 
alignment that assign scores to each possible pair of 
residues (nucleotides or amino acids). 

• These scores are based on the likelihood of one 
residue being replaced by another over evolutionary 
time. A high score is given to pairs that are likely to 
be conserved (remain the same), while substitutions 
that are less likely or more detrimental get lower 
scores.
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Analogy

• Think of a scoring matrix as a menu in a restaurant where each dish is 
priced based on its ingredients and the effort to prepare it. In sequence 
alignment, the "dishes" are combinations of nucleotides or amino acids. A 
"luxury dish" (high score) in the menu is a pair of residues that commonly go 
together and have been preserved through evolution due to their functional 
importance, like a well-loved classic recipe. A "discounted dish" (low score) 
represents a rare and possibly non-functional or less optimal pairing, like an 
experimental dish that is not commonly ordered.

• The "prices" (scores) help in deciding the "order" (best sequence alignment) 
by choosing combinations that give the highest total value (optimal 
alignment score), indicating the best evolutionary and functional relationship 
between the sequences being compared.
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From LCS to Alignment: Change the Scoring

• Recall: The Longest Common Subsequence (LCS)
problem allows only insertions and deletions (no
mismatches).

• In the LCS Problem, we scored 1 for matches and 0
for indels, so our alignment score was simply equal to
the total number of matches.

• Let’s consider penalizing mismatches and indels
instead.
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• Simplest scoring schema:  For some positive numbers μ
and σ:
• Match Premium: +1
• Mismatch Penalty: –μ
• Indel Penalty: –σ

• Under these assumptions, the alignment score becomes
as follows:

Score = #matches – μ(#mismatches) – σ(#indels)

• Our specific choice of µ and σ depends on how we
wish to penalize mismatches and indels.

From LCS to Alignment: Change the Scoring
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The Global Alignment Problem

• Input : Strings v and w and a scoring schema

• Output : An alignment with maximum score

• We can use dynamic programming to solve the Global
Alignment Problem:

: mismatch penalty
σ : indel penalty

if vi = wj

 

si, j =max

si-1, j-1 +1
si-1, j-1 - µ

si-1, j -s
si, j-1 -s

ì 

í 

ï 
ï 

î 

ï 
ï 

if vi ≠ wj
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Scoring Matrices 

• To further generalize the scoring of alignments, consider a (4+1) 
x (4+1) scoring matrix δ.
• The purpose of the scoring matrix is to score one nucleotide 

against another, e.g. A matched to G may be “worse” than C 
matched to T.

• The addition of 1 is to include the score for comparison of a 
gap character “-”.

• This will simplify the
algorithm to the dynamic
formula at right:

 

si, j = max

si-1, j-1 +d vi, w j( )
si-1, j +d vi, -( )
si, j-1 +d -,w j( )

ì 

í 
ï ï 

î 
ï 
ï 
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Scoring Matrices: Example

A G T C —
A 1 -0.8 -0.2 -2.3 -0.6
G -0.8 1 -1.1 -0.7 -1.5
T -0.2 -1.1 1 -0.5 -0.9
C -2.3 -0.7 -0.5 1 -1
— -0.6 -1.5 -0.9 -1 n/a

A - GTC - A
- CGTT GG

Score: –0.6 – 1 + 1 + 1 – 0.5 – 1.5 – 0.8 = –2.4    

• Say we want to align AGTCA and CGTTGG with the following 
scoring matrix:

Sample Alignment:
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Exercise: Aligning Protein Sequences

• Consider the following matrix:

• And the given sequences:
 Sequence X: ACTG
 Sequence Y: GACT
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A C G T —
A 4 -1 -2 -1 -5
C -1 4 -1 -2 -5
G -2 -1 4 -1 -5
T -1 -2 -1 4 -5
— -5 -5 -5 -5 n/a



Exercise: Aligning Protein Sequences

• Consider the following matrix:

1. List possible alignments (include up to one gap in each sequence).
2. Calculate the score for each alignment using the hypothetical scoring matrix.
3. Find the alignment with the highest score.
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A C G T —
A 4 -1 -2 -1 -5
C -1 4 -1 -2 -5
G -2 -1 4 -1 -5
T -1 -2 -1 4 -5
— -5 -5 -5 -5 n/a



Solution

Possible alignments:
1. ACTG- 
   G-ACT
2. A-CTG 
   GA-CT
3. There is a better option?
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Solution

Yes, we can:
3. –ACTG
    GACT-
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Percent Sequence Identity

• Percent Sequence Identity: The extent to which two
nucleotide or amino acid sequences are invariant.

