
Improving Deep Neural Network Performance
by Reusing Features Trained with Transductive

Transference
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Abstract. Transfer Learning is a paradigm in machine learning to solve
a target problem by reusing the learning with minor modifications from
a different but related source problem. In this paper we propose a novel
feature transference approach, especially when the source and the target
problems are drawn from different distributions. We use deep neural
networks to transfer either low or middle or higher-layer features for
a machine trained in either unsupervised or supervised way. Applying
this feature transference approach on Convolutional Neural Network and
Stacked Denoising Autoencoder on four different datasets, we achieve
lower classification error rate with significant reduction in computation
time with lower-layer features trained in supervised way and higher-layer
features trained in unsupervised way for classifying images of uppercase
and lowercase letters dataset.
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1 Introduction

Machine learning can be broadly classified into Transductive or Inductive ap-
proach. In transductive learning, the objective is to learn from observed, specific
(training) instances to specific (test) instances drawn from same distributions. In
contrast, induction is to learn from observed training instances, a set of assump-
tions about the true distribution of the test cases (general rules). Transductive
is preferable to inductive [1] since, induction requires solving a more general
problem (assumptions about the true distribution) before solving a more spe-
cific problem. This distinction is most interesting in cases where the predictions
of the transductive model are not achievable by any inductive model.
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2 Feature Transference With Reusable Deep Neural Network

Transfer Learning attempts to train a machine to solve a source problem and
reuse it with minor modifications to solve a different but related target problem
without having to train the machine from scratch. Thus transfer in transductive
approach, a machine is trained on a specific problem to solve another specific
problem, where the target problem distributions are not necessarily related to
the source problem.

Deep Transfer Learning (DTL) is an alternative to transfer learning with
shallow architectures [2]. The advantage of DTL is that it offers a far greater
flexibility in extracting high-level features and transferring it from a source to a
target problem, and unlike the classical approach, it is not affected by experts
bias [2]. Despite the vast body of literature on the subject, there are still many
contentious issues regarding avoiding negative transfer from source to target
problems, especially when the source and target distributions are from different
distributions. In this paper, we only consider transfer learning problems where
the source and target distributions are different. Specially, in the case of negative
transference from the source problem.

2 Deep Neural Network

We use state-of-the-art deep learning methods (see [3], [4]) that learn high-
level features from large datasets and measure the classification performance of
images.

Given an input space X, with a certain probability distribution P (X), we
draw a design data set Xds = {x1, . . . ,xnds

} which may be accompanied by a set
of labels Y = {1, 2, . . . , c} with c distinct class labels. We define a classification
problem as any function g(x) : X → Y that maps nds instances of x ∈ X to
labels. Thus, the classifier attempts to learn features (or filters), represented
as a vector wj of optimal weights and biases. For a classifier with k number
of layers, the features wj are represented as a set of vectors of each layer, i.e.,
w = (w1, ..., wk). We use error rate ε and computation time t to measure the
classifier performance to predict on a test set Xts = {x1, . . . ,xnts} with nts

unlabeled instances drawn from the same distribution P (X).

2.1 Stacked Denoising Autoencoder (SDA)

An autoencoder is a simple neural network with one hidden layer designed to
reconstruct its own input, having, for that reason, an equal number of input
and output neurons (tied weights). The reconstruction accuracy is obtained by
minimizing the average reconstruction error between the original and the re-
constructed instances. A denoising autoencoder is a variant of the autoencoder
where now a corrupted version of the input is used to reconstruct the original
instances. A SDA is made up of stacking multiple denoising autoencoder one on
top of another. The training of SDA [3] comprises of two stages: an unsupervised
pre-training stage followed by a supervised fine-tuning stage (see [5, Section 6.2]).
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In the unsupervised pre-training stage pretrain(w), the weights wj of each
hidden layer are trained in unsupervised way until the reconstruction cost of
that layer reaches global minimum. Then we repeat the pre-training until the
kth hidden layer is completely pre-trained to obtain unsupervised features U(w).

