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Universidade da Beira Interior
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Abstract—Pick-and-place tasks in unconstrained environments
use two or three deep learning methods to execute an object
grasp, thus requiring highly capable computation devices. We
propose a new pipeline that solves the pick-and-place tasks in
unconstrained environments. Our pipeline only uses one deep
learning method to make object grasping possible. It leverages
quantization methods to speed up its inference time and improve
its memory efficiency. We provide multiple experiments that
compare the different methods and provide results for using
this pipeline in the real-world. A new concept named Hybrid-
QaT is introduced. Hybrid-QaT uses GPUs’ power to speed
up the neural networks’ converging initially. Then in the last
training epochs, it starts the quantization-aware training process
to fine-tune the neural network’s weights in an 8-bit integer
representation. After the training, the conversion of the method
to quantize can be done without losing accuracy.

Index Terms—Deep Learning, Robotics, Quantization, Seman-
tic Segmentation, Pick and Place, Grasping

I. INTRODUCTION

Unconstrained picking is being used more in the industry
4.0. To enable robots to have pick-and-place tasks without re-
quiring vibrating tables or proper palletization one possibility
is the use of artificial intelligence methods to guide robots in
this process. The objective in unconstrained picking is for the
robot to be able to pick known objects from multiple places
without any control of the environment.

To solve this type of task, a combination of multiple deep
learning methods needs to be used in a pipeline. The pipelines
that solve this task usually have the following sub-tasks:
capturing the data, object detection or image segmentation,
object 6D pose estimation, object grasping detection, motion
planning, and motion execution. To capture data, the most
common method used is 3D cameras (RGB-D cameras). For
the object detection, methods based on bounding box detection
and object classification [1] [2] are the most common. Mean-
while, the deep learning image segmentation can use two types
of architectures, semantic segmentation [3] [4] [5] [6] [7] or
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Fig. 1. Proposed efficient pick-and-place pipeline based on quantized seg-
mentation.

instance segmentation [8]. The use of instance segmentation
over semantic segmentation depends if there are multiple
instances of the same object pilled together with occlusion.
For the 6D pose estimation there are two different possible
approaches to solve it. Feeding RGB images to a neural
network to extract keypoints and then use the Perspective-



n-Point (PnP) algorithm to obtain the final pose estimation
of the object [9] [10] [11] [12] [13] [14]. The other type
of solution is the use of RGB-D data. In this case the data
is fed to a deep learning method that regresses the 6D pose
estimation [15] [16] [17]. One recent approach that solves both
semantic segmentation and 6D pose estimation in just one
neural network was proposed in [18]. This method collects
the data and outputs the rotation matrix and translation vector
for each object present in the scene. Finally, for the object
grasping there are methods that set multiple fixed grasping
position for each known object and others find the best
possible grasping position [19] [20] [21]. Depending on the
robotic arm and robot end-factor different libraries or APIs
need to be used to plan their movement and execute them. The
most common combination is the use of the Robot Operating
System (ROS) with the MoveIt library. This combo is one that
supports most robotic arms and can be used with a custom
robotic arm if you develop your corresponding configuration
file.

The pipelines that solve this task rely heavily on deep
learning methods that require high computational power and
need large datasets to be used during the training phases of the
deep learning methods. Every time a new object is required to
be picked, all the previous training processes must be done
to retrain all the methods used in the pipeline. To tackle
these problems in prior pipelines, we propose a novel method
that speeds up the pick-and-place task by removing sub-tasks
from the original pipeline and using quantization methods on
the required deep learning methods. Our proposal only uses
image segmentation to detect and classify objects and find
grasping points. The proposed pipeline has four sub-tasks:
capturing the data, image segmentation, object grasping de-
tection, motion planing and execution. One of the advantages
of our method is that only one of these sub-tasks uses deep
learning (image segmentation) and the deep neural network
used is quantized in order to execute as fast as possible and
enable the method’s deployment on edge computing devices.
The previous pipelines used to execute unconstrained pick-
and-place tasks require high-end GPUs during the inference
to execute the predictions. In our pipeline the objective was to
enable unconstrained pick-and-place without requiring high-
end computers or GPUs.