• Example:

A C  C  T G  A  G  – A G 
A C  G  T G  – G  C  A G

7/10 = 70% identical

mismatch
indel
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How Do We Make a Scoring Matrix?

• Scoring matrices are created based on
biological evidence.

• Alignments can be thought of as two sequences
that differ due to mutations.

• Some of these mutations have little effect on
the protein’s function, therefore some penalties,
δ(vi , wj), will be less harsh than others.

• This explains why we would want to have a
scoring matrix to begin with.
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Local Alignment: Why?

• Two genes in different species may be similar over
short conserved regions and dissimilar over remaining
regions.

• The main purpose is to search for an alignment which
has a positive score locally, meaning that an alignment
on substrings of the given sequences has a positive
score.
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Local Alignment: Illustration

Global alignment

Compute a “mini” 
Global Alignment to get 
Local Alignment
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Local vs. Global Alignment: Example

• Global Alignment:

• Local Alignment—better alignment to find conserved segment:

--T—-CC-C-AGT—-TATGT-CAGGGGACACG—A-GCATGCAGA-GAC
|  || |  ||  | | | |||    || | | |  | ||||   |

AATTGCCGCC-GTCGT-T-TTCAG----CA-GTTATG—T-CAGAT--C

tccCAGTTATGTCAGgggacacgagcatgcagagac
||||||||||||

aattgccgccgtcgttttcagCAGTTATGTCAGatc

21



The Local Alignment Problem

• Goal: Find the best local alignment between two
strings.

• Input : Strings v and w as well as a scoring matrix δ

• Output : Alignment of substrings of v and w whose
alignment score is maximum among all possible
alignments of all possible substrings of v and w.
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Local Alignment: How to Solve?

• We have seen that the Global Alignment Problem
tries to find the longest path between vertices (0,0)
and (n,m) in the edit graph.

• The Local Alignment Problem tries to find the longest
path among paths between arbitrary vertices (i,j) and
(i’,j’) in the edit graph.

• Key Point: In the edit graph with negatively-scored
edges, Local Alignment may score higher than Global
Alignment.
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Local Alignment Solution: Free Rides

• The solution actually comes from adding vertices to the edit 
graph. 

• The dashed edges represent the
“free rides” from (0, 0) to every
another node.
• Each “free ride” is assigned

an edge weight of 0.
• If we start at (0, 0) instead of

(i, j) and maximize the longest
path to (i’, j’), we will obtain
the local alignment. 

Yeah, a free ride!
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Smith-Waterman Local Alignment Algorithm

• The largest value of si,j over the whole edit graph is the score
of the best local alignment.

• The recurrence:

• Notice that the 0 is the only difference between the global
alignment recurrence…hence our new algorithm is O(n2)!

 

si, j =max

0

si-1, j-1 +d vi, w j( )
si-1, j +d vi, w j( )
si, j-1 +d -, w j( )

ì 

í 

ï 
ï ï 

î 

ï 
ï 
ï 
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Smith-Waterman Local Alignment Algorithm

Exercise#1

Find the local alignment for the following sequences: ATGCT, and
AGCT (using: Gap:-2; Match:1, Mismatch: -1).

Solution: GCT
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Smith-Waterman Local Alignment Algorithm

Exercise#2

• Use the Smith-Waterman algorithm to find the optimal local 
alignment between two DNA sequences.

– Sequence 1: AGCT
– Sequence 2: AGCTA

– Scoring Scheme:
• Match: 2
• Mismatch: -1
• Gap: -1
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• The Hamming Distance dH(v, w) between two DNA sequences v
and w of the same length is equal to the number of places in
which the two sequences differ.

• Example: Given  as follows, dH(v, w)  =  8:

• However, note that these sequences are still very similar.
• Hamming Distance is therefore not an ideal similarity score, 

because it ignores insertions and deletions. 

