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Abstract. We propose a new cost function for neural network classifi-
cation: the error density at the origin. This method provides a simple
objective function that can be easily plugged in the usual backpropa-
gation algorithm, giving a simple and efficient learning scheme. Exper-
imental work shows the effectiveness and superiority of the proposed
method when compared to the usual mean square error criteria in four
well known datasets.

1 Introduction

The work by Pŕıncipe and co-workers [1,2], proposes the use of information mea-
sures such as entropy as cost functions for adaptive systems, which are expected
to deal better with high-order statistical behaviours than the usual mean square
error (MSE). In particular, they proposed the minimization of the error (dif-
ference between the output and the target of the system) entropy. The idea is
simple. Minimizing the error entropy is equivalent to minimizing the distance
between the probability distributions of the target and system outputs [1]. Thus,
the system is learning the target variable. The particular application to neural
network classification with Rényi’s entropy of order α = 2 [3,4] and Shannon’s
entropy [5] has been sucessful. We propose a different but related procedure.
The minimization of error entropy is basically inducing a Dirac distribution (the
minimum entropy distribution) on the errors. It has been shown that under mild
conditions, this Dirac can be centered at zero [3] and thus the error is made to
converge to zero. For this reason, we propose to update the weights of a clas-
sification neural network by maximizing the error density at the origin. As we
will see, this procedure provides a simple objective function and with no need
for integral estimation as in other approaches.

� This work was supported by the Portuguese FCT-Fundação para a Ciência e a Tec-
nologia (project POSI/EIA/56918/2004). First author is also supported by FCT’s
grant SFRH/BD/16916/2004.

S. Singh et al. (Eds.): ICAPR 2005, LNCS 3686, pp. 127–135, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



128 L.M. Silva, L.A. Alexandre, and J.M. de Sá

2 The Zero-Error Density Maximization Procedure

Consider a multi-layer perceptron (MLP) with one hidden layer, a single output
y and a two-class target variable (class membership for each example in the
dataset), t. For each example we measure the (univariate) error e(n) = t(n) −
y(n), n = 1, . . . , N where N is the total number of examples. As discussed above,
the minimization of the error entropy induces a Dirac distribution on the errors.
It can also be seen that when encoding the classification problem such that
t ∈ {−a, a} and y ∈ [−a, a] for a > 0, the induced Dirac distribution must be
centered at the origin and thus the error is made to converge to zero [3]. Hence,
adapting the system to minimize the error entropy is equivalent to adjusting the
network weights in order to concentrate the errors, giving a distribution with
a higher peak at the origin. This reasoning leads us to the adaptive criteria of
maximizing the error density value at the origin. Formaly,

w = arg max
z

f(0; z) (1)

where w is the weight vector of the network and f is the error density. We
denote this principle as Zero-Error Density Maximization (Z-EDM). As the error
distribution is not known, we rely on nonparametric estimation using Parzen
windowing
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This is a common and useful choice, because it is continuously differentiable, an
essential property when deriving the gradient of the cost function. Hence, our
new cost function for neural network classification becomes
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3 Backpropagating the New Criterion

3.1 Determining the gradient

As we will see, the new criterion can easily substitute MSE in the backpropaga-
tion algorithm.

If w is some network weight then
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Basically one has
∂f̂(0)
∂w

=
∑

n

a(n)e(n)
∂e(n)
∂w

(6)

with

a(n) = − 1
Nh3

K

(
0 − e(n)

h

)
.

For the case of MSE a(n) = 1, ∀n. The computation of ∂e(n)
∂w is as usual for the

backpropagation algorithm. Note that the procedure is easily extended for multi-
ple output networks. Taking a target encoding for class Ck as [−1, . . . , 1, . . . ,−1]
where the 1 appears at the k-th component and using the multivariate Gaussian
kernel with identity covariance, the gradient is straightforward to compute

∂f̂(0)
∂w

= − 1
NhM+2

N∑
n=1

K

(
0− e(n)

h

) M∑
k=1

ek(n)
∂ek(n)

∂w
(7)

where M is the number of output units and e(n) = (e1(n), . . . , eM (n)). Having
determined (7) for all network weights, the weight update is given, for the m-th
iteration, by the gradient ascent (we are maximizing) rule

w(m) = w(m−1) + η
∂f̂(0)
∂w

.

