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Abstract
We present a new method for the detection of 3D keypoints on point
clouds and we perform benchmarking between each pair of 3D keypoint
detector and 3D descriptor to evaluate their performance on object and
category recognition. Our keypoint detector is inspired by the behavior
and neural architecture of the primate visual system. The 3D keypoints
are extracted based on a bottom-up 3D saliency map, that is, a map that
encodes the saliency of objects in the visual environment. The saliency
map is determined by computing conspicuity maps of the orientation, in-
tensity and color information in a bottom-up and in a purely stimulus-
driven manner. Finally, the focus of attention (or “keypoint location") is
sequentially directed to the most salient points in this map. The main
conclusions are: with a similar average number of keypoints, our 3D key-
point detector outperforms the other 3D keypoint detectors evaluated in
the category and object recognition experiments.

1 Introduction
The interest on using depth information on computer vision applications
has been growing recently due to the decreasing prices of 3D cameras.
Depth information improves object perception, as it allows for the deter-
mination of its shape or geometry.

This paper has two main focuses: the first is to present a new keypoint
detector; the second an evaluation of our and others 3D keypoint detec-
tors. Our keypoint detector is a saliency model based on spatial attention
derived from the biologically plausible architecture. It uses three feature
channels: color, intensity and orientation. The computational algorithm
of this saliency model has been presented in [5] and the standard saliency
benchmark in 2D images. We present the 3D version of this saliency de-
tector and demonstrate how keypoints can be extracted from a saliency
map.

In [2], the author focuses on the descriptors available in Point Cloud
Library (PCL), explaining how they work and made a comparative eval-
uation on publicly available data. In our study, we will see that it is not
enough, the results also depend on the keypoint location. The same au-
thor studies the accuracy of the distances both for objects and category
recognition and finds that simple distances give competitive results [1].

The 3D keypoint detectors and descriptors that we will compare can
be found in version 1.7 of the PCL [8]. With this, we will find what is
the best pair of keypoint detector/descriptor for 3D point cloud objects.
We propose to answer this question using a public large RGB-D Object
Dataset [6], this is composed of 300 real objects and divided in 51 cate-
gories.

In [3], the invariance of 3D keypoint detectors according to rotations,
scale changes and translations was evaluated. It also contains a more de-
tailed description of the two keypoint detectors: 1) The Scale Invariant
Feature Transform (SIFT) keypoint detector was proposed by [7]. In [4],
the original algorithm for 3D data is presented, which uses a 3D version
of the Hessian to select the interest points; 2) Intrinsic Shape Signatures
3D (ISS3D) [12] is a method relying on region-wise quality measure-
ments. This method uses the magnitude of the smallest eigenvalue (to
include only points with large variations along each principal direction)
and the ratio between two successive eigenvalues (to exclude points hav-
ing similar spread along principal directions). We compare our proposal
against these ones.

One of our goals was to evaluate the four descriptors, two main de-
scriptors and its variants based on color, in terms of category and object
recognition: 1) Descriptors such as Point Feature Histograms (PFH) [9]
can be categorized as geometry-based descriptors. This type of descrip-
tor is represented by the surface normals, curvature estimates and dis-
tances, between point pairs. PFHRGB is an version of PFH in which is
included information regarding the color of the object; 2) The Signature
of Histograms of OrienTations (SHOT) descriptor [10] is based on a sig-

nature histograms representing topological features, that make it invariant
to translation and rotation. For a given keypoint, it computes a repeatable
local reference frame using the eigenvalue decomposition around it. In
order to incorporate geometric information of point locations in a spher-
ical grid. For each spherical grid bin, a a one-dimensional histogram is
obtained. In [11], they propose a color version (SHOTCOLOR), where
use the CIELab color space as color information.

2 Proposed 3D Keypoint Detector
The Biologically Inspired 3D Keypoint based on Bottom-Up Saliency
(BIK-BUS) is a keypoint detector that is based on the saliency maps,
which are also known as visual attention. The saliency maps are deter-
mined by computing conspicuity maps of the features intensity and ori-
entation in a bottom-up and data-driven manner. These conspicuity maps
are fused into a saliency map and, finally, the focus of attention is sequen-
tially directed to the most salient points in this map. Using this theory and
following the work presented in [5], we will present our keypoint detector
in six steps.