The main contributions of the paper are:

• The proposal of a new approach to train models with
quantization, Hybrid-QaT, that enables the reduction of
models size and the increase in speed with a negligible
impact on accuracy;

• The proposal of a complete pipeline for object pick-and-
place, that is efficient in that it does not require a GPU
after training and can hence be used with devices on the
edge.

The next section contains an overview of quantization meth-
ods. The third section discusses the data sets and metrics used
to evaluate our work. The fourth section shows a comparison
between semantic segmentation methods used. In the fifth

section we present our method followed by the experiment
results using quantization and using our pipeline in the real-
world. The paper ends with some conclusions in section 7.

II. QUANTIZATION

Neural network quantization reduces the precision of the
used weights, biases, and activations such that they consume
less memory. In other words, quantization reduces the size
of a neural network’s parameter representation, from typically
32-bit floats, to smaller, 8-bit integers. One clear advantage
of quantization is a considerable decrease in memory use. For
instance, going from 32-bit to 8-bit would result in a model
size reduction of a factor of 4.

Quantization also has the potential to reduce network la-
tency and improve power efficiency. Because operations can
be carried out using integers rather than floating-point data
types, network speed is increased. Most CPU cores, including
those in micro-controllers, need fewer cycles to perform these
integer operations that what they would require to make similar
floating-point operations. Since the processing and memory
access budgets are reduced, the overall power efficiency is
enhanced.

Despite these advantages, the trade-off of quantization is
that since neural networks are not representing information
as accurately, their accuracy may suffer. However, it has been
shown that quantization can frequently result in a minimal loss
of accuracy [22].

A. Quantization Types

In practice, there are two main approaches to quantization:
post-training quantization and quantization-aware training.
Post-training quantization, as the name suggests, is a technique
in which the neural network is trained using floating-point
computing and then quantized. To be quantized, the neural
network is frozen after training, preventing further updates to
its parameters, and those parameters are therefore converted,
usually, to 8-bit integers. The post-training parameters do not
change; instead, the quantized model is deployed and used to
make the inference.

This strategy, despite being straightforward, may result in an
increased accuracy loss because all quantization-related errors
happen after training and cannot be compensated.

Quantization-aware training (QaT) [22] works to compen-
sate for the quantization-related errors. It uses 32-bit floats
during training, but the actual values used are a representation
of 8-bit integers as 32-bit floats. By training the neural network
using this representation in the forward pass during training,
the quantization-related errors will accumulate in the total loss
of the model during training, and the training optimizer will
work to adjust parameters accordingly and reduce the error.

Quantization-aware training has the same benefits as post-
training quantization but usually has a much lower accuracy
loss than post-training quantization. The main disadvantage
of quantization-aware training is that the model needs to be
trained with this method using the CPU, thus requiring more
time to train.



III. DATA SETS AND METRICS

A. Data sets

1) Our data set: To test our framework in a real-world
environment, and then control a real robot to pick-and-place
objects in an unconstrained environment, a data set was
created. The classes present in the data set are, bearing (car
bearing), disk (car disk), adapter (outlet plug adapter), box
(cardboard box). For the adapter and box class the data set has
variations of the objects present in them, thus having different
colors and textures. For example the adapter class has two
variations, one white with a gray texture other pure black.
Fig. 2c show RGB images present in the data set.

To acquire the data set, two Intel RealSense Depth Cameras,
model D415 and D435, were used to capture RGB and depth
images of the scene. The semantic segmentation ground truth
was manually annotated using Computer Vision Annotation
Tool (CVAT). From this annotation it is also possible to obtain
bounding box annotations for the data set.

The data set is composed of 5100 RGB and Depth images,
6D pose and Semantic Segmentation annotations for each
object present in the scenes.

To create a robust data set that can simulate multiple real-
world problems, a system to capture the data was created (Fig.
2a, 2b). It contains multiple light sources, some of them can
change color. It also has a mechanical system that can move
the cameras on a 2D plane and a projector that can be used
to project patterns and serve as another light source.

A system like this enables the environment to be changed
in term of light positions and ambiance colors. Since two of
the objects that are present in the data set are metallic objects,
the light projection over them can difficult their detection and
also interferes with the laser pattern of the RGB-D cameras
like the ones used, thus creating points of failure in depth
distance readings. Also these objects can change its colors
when the light source color changes. Initially, this might not
seem like a big problem but, specially in the factory setting that
this work will be used, is a problem having multiple different
light sources. For example, if there is a siren/hazard light in
the factory signaling something nearby these objects they can
change from gray to red or orange thus creating problems with
the depth capture and with the algorithms used to detect and
estimate their pose.