Hamming Distance

v: ATATATAT
w: TATATATA
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• Levenshtein (1966) introduced the edit distance between two
strings as the minimum number of elementary operations
(insertions, deletions, and substitutions) needed to transform
one string into the other

d(v,w) = MIN number of elementary operations 
to transform v à w 

Edit Distance
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• So in our previous example, we can shift w one nucleotide to 
the right, and see that w is obtained from v by one insertion 
and one deletion: 

• Hence the edit distance, d(v, w)  =  2.

• Note: In order to provide this distance, we had to “fiddle”
with the sequences. Hamming distance was easier to find.

Edit Distance: Example 1

v: ATATATAT-
w: -TATATATA
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• We can transform TGCATAT à ATCCGAT in 5 
steps:

TGCATAT

Edit Distance: Example 2
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• We can transform TGCATAT à ATCCGAT in 5 
steps:

TGCATAT (delete last T)

Edit Distance: Example 2
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• We can transform TGCATAT à ATCCGAT in 5 
steps:

TGCATAT (delete last T)
TGCATA (delete last A)

Edit Distance: Example 2
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• We can transform TGCATAT à ATCCGAT in 5 
steps:

TGCATAT (delete last T)
TGCATA (delete last A)
ATGCAT              (insert A at front)

Edit Distance: Example 2
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• We can transform TGCATAT à ATCCGAT in 5 
steps:

TGCATAT (delete last T)
TGCATA (delete last A)
ATGCAT              (insert A at front)
ATCCAT              (substitute C for G)

Edit Distance: Example 2
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• We can transform TGCATAT à ATCCGAT in 5 
steps:

TGCATAT (delete last T)
TGCATA (delete last A)
ATGCAT              (insert A at front)
ATCCAT              (substitute C for G)
ATCCGAT            (insert G before last A) 

Edit Distance: Example 2
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• We can transform TGCATAT à ATCCGAT in 5 
steps:

TGCATAT (delete last T)
TGCATA (delete last A)
ATGCAT              (insert A at front)
ATCCAT              (substitute C for G)
ATCCGAT            (insert G before last A)

• Note: This only allows us to conclude that the edit distance is at most 5.

Edit Distance: Example 2
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• Now we transform TGCATAT à ATCCGAT in 4 
steps:

TGCATAT

Edit Distance: Example 2

38



• Now we transform TGCATAT à ATCCGAT in 4 
steps:

ATGCATAT          (insert A at front)

Edit Distance: Example 2
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• Now we transform TGCATAT à ATCCGAT in 4 
steps:

ATGCATAT          (insert A at front)
ATGCATAT          (delete second T)

Edit Distance: Example 2
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• Now we transform TGCATAT à ATCCGAT in 4 
steps:

ATGCATAT          (insert A at front)
ATGCATAT          (delete second T)
ATGCGAT            (substitute G for A)

Edit Distance: Example 2
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• Now we transform TGCATAT à ATCCGAT in 4 
steps:

ATGCATAT          (insert A at front)
ATGCATAT          (delete second T)
ATGCGAT            (substitute G for A)
ATCCGAT            (substitute C for G)

Edit Distance: Example 2
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• Now we transform TGCATAT à ATCCGAT in 4 
steps:

ATGCATAT          (insert A at front)
ATGCATAT          (delete second T)
ATGCGAT            (substitute G for A)
ATCCGAT            (substitute C for G)

• Can we do even better?  3 steps?  2 steps?  How can we know?

Edit Distance: Example 2
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• Theorem: Given two sequences v and w of length m
and n, the edit distance d(v,w) is given by:

d(v,w) = m + n – s(v,w),

where s(v,w) is the length of the longest common
subsequence of v and w.

• Solving the the Longest Common Subsequence (LCS)
problem for v and w is equivalent to finding the edit
distance between them.

Key Result
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Manhattan Tourist Problem 

• The Manhattan Tourist Problem is a classic problem in 
combinatorial optimization that is analogous to finding the longest 
path in a weighted grid, often used as a teaching example for 
understanding dynamic programming. 

• The problem is inspired by the grid-like layout of many cities, such 
as Manhattan, where a tourist wishes to travel from the top-left 
corner to the bottom-right corner of the grid, moving only down 
or right, and wants to see as much as possible along the way. The 
goal is to find the path that covers the most "sights," where each 
"sight" corresponds to a score or weight on the grid.
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Manhattan Tourist Problem 
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• Every alignment corresponds 
to a path from source to sink.