3.2 Choice of η and h

The algorithm has two parameters that one should optimally set: the smoothing
parameter, h, of the kernel density estimator (3) and the learning rate, η. As
already seen in previous work [4,5] we can benefit from an adaptive learning
rate procedure. By monitoring the value of the cost function, f̂(0), the adaptive
procedure ensures a fast convergence and a stable training. The rule is given by

η(m) =
{

u η(m−1) f̂(0)(m) ≥ f̂(0)(m−1) , 0 < d < 1 ≤ u

d η(m−1) ∧ restart otherwise
.

If f̂(0) increases from one epoch to another, the algorithm is in the right direc-
tion, so η is increased by a factor u in order to speedup convergence. However, if
η is large enough to decrease f̂(0), then the algorithm makes a restart step and
decreases η by a factor d to ensure that f̂(0) is being maximized. This restart
step is just a return to the weights of the previous epoch.

Although an exhaustive study of the behaviour of the performance surface has
not been made yet (this is a topic for future work), we believe that the smoothing
parameter h has a particular importance in the convergence success. Just as in
the case of entropy, the “dilatation property” mentioned in [2] may also occur.
If h is increased to infinity, the local optima of the cost function disappears,
letting an unique but biased global maximum to be found. Also note that, as



130 L.M. Silva, L.A. Alexandre, and J.M. de Sá

training evolves, it is expected that the errors e(n) get concentrated around 0.
Hence, we may benefit from an adaptive rule that starts with a high value of h
that is decreased as training evolves. Clearly, this rule should be based on some
measure of the local behaviour of the cost function or the gradient. However,
we have not yet been successful with this adaptation rule and we postpone this
objective as future work. The strategy was then to perform experiments with
some fixed h and choose the best ones.

4 Experimental Results

4.1 Convergence Capacity in a Vowel Discrimination Problem

In the first experiment we evaluated the convergence capacity of several MLP’s
(2, 6 and 10 hidden units) trained using Z-EDM and MSE cost functions, when
applied to a vowel discrimination problem. The data, designated Pb12, contains
608 examples produced by 76 speakers measuring the first and second formants
of the vowels i, I, a and A [6]. The MLP’s were trained 100 times with the whole
dataset and a convergence success was counted whenever the final training error
was below 9%. We varied the number of training epochs, initial learning rate η
and smoothing parameter (h = 2 and 5) in the case of Z-EDM. Table 1 shows the
convergence success rates for Z-EDM and MSE. Below these values, the mean
training errors and standard deviations (over the 100 repetitions) are presented.
In this Table and in the following, hid stands for the number of hidden units.

Table 1. Convergence success rates in 100 repetitions of different MLP’s trained with

Z-EDM and MSE. Below are the mean training errors and standard deviations.

hid 2 6 10
epochs Z-EDM MSE Z-EDM MSE Z-EDM MSE

200 71% 6% 100% 87% 100% 90%
9.54(4.38) 37.9(21.1) 7.31(0.19) 9.78(8.26) 7.22(0.08) 9.11(8.88)

500 96% 21% 100% 97% 100% 99%
7.61(2.05) 28.6(18.3) 6.62(0.28) 7.77(6.83) 6.58(0.22) 6.61(4.72)

1000 99% 38% 100% 96% 100% 100%
7.51(2.03) 20.7(14.8) 6.07(0.21) 7.80(7.21) 6.14(0.24) 5.83(0.29)

The results of Table 1 show that the proposed method is clearly more powerful
in classifying this dataset. In fact, we encounter already a very good performance
for the case of 2 hidden units, while MSE has a global poor performance. By
inspecting the training errors and standard deviations, we also find a higher
stability of Z-EDM. We’ve also noted that Z-EDM was not influenced by the
initial value of the learning rate, while MSE became very unstable for very high
values of η. For 2 hidden units and 200 training epochs, Z-EDM preferred h = 5
while for higher training epochs h = 2 worked better. This can be related to the
smoothness of the performance surface and the dilatation property mentioned
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(a) hid = 2, epochs = 200
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(b) hid = 2, epochs = 500
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(c) hid = 10, epochs = 200
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(d) hid = 10, epochs = 500