The data set is divided into three subsets, train, validation
and test. There are 4000 scenes in the train subset, 1000 scenes
in validation subset, and 100 scenes in the test. For the train
and validation subsets the scenes were captured in the system
shown in Fig 2a. For the test subset, the scenes were captured
in a different environment, where the camera is attached to
a gripper of an Universal Robot 3 arm in a position that we
consider as home. The position of the arm is assigned as a
starting position for each round of movement and the position
of the arm puts the end-factor 90º above the working scene
and as far as possible.

The test set is similar to the factory setting where this system
will be deployed and completely different from the training

and validation data. With this approach it is possible to have
a better estimate of the performance in the real-world.

2) LineMOD: LineMOD [23] is the most used data set
to tackle the 6D pose estimation problem. It has 15 low-
textured objects (although only 13 objects are used) in over
18000 images and has the ground truth pose annotated. The
13 used objects are: ape, bench-vise, camera, can, cat, driller,
duck, egg-box, glue, hole-puncher, iron, lamp, and phone.
Most methods only use these 13 objects due two some missing
meshes in the 3D CAD files for the other two objects.

3) Cityscapes: The Cityscapes data set [24] is used for se-
mantic interpretation of urban street scenes. This data set is the
most used data set to evaluate image segmentation methods. It
has 30 classes with multiple presences in a diversity of images
captured over 50 cities during all four seasons and ranging
from mild to moderate weather conditions. The data set has
25000 annotated images for multiple task benchmarks like
semantic segmentation, instance segmentation and panoptic
segmentation.

Some authors only use the 19 classes that have more
instances in the data set but in this work we use all 30
classes since our main objective is not to compare with
other semantic segmentation works but to evaluate different
quantization methods.

B. Evaluation Metrics

1) Pixel-wise Accuracy: Pixel-wise accuracy is the most
used metric to measure the performance of methods that
tackle the semantic segmentation task. This metric consists
in measuring the percentage of pixels in the image that
were correctly classified. The report usually consists in the
percentage per class and then an average for all classes present
in the data set.

When considering the per-class pixel accuracy, the ground
truth consists in binary masks for each class, where a true
positive represents a pixel that is correctly predicted to belong
to the ground truth mask for the given class, whereas a
true negative represents a pixel that is correctly identified as
not belonging to the given class. This metric can sometimes
provide misleading results when the class prevalence is small
within the image.

2) Mean Intersection over Union: The Intersection over
Union (IoU) quantifies the percentage overlap between the
ground truth mask (target) and our predicted output (predic-
tion). It divides the total number of pixels across both masks by
the number of pixels shared by the ground truth and predicted
masks. The overall IoU score is calculated independently for
each class and then averaged across all classes to provide a
mean IoU (mIoU) score for semantic segmentation.

IV. SEMANTIC SEGMENTATION MODEL

We compared DeepLabV3 [6] with U-Net [3], SegNet [4]
and FCN (ResNet101) [7] in our data set to choose the method
that could achieve the best performance in it, to further apply
multiple quantization methods and use it in the real-world.
Table I shows the results of the comparison that we have made



(a) Capture system. (b) Capture system using projections. (c) Data set example

Fig. 2. Our data set capture system and data example.

TABLE I
ACCURACY RESULTS OBTAINED TO COMPARE DIFFERENT METHODS FOR

SEMANTIC SEGMENTATION. BOLD VALUES REPRESENT THE HIGHEST
ACCURACY.

Model (Backbone) mIoU (%) Pixel Acc (%)
SegNet 63.61 89.81

FCN (ResNet101) 64.80 90.23
U-Net 70.94 92.57

DeepLabV3 82.33 98.25

with our data set. We trained each model for 100 epochs and
then the weights that performed the best in the validation sub-
set were saved and loaded to execute in the test sub-set of our
data set to obtain the table results. We can see that DeepLabV3
was the best performing method in the data set achieving the
highest mIoU 82.33% and 98.25% of pixel-wise accuracy.