In the supervised fine-tuning stage finetune(w, c), a logistic regression layer
with c neurons is added to the top of the pre-trained machine. Then, the entire
classifier is trained (fine-tuned) using both Xds and Yds in order to minimize a
cross-entropy loss function [6] measuring the error between the classifier’s pre-
dictions and the correct labels to obtain supervised features S(w).

2.2 Convolutional Neural Network (CNN)

CNN [4] is a deep neural network whose convolutional layers alternate with sub-
sampling layers. CNN is better explained in two stages. The alternating convolu-
tional and subsampling stage and the classification stage. The convolution layer
convolute the input with set of filters like Gabor filters or trained filters produc-
ing feature maps. These feature maps are further reduced by subsampling. Then
the supervised feature S(wk) or kernels of the top convolution filters and subsam-
pling are fed to classification stage. Then we fine-tune the filters, finetune(w, c)
with labeled source data to obtain supervised features S(w).

In this paper the term “Baseline approach” to refer to either a SDA or a
CNN machine trained on a target problem with no transference from the source
problem (trained from scratch).

3 Transfer Learning Method

Traditionally, the goal of the transfer learning is to transfer the learning (knowl-
edge) from a input space XS of source-problem S to one or more target-problems
T , or distributions to efficiently develop an effective hypothesis for a new task,
problem, or distribution [7]. In this framework of transfer learning, we address
transfer learning problems, where the source and target problems are from dif-
ferent distributions and also the source YS and target YT labels may be equal or
different. Thus, we address two important cases of transfer learning problems:

1. The distributions are different PS (X) 6= PT (X) and the labels are equal
YS = YT .

2. The distributions are different PS (X) 6= PT (X) and the labels are not equal
YS 6= YT .

Under such hypothesis, our goal is to obtain an accurate classification for target-
problem instances by exploiting labeled training instances drawn from the source-
problem. We use two types of feature transference: 1) unsupervised feature trans-
ference (UFT) only for SDA model, and 2) supervised layer based feature trans-
ference (SLFT) for both SDA and CNN model

In the Unsupervised Feature Transference (UFT) approach we transfer the
unsupervised features of the SDA model from the source to the target problem,



4 Feature Transference With Reusable Deep Neural Network

Table 1: Lists SLFT, UFT and Baseline Approach
Approaches Transference Target problem

FT S(wS)⇒ wT finetune (wT , cT )
L1+L2+L3 S(w1

S , w
2
S , w

3
S)⇒ w1

T , w
2
T , w

3
T finetune (cT )

L1+L3 S(w1
S , w

3
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T , w
3
T finetune

(
w2

T , cT
)

L2+L3 S(w2
S , w

3
S)⇒ w2

T , w
3
T finetune

(
w1

T , cT
)

L1+L2 S(w1
S , w

2
S)⇒ w1

T , w
2
T finetune

(
w3

T , cT
)

L3 S(w3
S)⇒ w3

T finetune
(
w1

T , wT
3, cT

)
L2 S(w2

S)⇒ w2
T finetune

(
w1

T , w
3
T , cT

)
L1 S(w1

S)⇒ w1
T finetune

(
w2

T , w
3
T , cT

)
UFT U(wS)⇒ wT finetune (wT , cT )
Baseline - finetune (pretrain(wT ), cT )

that is, U(wS) ⇒ wT as shown in Table 1. Once the features are transferred
to the target problem, we add a logistic regression layer for the target YT with
labels cT on top of the transferred machine. We fine-tune this entire classifier
finetune(wT , cT ) as a multi-layer perceptron using back-propagation.

In the Supervised Layer Based Feature Transference (SLFT), lets consider
the case of L1 approach as listed in Table 1, we transfer S(w1

S)⇒ w1
T fea-

tures from source to target problem. Then the rest of hidden and logistic re-
gression layer of the target network is randomly initialized. Finally, we fine-
tune the whole target network except w1

T feature set of the target network,
finetune

(
w2

T , w
3
T , cT

)
. Similarly, we can transfer the first and second layer fea-

tures, that is, S(w1
S , w

2
S) ⇒ w1

T , w
2
T , listed as the L1+L2 approach in Table 1.