Step 1: Linear Filtering – The color channels (r, g, and b) of the input
colored point cloud are normalized when I = (r+g+b)/3 is larger than
1/10 of its maximum over the entire image, other locations yield zero.
With these three normalized color channels, we create four broadly-tuned
color channels: R = r− (g+b)/2, G = g− (r+b)/2, B = b− (r+g)/2
and Y = (r+g)/2−|r−g|/(2−b).

Five Gaussian pyramids R(σ), G(σ), B(σ), Y (σ) and I(σ) are cre-
ated from the color and intensity channels, where σ represents the stan-
dard deviation used in the Gaussian kernel. Each Gaussian pyramid is
achieved by convolving the cloud with Gaussian kernels of increasing ra-
dius, resulting in a pyramid of clouds.

The orientation pyramids O(σ ,θ) are obtained using the normals ex-
tracted from the intensity cloud I, where θ ∈ {0o,45o,90o,135o} is the
preferred orientation. In the primary visual cortex, the impulse response
of orientation-selective neurons is approximated by Gabor filters.

Step 2: Center-Surround Differences – There are two types of center-
surround structures in the retina: on-center and off-center. The on-center
use a positive weighed center and negatively weighed neighbors and the
off-center use exactly the opposite. The positive weighing is better known
as excitatory and the negative as inhibitory.

Center-surround is implemented in the model as the difference be-
tween fine and coarse scales: the center is a pixel at scale c∈ {2,3,4}, and
the surround is the corresponding pixel at scale s = c+δ , with δ ∈ {3,4}.
The across-scale difference between two maps, denoted by ‘⊖’, is ob-
tained by interpolation to the finer scale and point-by-point subtraction.

The first set of feature maps is concerned with intensity contrast.
Here, both types of sensitivities are simultaneously computed in a set of
six maps I(c,s)= |I(c)⊖ I(s)|. For the color channels, the process is sim-
ilar, which, in the cortex, is called ‘color double-opponent’ system. The
existence of a spatial and chromatic opponency between color channels
in human primary visual cortex is described. With that, the maps RG(c,s)
and BY (c,s) are created in the model to simultaneously take in account
the red/green and green/red, and blue/yellow and yellow/blue double op-
ponency, respectively, as: RG(c,s) = |(R(c)−G(c))⊖(G(s)−R(s))| and
BY (c,s) = |(B(c)−Y (c))⊖(Y (s)− B(s))|. Orientation feature maps,
O(c,s,θ), encode local orientation contrast between the center and sur-
round scales: O(c,s,θ) = |O(c,θ)⊖O(s,θ)|.

Step 3: Normalization – The salient objects appear only in a few
maps, which can be masked by noise or by less-salient objects present
in a larger number of maps. In the absence of top-down supervision, we
use a map normalization operator N (.) and consists of: 1 – Normalizing
the values in the map to a fixed range [0..M], in order to eliminate large
amplitude differences; 2 – Finding the location of the global maximum
maps M and computing the average m of all its other local maxima; and 3



– Globally multiply the map by (M−m)2.
Step 4: Across-Scale Combination – The conspicuity maps are the

combination of the feature maps, for intensity, color, and orientation, at
the scale s = 4 of the saliency map. They are obtained through the re-
duction of each map to scale four and point-by-point addition, called
across-scale addition, ‘

⊕
’. The conspicuity maps for the intensity, I,

and color channels, C, are given by: I =
4⊕

c=2

c+4⊕
s=c+3

N (I(c,s)) and C =

4⊕
c=2

c+4⊕
s=c+3

[N (RG(c,s))+N (BY (c,s))].

For orientation, four intermediary maps are first created by combina-
tion of the six feature maps for a given θ and are then combined into a
single orientation conspicuity map

O = ∑
θ∈{0o,45o,90o,135o}

N
[

4⊕
c=2

c+4⊕
s=c+3

N (O(c,s,θ))
]

.

Step 5: Linear Combination – The final saliency map is obtained by
the normalization of each conspicuity map and calculating the mean be-
tween I, C and O.

