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Abstract. This paper presents the adaptation of a single layer complex
valued neural network (NN) to use entropy in the cost function instead
of the usual mean squared error (MSE). This network has the good prop-
erty of having only one layer so that there is no need to search for the
number of hidden layer neurons: the topology is completely determined
by the problem. We extend the existing stochastic MSE based learning
algorithm to a batch MSE version first and then to a batch minimum
error entropy (MEE). We present experiments showing the the proposed
algorithms are competitive with other learning machines.
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1 Introduction

Complex valued neural networks (CVNNs) have been gaining considerable at-
tention [1,2,3,4]. The benefits of using a complex valued NN come when dealing
with specific types of data, such as wave phenomena [1, 5] where there is the
need of processing phase and amplitude information.

The key feature of these networks is related to how the product of complex
numbers work. Let’s compare what happens if we consider a 2D input to a
neuron in the following two cases: first, the traditional real valued case where
the neuron has a weight associated with each input; second the complex value
case where a single complex weight is used for a single complex valued input.
The two cases are represented in figure 1. Consider the real numbers a, b, w1

and w2. In a real value neuron the 2D input consisting of values a and b gets
multiplied by the respective weights w1 and w2 giving an input to the neuron of
aw1 + bw2. In the case represented in the lower part of the figure, we have the
same input values a and b but now as real and imaginary parts of a complex input
z = a+ib. The weight are also part of a single complex weight w = w1+iw2. The
neuron now sees this input as the product zw = aw1 − bw2 + i(aw2 + bw1). If we
write this result using amplitude and phase representation of complex numbers,
say, z =

√
a2 + b2ei tan−1(b/a) and w =

√
w2

1 + w2
2e

i tan−1(w2/w1), we get zw =√
a2 + b2

√
w2

1 + w2
2e

i(tan−1(b/a)+tan−1(w2/w1)). This means that the product of
complex numbers is really just multiplying the amplitudes and adding the phases.
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Fig. 1. Example of how a real valued (above) and a complex valued (below) neuron
deal with a 2D input. z = a + ib and w = w1 + iw2. See the text for details.

Traditionally, neural networks have used mean squared error as cost functions
[6]. Recently however, it has been shown [7, 8] that there may be advantages in
using a cost function based on an information theoretical approaches, such as
the minimization of the entropy of the errors (MEE). A concrete example is the
increase in convergence during the training of recurrent NNs that were observed
in [9, 10].

In this paper we show a batch learning algorithm for the single layer complex
value neural network proposed in [3] and proceed to derive the MEE based
learning algorithm for this network.

The rest of the paper is organized as follows: the next section contains a pre-
sentation of the single layer complex valued NN, section 3 contains the derivation
of the batch versions of the learning algorithm (with MSE and MEE); the fol-
lowing sections contains experiments and section 5 contains the conclusions.

2 Complex Valued NN

2.1 One Layer CVNN

In this subsection we follow closely [3].
Consider an input space with m features. The neuron input is the complex

vector x = xR + ixI where xR is the real and xI is the imaginary part, such that
x ∈ Cm. The complex unit is i =

√−1. The weight matrix w ∈ Cm can also be
written as w = wR + iwI . The net input of neuron k is given by

zk = θk +
m∑

j=1

wkjxj (1)

where θk ∈ C is the bias for neuron k and can be written as θk = θR
k + iθI

k.
Given the complex multiplication of wkx, this can be further written as

zk = zR
k + izI

k =
(
θR

k + xRwR
k − xIwI

k

)
+ i

(
θI

k + xRwI
k + xIwR

k

)
(2)

Note that,

xRwR
k =

m∑

j=1

xR
j wR

kj (3)
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The k neuron output is given by yk = f(zk) where f : C → R is the activation
function and yk ∈ R. The activation function used is f(zk) = (s(zR

k ) − s(zI
k))2

where s(·) is the sigmoid function s(x) = 1
1+exp(−x) .

Given the form of this activation function, it is possible to solve non-linear
classification problems whereas in the case of a real valued neural network with
only one layer (such as a simple perceptron) this would not be possible.

Now that we know how a single neuron obtains its output, we will see how
to train a network composed of a single layer with N of these complex valued
neurons.

To train the network in a stochastic learning approach we need to obtain the
weights that minimize the following error functional

E(w) =
1
2

N∑

k=1

(tk − yk)2 (4)

where tk ∈ R represents the target output for neuron k. This is the mean squared
error functional (MSE) that is traditionally used in the learning algorithm of
NNs, only in this case it depends on a complex weight matrix, w.

To minimize (4) we find its derivative w.r.t. the weights:

∂E

∂wR
kj

= −2ek(s(zR
k ) − s(zI

k))
(
s′(zR

k )xR
j − s′(zI

k)xI
j

)
(5)

The previous expression is the derivative w.r.t. the real weights but a similar one
should be made w.r.t. the imaginary weights.