In the case of the FT approach we reuse the fully trained supervised features
S(wS)⇒ wT of the source problem and then fine-tune again the entire classifier
S (wT , cT ) for the target problem. In the case of YS 6= YT transfer setting the FT
approach cannot reuse the logistic regression layer. Thus the logistic regression
layer is randomly initialized for the target problem.

4 Experiments and Results

In this work we used MNIST1, MADbase2 and Chars74k3 [8] image datasets. The
original Chars74k were split into two smaller datasets: lowercase with the a-to-z
lowercase letters and uppercase with the A-to-Z uppercase letters. Then resized
it to 28 × 28 pixels from original 128 × 128 pixels image. In our experiments
we use Latin handwritten digits, Arabic handwritten digits, Lowercase synthetic
letters and Uppercase synthetic letters datasets as shown in Table 2.

We performed all our experiments on a computer with i7-377 (3.50GHz)
16GB RAM using Theano [9] a GPU compatible machine learning library on
a GTX 770 GPU. The GPU parallel processing allows training both CNN’s

1 http://yann.lecun.com/exdb/mnist/
2 http://datacenter.aucegypt.edu/shazeem/
3 We acknowledge Microsoft Research India for Chars74k dataset.
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Table 2: Dataset characteristics, Average classification test error (%) (ε), Av-
erage training times (seconds) (t) with GTX 770 obtained for SDA and CNN
baseline approach.

Data set Labels Instances SDA CNN
Distribution Y c Train Valid Test ε t ε t

Latin PL 0-to-9 Y09 10 50,000 10,000 10,000 1.61±0.19 10698 0.93±0.06 1418
Arabic PA •-to-9 Y•9 10 50,000 10,000 10,000 1.37±0.07 8051 0.96±0.06 1209
Lowercase PLC a-to-z Yaz 26 13,208 6,604 6,604 4.95±0.16 2997 3.65±0.12 445
Uppercase PUC A-to-Z YAZ 26 13,208 6,604 6,604 5.01±0.27 2567 3.42±0.10 444

and SDA’s deep neural networks with millions of neural connection faster than
traditional CPUs. Each of these experiments are repeated 10 times to increase
the confidence level of the results. The hyper parameters for CNN used kernel
filter size of [20, 50] and max training epochs of 200. The learning rate of 0.1 is set
with batch training of 500. The hyper parameters for SDA used pre-training and
fine-tuning learning rates of 0.001 and 0.1, respectively. The stopping criteria for
pre-training was fixed to 40 epochs; stopping criteria for fine-tuning was set to
a maximum of 1000 epochs. The number of neurons in the three hidden layers
and one output layer has a pyramidal structure with [576, 400, 256, c] neurons.

In the following experiments we compare baseline (BL) and transfer learning
(TL) approach classification error ε using Xts.target dataset, for different amounts
of instances per class, nds/c. We followed the procedure shown in Algorithm 1.

In step 1 of the experimental procedure, Xds.source for each nds samples were
randomly picked from a set of different amounts of design samples per class
[100, 250, 500, 1000, 1320, 2500, 5000]. Then in each of this iteration; step (a) we
run the baseline approach from Algorithm 1, step (b) we build Xds.target by
randomly picking nts samples, where nts = nds. Finally, in step (c), we apply
the various layer based feature transference approaches as listed in Table 1.

Algorithm 1 Experimental procedure.

Given design sets Xds.source, Xds.target and test set Xts.source, Xts.target,

For each dataset such that (Xds, Xts)∈(Latin, Arabic, Lowercase, Uppercase)

1. For each nds such that nds
c
∈[100, 250, 500, 1000, 1320, 2500, 5000],

(a) Run the baseline approach;
(b) Obtain Xds.target by randomly picking nds samples from Xds.target.full;
(c) For each TL approach such that L∈[L1, L1 + L2, ...] from Table 1,

i. Fix Lth layer of the network trained on Xds.source;
ii. Retrain the network using Xds.target except the Lth layers;

iii. Test the network using Xts.target, obtaining classification error ε.
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Table 3: Average classification test error (%) (ε) obtained for different nds/c for
SLFT approach on CNN model.