Edit Graph
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• Every alignment corresponds 
to a path from source to sink.

• Horizontal and vertical edges 
correspond to indels (deletions 
and insertions).

Edit Graph
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• Every alignment corresponds 
to a path from source to sink.

• Horizontal and vertical edges 
correspond to indels (deletions 
and insertions).

• Diagonal edges correspond to 
matches. 

Edit Graph
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• Suppose that our sequences
are ATCGTAC, ATGTTAT.

• One possible alignment is:

• Edit graph path:

0 1 2 2 3 4 5 6 7 7
A T _ G T T A T _
A T C G T _ A _ C

0 1 2 3 4 5 5 6 6 7

Alignment as a Path in the Edit Graph: Example
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• Suppose that our sequences
are ATCGTAC, ATGTTAT.

• One possible alignment is:

• Edit graph path:

(0,0)

0 1 2 2 3 4 5 6 7 7
A T _ G T T A T _
A T C G T _ A _ C

0 1 2 3 4 5 5 6 6 7 

Alignment as a Path in the Edit Graph: Example
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• Suppose that our sequences
are ATCGTAC, ATGTTAT.

• One possible alignment is:

• Edit graph path:

(0,0)à(1,1)

0 1 2 2 3 4 5 6 7 7
A T _ G T T A T _
A T C G T _ A _ C

0 1 2 3 4 5 5 6 6 7 

Alignment as a Path in the Edit Graph: Example
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• Suppose that our sequences
are ATCGTAC, ATGTTAT.

• One possible alignment is:

• Edit graph path:

(0,0)à(1,1)à(2,2)

0 1 2 2 3 4 5 6 7 7
A T _ G T T A T _
A T C G T _ A _ C

0 1 2 3 4 5 5 6 6 7 

Alignment as a Path in the Edit Graph: Example
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• Suppose that our sequences
are ATCGTAC, ATGTTAT.

• One possible alignment is:

• Edit graph path:

(0,0)à(1,1)à(2,2)à
(2,3)

0 1 2 2 3 4 5 6 7 7
A T _ G T T A T _
A T C G T _ A _ C

0 1 2 3 4 5 5 6 6 7 

Alignment as a Path in the Edit Graph: Example
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• Suppose that our sequences
are ATCGTAC, ATGTTAT.

• One possible alignment is:

• Edit graph path:

(0,0)à(1,1)à(2,2)à
(2,3)à(3,4)

0 1 2 2 3 4 5 6 7 7
A T _ G T T A T _
A T C G T _ A _ C

0 1 2 3 4 5 5 6 6 7 

Alignment as a Path in the Edit Graph: Example
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• Suppose that our sequences
are ATCGTAC, ATGTTAT.

• One possible alignment is:

• Edit graph path:
(0,0)à(1,1)à(2,2)à
(2,3)à(3,4)àetc.

0 1 2 2 3 4 5 6 7 7
A T _ G T T A T _
A T C G T _ A _ C

0 1 2 3 4 5 5 6 6 7 

Alignment as a Path in the Edit Graph: Example
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• Suppose that our sequences
are ATCGTAC, ATGTTAT.

• One possible alignment is:

• Edit graph path:

(0,0)à(1,1)à(2,2)à
(2,3)à(3,4)àetc.

0 1 2 2 3 4 5 6 7 7
A T _ G T T A T _
A T C G T _ A _ C

0 1 2 3 4 5 5 6 6 7 

Alignment as a Path in the Edit Graph: Example
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• Suppose that our sequences
are ATCGTAC, ATGTTAT.

• One possible alignment is:

• Edit graph path:
(0,0)à(1,1)à(2,2)à
(2,3)à(3,4)àetc.

0 1 2 2 3 4 5 6 7 7
A T _ G T T A T _
A T C G T _ A _ C

0 1 2 3 4 5 5 6 6 7 

Alignment as a Path in the Edit Graph: Example
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• Suppose that our sequences
are ATCGTAC, ATGTTAT.

• One possible alignment is:

• Edit graph path:

(0,0)à(1,1)à(2,2)à
(2,3)à(3,4)àetc.