Fig. 1. Decision boundaries for Pb12. Solid dark line was obtained with Z-EDM and

dashed light line with MSE.

earlier. With a small h and consequently a less smoother surface, the number of
training epochs (200) may not be sufficient in most cases. This can be surpassed
by increasing h at a cost of biasing the optimal solution. Thus the results of
Table 1 were obtained with an initial η = 0.5 and h = 2 except for epochs = 200
where h = 5.

Figure 1 shows decision boundaries obtained with Z-EDM and MSE in differ-
ent situations. The top figures were obtained with hid = 2 and the bottom with
hid = 10; the left figures used epochs = 200 and the right ones epochs = 500.
The figures show evidence of the stability of Z-EDM and the poor performance of
MSE for hid = 2. Also, we encounter a higher adaptation of MSE decision lines
to the data for hid = 10, which can be a drawback in terms of generalization.

4.2 Evaluating the Generalization Ability

To evaluate the generalization ability of MLP’s trained with Z-EDM, we con-
ducted a train and test procedure with Pb12 and three other datasets taken
from the UCI repository [7]. Two of these datasets are from medical applications.
wdbc is concerned with the diagnosis problem between benign and malignant
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Fig. 2. Projection of wdbc (left) and iris (right) onto the first two principal compo-

nents

Table 2. Description of the four datasets used in the experiments. The last column

reports the number of training epochs used for each dataset.

Datasets #Instances #Features #Classes #Train epochs

Pb12 608 2 4 500
wdbc 569 30 2 40
pima 768 8 2 45
iris 150 4 3 90

breast cancer and Pima deals with the diagnostic of diabetes according to the
World Health Organization. The fourth dataset is the well known Iris created
by R. A. Fisher. Table 2 gives a brief description of the four datasets.

Figure 2 shows wdbc (left) and iris (right) projected onto the first two
principal components. As we can see, wdbc has a simple structure and low
complexity MLP’s should be sufficient to achieve good results. The projection
of iris shows that one of the classes is linearly separable from the other two,
while the latter are not. Note that this is a class structure very similar to the
one encountered for Pb12 (see Fig. 1).

The following procedure was performed 50 times: divide the data in two
subsets, half for training and half for testing; train the network and compute the
test set error; interchange the roles of the training and test sets; perform training
and test again. The number of training epochs used is reported in Table 2 for
each dataset. This procedure was applied to several MLP’s varying the number
of hidden units from 2 to 20.

Table 3 shows the mean test errors and standard deviations (in brackets).
The results of Pb12 confirm the previous experiments. For a low number of hid-
den units, MSE fails to converge in most cases, giving higher mean test errors
and standard deviations. From Fig. 3(a), where a more complete set of results is
presented, we can see that only for hid = 11, 19 and 20, MSE performs equally
to Z-EDM. Thus, Z-EDM reveals more stability contrasting with the high de-
pendency of MSE on the number of hidden units. In wdbc, Z-EDM clearly
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Table 3. Test error rates (%), standard deviations (in brackets) and p-values for the

Mann-Whitney test of the train and test procedure for several MLP’s, trained with

Z-EDM and MSE. The right column presents the best results.