Approaches Xds.upper reuse Xds.latin Xds.lower reuse Xds.latin

Source: Latin Latin
Target: Uppercase Lowercase

nds.source/c: 1320 5000 1320 5000

L1+L2+L3 5.96±0.13 5.32±0.18 6.13±0.13 5.63±0.15
L1+L3 4.49±0.14 4.24±0.10 4.75±0.13 4.57±0.09
L1+L2 3.61±0.12 3.39±0.12 3.83±0.06 3.63±0.13
L3 4.30±0.13 4.20±0.16 4.62±0.18 4.61±0.14
L2 3.54±0.14 3.43±0.06 3.72±0.11 3.58±0.15
L1 3.43±0.11 3.35±0.09 3.64±0.06 3.56±0.11
BL 3.42±0.10 3.42±0.10 3.65±0.12 3.65±0.12

4.1 Results for Transductive transfer: From digits to letters

Classifying images of lowercase from a-to-z by reusing supervised features of
digits from 0-to-9. We train a CNN to solve Latin digits (specific source problem)
and reuse it to solve a lowercase letters (different but related target problem)
without having to train it from scratch.

Using Latin as source problem and either Lowercase or Uppercase letters as
target problem. Table 3 presents the average classification error rate for SLFT
approach on CNN model by applying Algorithm 1. We observe both L1 and
L1+L2 approach performs better than the baseline approach for nds/c = 5000.
In case of nds/c = 1320 we observe only L1 approach performs better than the
baseline approach. Reusing all three layers: L1+L2+L3 has degraded performs
as the complete supervised features are well tuned for the source problem and
training only the logistic regression layer has no improvement. Table 4 provides
the summary of classification results for both CNN and SDA models.

Table 4: Summary: Average classification test error (%) (ε), Average training
times (seconds) (t) by reusing Latin at nds/c = 1320

Approaches Lowercase Uppercase
ε t ε t

SDA BL 4.95±0.16 2997 5.01±0.27 2567
SDA SLFT: L1 4.72±0.17 2261 4.72±0.18 2515
SDA UFT 4.67±0.38 1148 4.65±0.19 1498
SDA SLFT: FT 4.57±0.08 1020 4.58±0.19 1180

CNN SLFT: L1+L2 3.83±0.06 196 3.61±0.12 197
CNN BL 3.65±0.12 445 3.42±0.10 444
CNN SLFT: L1 3.64±0.06 292 3.43±0.11 293
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4.2 Transference From Arabic digits to Latin digits and Vice-versa

Utilizing previous conclusion that reusing L1 and L1+L2 perform better other
approaches. We performed similar experiment with Latin and Arabic digits and
also reverse the role of source and target datasets. To study the effect of negative
transference, for example, digit 0 in latin is represented as 0 where as digit 5 in
arabic is written as 0. These labels may lead to negative transference during su-
pervised learning. We observe SLFT L1 and L1+L2 approaches performs better
than baseline approach as shown in Fig 1 and Fig 2.
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Fig. 1: Classification results on MAHDBase (Arabic digits) for SLFT: L1 and
L1+L2 approach, for different numbers nds/c. Left: Average classification test
error rate. Right: Average time taken for classification.
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Fig. 2: Classification results on MNIST (Latin digits) for SLFT: L1 and L1+L2
approach, for different numbers nds/c. Left: Average classification test error
rate. Right: Average time taken for classification.
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5 Conclusions

We proposed a layer based feature transference approach that supports standard
neural networks like CNN and SDA for solving transductive transfer learning
problems. By transferring either low or high layer features on machines trained
either unsupervised or supervised way. Using this approach we achieved perfor-
mance improvement with significant reduction in computation time and also de-
creased classification error rate. We achieved significant performance by transfer-
ring learning from source to target problem, by using lower-layer features trained
in supervised fashion in case of CNN’s and unsupervised features trained in case
of SDA’s.
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