0 1 2 2 3 4 5 6 7 7
A T _ G T T A T _
A T C G T _ A _ C

0 1 2 3 4 5 5 6 6 7

Alignment as a Path in the Edit Graph: Example
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• Suppose that our sequences
are ATCGTAC, ATGTTAT.

• One possible alignment is:

• Edit graph path:

(0,0)à(1,1)à(2,2)à
(2,3)à(3,4)àetc.

0 1 2 2 3 4 5 6 7 7
A T _ G T T A T _
A T C G T _ A _ C

0 1 2 3 4 5 5 6 6 7 

Alignment as a Path in the Edit Graph: Example
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• Initialize 0th row and 0th 

column to be all zeroes.

Alignment with Dynamic Programming
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Si-1, j-1  + 1

Si, j = max Si-1, j

Si, j-1

• Initialize 0th row and 0th 

column to be all zeroes.

• Use the following recursive 
formula to calculate Si,j for 
each i, j:

Alignment with Dynamic Programming
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• Note that the placement of the arrows shows
where a given score originated from:
– if from the top
– if from the left
– if vi = wj

Dynamic Programming Example
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• Continuing with the 
dynamic programming  
algorithm fills the table.

Dynamic Programming Example
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• Continuing with the 
dynamic programming  
algorithm fills the table.

• We first look for matches, 
highlighted in red, and then 
we fill in the rest of that 
row and column.

Dynamic Programming Example
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• Continuing with the 
dynamic programming  
algorithm fills the table.

• We first look for matches, 
highlighted in red, and then 
we fill in the rest of that 
row and column.

Dynamic Programming Example
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• Continuing with the 
dynamic programming  
algorithm fills the table.

• We first look for matches, 
highlighted in red, and then 
we fill in the rest of that 
row and column.

• As we can see, we do not 
simply add 1 each time.

Dynamic Programming Example
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• Continuing with the 
dynamic programming  
algorithm fills the table.

• We first look for matches, 
highlighted in red, and then 
we fill in the rest of that 
row and column.

• As we can see, we do not 
simply add 1 each time.

Dynamic Programming Example
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• Continuing with the 
dynamic programming  
algorithm fills the table.

• We first look for matches, 
highlighted in red, and then 
we fill in the rest of that 
row and column.

• As we can see, we do not 
simply add 1 each time.

Dynamic Programming Example
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• Continuing with the 
dynamic programming  
algorithm fills the table.

• We first look for matches, 
highlighted in red, and then 
we fill in the rest of that 
row and column.

• As we can see, we do not 
simply add 1 each time.

Dynamic Programming Example
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• Continuing with the 
dynamic programming  
algorithm fills the table.

• We first look for matches, 
highlighted in red, and then 
we fill in the rest of that 
row and column.

• As we can see, we do not 
simply add 1 each time.

Dynamic Programming Example
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• Continuing with the 
dynamic programming  
algorithm fills the table.

• We first look for matches, 
highlighted in red, and then 
we fill in the rest of that 
row and column.

• As we can see, we do not 
simply add 1 each time.

Dynamic Programming Example
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1. LCS(v,w)

2. for i ß 1 to n
3. si,0 ß 0

4. for j ß 1 to m
5. s0,j ß 0

6. for i ß 1 to n
7. for j ß 1 to m
8. si-1,j
9. si,j ß max   si,j-1
10. si-1,j-1 + 1, if vi = wj
11. “   “   if si,j = si-1,j
• bi,j ß “   “   if si,j = si,j-1
• “   “   if si,j = si-1,j-1 + 1

• return (sn,m, b)

Dynamic Alignment: Pseudocode
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• LCS(v,w) created the 
alignment grid.

• Follow the arrows 
backwards from the sink 
to the source to obtain 
the path corresponding to 
an optimal alignment:

Finding an Optimal Alignment
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• LCS(v,w) created the 
alignment grid.

• Follow the arrows 
backwards from the sink 
to the source to obtain 
the path corresponding to 
an optimal alignment:

7
T
_
7 

Finding an Optimal Alignment
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• LCS(v,w) created the 
alignment grid.

• Follow the arrows 
backwards from the sink 
to the source to obtain 
the path corresponding to 
an optimal alignment:

6 7
_ T
C _
7 7 

Finding an Optimal Alignment
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• LCS(v,w) created the 
alignment grid.