V. PROPOSED METHOD

A new pipeline was developed to solve unconstrained pick-
and-place tasks. This pipeline consists of four sub-tasks where
just one of the sub-tasks uses a deep learning method. The
four sub-tasks are: capturing the data, image segmentation,
object grasping detection, robot planing and execution. The
sub-task that was solved with deep learning was the image
segmentation task. To improve even further the speed of this
sub-task, quantization methods were applied.

We use the DeepLabV3 model to execute the image segmen-
tation sub-task because it achieved the highest accuracy in the
comparison tests that were made in our data set that tries to
represent as closely as possible our pick-and-place task.

Besides using the DeepLabV3 with 32-bit float representa-
tion we also tested the use of 8-bit integer representation of the
parameters of the DeepLabV3 model. We have used both static
quantization and quantization-aware training available in the
PyTorch library. We did not use the dynamic quantization since
it does not support 2D convolutions and the model mainly
uses this type of layer. For the quantization-aware training
we implemented a new hybrid approach. PyTorch quantization
does not support GPU’s and the model takes a long time to
train in CPU. To speed up the training process we developed an
hybrid method that can train the neural network mainly in GPU
and then fine-tune the model parameters with quantization-

aware training, thus enabling us to have the advantages of the
quantization-aware training while not taking much more time
to train the model for this quantization method. To test the
Hybrid-QaT we setup three tests. One that relies on training
99% of the epochs using GPU and only 1% using QaT. Second
test trains 95% of the epochs with GPU and 5% with QaT.
Finally, 90% of the epochs train in GPU and 10% using QaT.

For the object grasping detection sub-task we start by find-
ing the contours of the segmented object (object mask). With
these contours we can find the center point of the segmented
object. For this we use the OpenCV moments method. At this
point we have the cx, cy Cartesian coordinates for the object’s
center. Since our approach for picking an object is keeping
the gripper pointed downwards towards the object, we are just
missing the end-factor rotation, θ, which we obtain with:

θ =
1

2
× arctan

(
2×M [mu11]

M [mu20]−M [mu02]

)
(1)

With the moments that enabled us to find the cx, cy of the
object projected into a 2D plane and the θ angle we can
find the last needed coordinate cz by the depth data in the
cx, cy pixel. With this approach we can have a robust grasping
method without using any deep learning technique.

VI. EXPERIMENTS

A. Semantic Segmentation with Quantization

The computer specs used for these experiments are: AMD
Ryzen 5 3600, NVIDIA GeForce GTX 1080 Ti, 32GB of
RAM and NVME SSD.

Table II shows all the results obtained for the DeepLabV3
method. We used the same settings for all three data sets.We
trained the method for 100 epochs for each experiment and
we retrieved the time that it took to train (Training Time).
Then during inference time, in the test subset of each data set,
we measured the inference time per image (Inference Time)
and we show the accuracy for two evaluation metrics mIoU
and pixel-wise accuracy (Pixel Acc). In the last column of the
table we show how much memory the model requires.

Based on the obtained results from our tests, using the
Hybrid-QaT technique can improve in some cases the accuracy
while using less resources and being fast during inference.
Static quantization is an alternative when the accuracy is not



TABLE II
EXPERIMENT RESULTS FOR 100 TRAINING EPOCHS. (*) REPRESENT ESTIMATION VALUES THAT WERE CALCULATED WITH THE TIME THAT ONE EPOCH

NEEDED, MULTIPLIED BY THE 100 EPOCHS REQUIRED TO TRAIN THE METHOD.

Pixel Acc (%) mIoU (%) Inference Time (s) Training Time Size (mb)
Data set Our data set

GPU 98.25 82.33 0.01 05h39 225
CPU 98.25 82.33 2.14 3 days 13h43 225

Static 98.00 82.15 1.15 05h39 58
QaT 98.20 82.24 1.14 4 days 20h40 58

Hybrid-QaT 1% 98.81 85.59 1.14 06h46 58
Hybrid-QaT 5% 98.21 81.06 1.14 11h12 58

Hybrid-QaT 10% 98.78 85.41 1.14 16h45 58
Data set LineMOD

GPU 97.19 85.67 0.01 24h00 225
CPU 97.19 85.67 2.09 15 days 04h05 225

Static 96.87 84.99 1.16 24h00 58
QaT 96.98 85.28 1.14 20 days 15h33 58

Hybrid-QaT 1% 97.24 85.53 1.14 1 day 04h43 58
Hybrid-QaT 5% 97.18 85.53 1.14 1 day 23h35 58