Step 6: Inhibition-of-Return (IR) – The IR is part of the method that
is responsible for the selection of keypoints. It detects the most salient
location and directs attention towards it, considering that location a key-
point. After that, the IR mechanism transiently suppresses this location
in the saliency map and its neighborhoods in a small radius, such that at-
tention is autonomously directed to the next most salient image location.
Computationally, the IR performs a similar process of selecting the global
and local maximums.

3 Experimental Evaluation and Discussion
In order to perform this evaluation, we will use three measures, which are
the Area Under the ROC Curve (AUC) and the decidability (DEC). The
obtained AUC and DEC for category and object recognition are given in
table 1. The decidability index represents the distance between the dis-
tributions obtained for the two classical types of comparisons: between
descriptors extracted from the same (intra-class) and different objects
(inter-class). Considering µintra and µinter denote the means of the intra-
and inter-class comparisons, σ2

intra and σ2
inter the respective standard de-

viations and the decidability is given by DEC =
|µintra−µinter |√
1
2 (σ

2
intra+σ 2

inter)
.

Analyzing the descriptors in a generic way, the best results were ob-
tained with the PFHRGB. It is interesting to compare it to the PFH: im-
provement can only be attributed to the incorporation of color informa-
tion. The same is true for the SHOTCOLOR versus the SHOT descriptor.
The two best results in terms of category and object recognition are pre-
sented in the descriptors that use color information.

Considering only the accuracy, the best combination for the cate-
gory recognition is BIK-BUS/PFHRGB, closely followed by BIK-BUS/
SHOTCOLOR, ISS3D/PFHRGB and ISS3D/SHOTCOLOR both in terms
of AUC and DEC. The pairs BIK-BUS/PFHRGB and BIK-BUS/ SHOT-
COLOR have exactly the same AUC, the difference is in the DEC where
it is slightly higher in the case of PFHRGB. BIK-BUS turns out again the
best performer among detectors: SHOT, SHOTCOLOR and PFHRGB.

In terms of object recognition, the best pair is BIK-BUS/PFHRGB,
but only beats the second best combination, ISS3D/PFH. For SHOT and
SHOTCOLOR descriptors, if we compare our keypoint detector with the
ISS3D we obtain improvements for both of 1.5% in the case of category
recognition, and 1.1% and 1.4% in object recognition, respectively.

4 Conclusions
In this paper we presented a novel 3D keypoint detector biologically mo-
tivated by the behavior and the neuronal architecture of the early primate
visual system. The BIK-BUS is a keypoint detector on a computational
technique to determine visual attention, which are also known as saliency
maps. The saliency maps are determined by sets of features in a bottom-
up and data-driven manner. The fusion of these sets produced the saliency
map and the focus of attention is sequentially directed to the most salient
points in this map, representing a keypoint location.

In the evaluation, we used some of the 3D keypoint detectors and the
3D descriptors available in the PCL library. The main conclusions of this
paper are: 1) a descriptor that uses color information should be used in-
stead of a similar one that uses only shape information; 2) in terms of

Table 1: AUC and DEC values for the category and object recognition for
each pair keypoint detector/descriptor. BOLD indicates the best (bigger)
results in terms of AUC and DEC for each pair.

Descriptor Keypoint
Category Object

AUC DEC AUC DEC

SHOT
BIK-BUS 0.827 1.281 0.863 1.513

ISS3D 0.812 1.168 0.852 1.413
SIFT3D 0.814 1.207 0.848 1.409

SHOTCOLOR
BIK-BUS 0.867 1.571 0.916 2.012

ISS3D 0.852 1.465 0.902 1.873
SIFT3D 0.839 1.394 0.896 1.792

PFH
BIK-BUS 0.848 1.488 0.893 1.832

ISS3D 0.848 1.489 0.895 1.855
SIFT3D 0.843 1.458 0.890 1.801

PFHRGB
BIK-BUS 0.867 1.586 0.948 2.397

ISS3D 0.866 1.585 0.948 2.394
SIFT3D 0.861 1.546 0.946 2.373

keypoint detectors, to obtain an accurate recognition system, we recom-
mend the use of the BIK-BUS, since its performance is by far the best
among the keypoint detectors tested; 3) in terms of descriptors, if the fo-
cus is on accuracy we recommend the use of PFHRGB and for real-time
a good choice is the SHOTCOLOR because it presents a good balance
between recognition performance and time complexity.
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