• Follow the arrows 
backwards from the sink 
to the source to obtain 
the path corresponding to 
an optimal alignment:

6 6 7
A _ T
A C _
6 7 7 

Finding an Optimal Alignment
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• LCS(v,w) created the 
alignment grid.

• Follow the arrows 
backwards from the sink 
to the source to obtain 
the path corresponding to 
an optimal alignment:

5 6 6 7
T A _ T
T A C _
5 6 7 7 

Finding an Optimal Alignment
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• LCS(v,w) created the 
alignment grid.

• Follow the arrows 
backwards from the sink 
to the source to obtain 
the path corresponding to 
an optimal alignment:

4 5 6 6 7
T T A _ T
_ T A C _
4 5 6 7 7 

Finding an Optimal Alignment
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• LCS(v,w) created the 
alignment grid.

• Follow the arrows 
backwards from the sink 
to the source to obtain 
the path corresponding to 
an optimal alignment:

3 4 5 6 6 7
G T T A _ T
G _ T A C _
4 4 5 6 7 7 

Finding an Optimal Alignment
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• LCS(v,w) created the 
alignment grid.

• Follow the arrows 
backwards from the sink 
to the source to obtain 
the path corresponding to 
an optimal alignment:

2 3 4 5 6 6 7
_ G T T A _ T
C G _ T A C _
3 4 4 5 6 7 7 

Finding an Optimal Alignment
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• LCS(v,w) created the 
alignment grid.

• Follow the arrows 
backwards from the sink 
to the source to obtain 
the path corresponding to 
an optimal alignment:

2 2 3 4 5 6 6 7
T _ G T T A _ T
T C G _ T A C _
2 3 4 4 5 6 7 7 

Finding an Optimal Alignment
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0 1 2 2 3 4 5 6 6 7
A T _ G T T A _ T
A T C G _ T A C _

0 1 2 3 4 4 5 6 7 7 

• LCS(v,w) created the 
alignment grid.

• Follow the arrows 
backwards from the sink 
to the source to obtain 
the path corresponding to 
an optimal alignment:

Finding an Optimal Alignment
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0 1 2 2 3 4 5 6 6 7
A T _ G T T A _ T
A T C G _ T A C _

0 1 2 3 4 4 5 6 7 7 

• LCS(v,w) created the 
alignment grid.

• Follow the arrows 
backwards from the sink 
to the source to obtain 
the path corresponding to 
an optimal alignment:

Finding an Optimal Alignment
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Exercise#3
Find the alignment as a path for the following sequences:

V=GATCTA, and W=GATCA.
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G A T C T A
G A T C _ A



Exercise#4
Find an optimal (global) alignment for the following
sequences: GAATTCAGTTA, and GGATCGA.

86

G _ A A T T C A G T T A
G G _ A _ T C _ G_ _ A



Exercise#5
Explain the differences between local and global sequence alignment. In your 
answer, include:
a) The primary algorithmic difference between the Smith-Waterman and Dynamic 
Programming (Needleman-Wunsch algorithms). 
b) A scenario where local alignment is preferred over global alignment and vice 
versa.
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Exercise#5
Algorithmic Differences:
• Local Alignment (Smith-Waterman): Identifies the optimal alignment for any 

substring of the given sequences. It initializes the first row and column with 
zeros (allowing alignments to start anywhere) and uses a traceback starting 
from the highest-scoring cell, stopping when a cell with a score of zero is 
reached.

• Global Alignment (Needleman-Wunsch): Aligns two sequences from start to 
end, optimizing the alignment across their entire length. It initializes the first row 
and column with an increasing gap penalty and performs traceback from the 
bottom-right corner to the top-left, ensuring the entirety of both sequences is 
aligned.
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Exercise#5
Preferred Scenarios
• Local Alignment: Preferred when the goal is to identify regions of high 

similarity within larger sequences that may be otherwise dissimilar. This is 
particularly useful in identifying functional domains or motifs within proteins or 
genes that have conserved functions across species.

• Global Alignment: Used when comparing sequences of roughly the same 
length and where the interest lies in aligning the sequences in their entirety. This 
is suitable for closely related sequences or when evolutionary changes between 
the sequences are to be studied along their full length.
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