Hybrid-QaT 10% 97.20 85.60 1.14 2 days 23h10 58
Data set CityScapes

GPU 88.57 41.94 0.01 11h50 225
CPU 88.57 41.94 1.67 7 days 11h30 225

Static 88.54 41.71 1.12 11h50 58
QaT 88.56 41.83 1.11 10 days 04h20 58

Hybrid-QaT 1% 89.03 40.88 1.11 14h10 58
Hybrid-QaT 5% 88.99 41.20 1.11 23h28 58

Hybrid-QaT 10% 88.99 41.36 1.11 1 day 11h05 58

TABLE III
REAL-WORLD RESULTS OF THE PROPOSED PIPELINE IN AN

UNCONSTRAINED PICK-AND-PLACE TASK FOR FOUR OBJECTS.

Avg. Inference
Time (s) [STDev] Size (mb) Grasping

Success (%)
CPU 9.93 [0.10] 225 96

Static 5.61 [0.05] 58 96
QaT and Hybrid-QaT 5.59 [0.09] 58 96

critical, since there is no additional training cost to produce
the quantized network.

When comparing QaT with Hybrid-QaT it is possible to see
that Hybrid-QaT can achieve better results while using less
time to train the neural network and having no drawbacks.

B. Real-World Object Grasping

We deployed the proposed pipeline in the real-world to ex-
ecute the pick-and-place task. For the real-world experiments
we used and Universal Robot 3 arm, an Intel RealSense D415
and small computer device with the following specs: Intel i5-
4300U CPU, 8GB of RAM and a SATA SSD.

In the real-world experiments we measured the average
inference time of the method when running on CPU, when
using static quantization and quantization-aware training. This
average was collected during 50 executions of the pipeline,
these executions had the object to grasp or simulate the
grasping of the objects present in the data set that we created.
For these 50 executions we counted how many resulted in
successful grasps, and in Table III we show the obtained
results.

In Table III, it is possible to see that in the real-world
experiments the difference in accuracy’s obtained when using

quantization methods was not relevant since the robot could
achieve the same object grasping success rate. We can con-
clude that using quantization speeds up the pipeline while not
loosing grasping rate.

VII. CONCLUSION

We introduced a robust and capable pick-and-place pipeline
that can be used in unconstrained environments, and can be
deployed in the real-world even if using computation devices
with low computational capabilities, with high picking success
rate. We also introduced the Hybrid-QaT technique that still
uses the GPU for most of the training, which results in a large
training time improvement when compared to normal QaT, and
also improved accuracy results, while maintaining the small
size model footprint and fast inference time that comes with
QaT approaches.
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K. Kohlhoff, T. Kröger, J. Kuffner, and K. Goldberg, “Dex-net 1.0: A
cloud-based network of 3d objects for robust grasp planning using a
multi-armed bandit model with correlated rewards,” in IEEE Interna-
tional Conference on Robotics and Automation (ICRA). IEEE, 2016,
pp. 1957–1964.

[20] J. Mahler, M. Matl, X. Liu, A. Li, D. Gealy, and K. Goldberg,
“Dex-net 3.0: Computing robust robot suction grasp targets in point
clouds using a new analytic model and deep learning,” arXiv preprint
arXiv:1709.06670, 2017.

[21] J. Mahler, M. Matl, V. Satish, M. Danielczuk, B. DeRose, S. McKinley,
and K. Goldberg, “Learning ambidextrous robot grasping policies,”
Science Robotics, vol. 4, no. 26, p. eaau4984, 2019.

[22] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer,
“A survey of quantization methods for efficient neural network infer-
ence,” arXiv preprint arXiv:2103.13630, 2021.

[23] S. Hinterstoisser, S. Holzer, C. Cagniart, S. Ilic, K. Konolige, N. Navab,
and V. Lepetit, “Multimodal templates for real-time detection of texture-
less objects in heavily cluttered scenes,” in 2011 international conference
on computer vision. IEEE, 2011, pp. 858–865.

[24] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benen-
son, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for
semantic urban scene understanding,” in Proc. of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016.