pb12 2 5 6 11 20 Best
Z-EDM 8.79(2.64) 7.53(0.56) 7.44(0.58) 7.51(0.58) 7.42(0.47) 7.32(0.53)→ hid = 9
MSE 31.2(13.2) 10.1(5.68) 11.0(7.18) 7.34(0.62) 7.14(0.67) 7.10(0.48)→ hid = 15

p-value 0.000 0.052 0.020 0.227 0.012 0.054

wdbc 2 3 4 5 6 Best
Z-EDM 2.55(0.50) 2.55(0.46) 2.50(0.55) 2.58(0.50) 2.40(0.37) 2.38(0.37)→ hid = 18
MSE 3.11(0.53) 3.18(0.70) 3.25(0.70) 3.08(0.48) 3.17(0.65) 2.99(0.88)→ hid = 20

p-value 0.00 0.00 0.00 0.00 0.00 0.00

pima 2 4 6 8 10 Best
Z-EDM 23.5(0.80) 23.2(0.67) 23.4(0.87) 23.3(0.66) 23.5(0.91) 23.2(0.67)→ hid = 4
MSE 24.0(0.91) 23.5(0.78) 23.4(0.95) 23.5(0.86) 23.3(0.88) 23.3(0.88)→ hid = 10

p-value 0.002 0.027 0.761 0.346 0.191 0.569

iris 2 6 9 13 19 Best
Z-EDM 4.02(1.32) 4.12(1.26) 3.80(1.04) 4.23(1.26) 4.15(1.13) 3.80(1.04)→ hid = 9
MSE 20.9(15.2) 5.67(4.54) 6.02(6.04) 5.12(3.53) 5.15(3.26) 4.96(2.72)→ hid = 18

p-value 0.000 0.091 0.003 0.265 0.094 0.001

outperforms MSE. All the tested MLP’s for this dataset achieved better results
than the ones trained with MSE. This behaviour is evident from Fig. 3(b). In
what concerns pima, Fig. 3(c) shows that the mean test error line for Z-EDM is
mostly below the one from MSE, although the differences are not as high as in
the previous datasets. For example, with hid = 6 both methods achieve the same
test error. It was also interesting to evaluate the behaviour of the train and test
procedure in the iris dataset. As expected, we found similar results as in Pb12
(see Fig. 3(d)). For all tested MLP’s, MSE had difficulties in finding consistently
the best solutions. This was not encountered for Z-EDM, which gave stable re-
sults along the various values of hid. e significance of the differences encountered
in the results, we performed statistical tests of two types. The parametric t test
for two independent samples and the corresponding nonparametric test of Mann-
Whitney. The second one, which is a test for the equality in locations of the two
samples, is preferable because it does not rely on distributional assumptions and
is more robust to outliers. Nevertheless, the results found for both tests were
quite similar. Hence, we opted to show the results for the Mann-Whitney test
where p-values below 0.05 show evidence of different locations for the test error
distributions coming from MSE and Z-EDM. Except for wdbc, where all the
results of Z-EDM are significantly better, we found that when the number of
hidden units increases, the differences tend to be not significant. However, we
have to take some care while evaluating the p-values, because the existence of
(many) strong outliers may lead to wrong conclusions (see for example in Pb12
with hid = 5). For low complexity MLP’s, MSE is clearly outperformed by
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Fig. 3. Errorbar plot for the test results of the four datasets. Dark solid line was

obtained by Z-EDM and light dashed line by MSE. The dark line is slightly shifted

to the right for better viewing. Vertical bars from the mean represent one standard

deviation.

Z-EDM. This can also be seen on the right column of Table 3, where the best
results are presented for each method.

5 Conclusion

We propose a neural network classification method using the error density at the
origin as the adaptive criterion. This leads to a simple objective function that
can be easily used with the usual backpropagation algorithm. It can be seen as
a kind of weighted mean square error, but where information about the error
distribution at the origin is taken into account when updating the network’s
weight vector. The method was evaluated in four datasets and compared to
the usual mean square error. We found that Z-EDM was more stable and less
dependent on the number of hidden units. The capacity of consistently finding
the best solutions was higher for Z-EDM, mainly for small complexity MLP’s. It
also had a better performance in predicting unseen patterns. Several questions



Neural Network Classification: Maximizing Zero-Error Density 135

have to be further studied, in particular the relation between the behaviour of the
performance surface and the kernel smoothing parameter. This study may also
provide insights for an adaptive rule for h. These experiments will be extended
to a more general set of benchmark datasets to evaluate generalization ability
and to make comparisons with other methods.
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