To obtain the weights we use the gradient descent rule, and update the weights
at each iteration (t), that is, after the presentation of each training pattern to
the network, using

wR
kj(t) = wR

kj(t − 1) + ΔwR
kj(t) (6)

with (gradient descent: go opposite to the derivative of E w.r.t. the weights)

ΔwR
kj(t) = −η

∂E

∂wR
kj

= 2ηek(s(zR
k ) − s(zI

k))
(
s′(zR

k )xR
j − s′(zI

k)xI
j

)
(7)

A similar derivation can be made for the case of the imaginary part of the
weights, yielding

ΔwI
kj(t) = −η

∂E

∂wI
kj

= 2ηek(s(zI
k) − s(zR

k ))
(
s′(zR

k )xI
j + s′(zI

k)xR
j

)
(8)

It is possible to show that the final expressions for the adjustment of the real
and imaginary parts of the bias are

ΔθR
k = 2ηek(s(zR

k ) − s(zI
k))s′(zR

k ) (9)

and
ΔθI

k = 2ηek(s(zI
k) − s(zR

k ))s′(zI
k) (10)
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3 Batch Learning

In this section we present the batch version of the algorithm presented in the
previous section.

First change is on the functional that should be minimized: now it contains
the error contributions from all the L patterns in the training set:

E(w) =
1

2L

L∑

l=1

N∑

k=1

(tk − yk)2 (11)

The only difference to the stochastic approach presented earlier is that instead
of updating the weights after each pattern is presented to the network, we sum
the values of Δwkj and Δθk obtained after each pattern is presented to the
network and only update the weights after all patterns have been shown to the
network (after an epoch).

3.1 MEE for Learning in Batch Mode

Now we propose the use of the minimization of the entropy of the errors (MEE)
instead of the minimization of the mean squared error (MSE) as the optimization
principle behind the learning for this network.

This type of training needs a batch mode algorithm because we have to esti-
mate the distribution of the errors for updating the weights, so we need several
of these errors to obtain a good estimate.

In [11] it is shown that the minimization of the error entropy (in particular,
Renyi’s entropy) results in the minimization of the divergence between the joint
pdfs of input-target and input-output signals. This suggests that the distribution
of the output of the system is converging to the distribution of the targets. Also,
when the entropy is minimized, for the classification case and under certain mild
conditions, implies that the error must be zero (see proof in [12]).

As we saw above, the error ej = tj − yj represents the difference between
the target tj of the j neuron and its output yj . We will replace the MSE
of the variable ej for its MEE counterpart. First it is necessary to estimate
the pdf of the error. For this we use the Parzen window approach f̂(ej) =
1

Lh

∑L
i=1 K

(
ej−ei

h

)
where h represents the bandwidth of the kernel K and L

is the number of patterns in the training set. The kernel used is the Gaussian
kernel given by K(x) = 1√

2π
exp

(
−x2

2

)
. Renyi’s quadratic entropy is given by

HR2(x) = − log
(∫

C
(f(x))2dx

)
where C is the support of x and f(·) is its den-

sity function. Note that this last equation can be seen as the logarithm of the
expected value of the pdf: − log E[f(x)]. This justifies the use of the following
estimator for HR2: ĤR2(x) = − log

(
1
L

∑L
i=1 f(xi)

)
.

Once we plug the estimator of the pdf into this last expression, we get the
final expression of the entropy of the error (the cost function)
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ĤR2(ej) = − log

(
1

L2h

L∑

i=1

L∑

u=1

K

(
ei − eu

h

))

(12)

Note that instead of the time complexity for the MSE which is O(L), the
MEE approach has O(L2) complexity.

To find how to minimize this cost function, we follow a similar approach to
the one done above for the MSE. Note first that to minimize equation (12) is the
same as to maximize the argument of the logarithm, which we call J (ignoring
the constant factors):

J =
L∑

i=1

L∑

u=1

K

(
ei − eu

h

)
(13)

First we find the derivative of J w.r.t. the real weights:

∂J

∂wR
kj

=
1
h

L∑

i=1

L∑

u=1

K ′
(

ei − eu

h

) (
∂ei

∂wR
kj

− ∂eu

∂wR
kj

)

(14)

The term ∂ei

∂wR
kj

is given by − ∂yi

∂wR
kj

. This gives the following

∂J

∂wR
kj

=
2
h

L∑

i=1

L∑

u=1

K ′
(

ei − eu

h

)
((s(zR

i ) − s(zI
i ))(s′(zR

i )xR
j − s′(zI

i )xI
j )−

(s(zR
u ) − s(zI

u))(s′(zR
u )xR

j − s′(zI
u)xI

j ))

(15)

We will again use the gradient to guide the search for the weights, but in this
case it is a gradient ascent since we wish to maximize J . So, the weight update
at each iteration (t) will be guided by

ΔwR
kj(t) = η

∂J

∂wR
kj

(16)

A similar derivation can be done for the case of the imaginary weights. The
expression equivalent to (15) is

∂J

∂wI
kj

=
2
h

N∑

i=1

N∑

u=1

K ′
(

ei − eu

h

)
((s(zI

i ) − s(zR
i ))(s′(zR

i )xI
j + s′(zI

i )xR
j )−

(s(zI
u) − s(zR

u ))(s′(zR
u )xI

j + s′(zI
u)xR

j ))

(17)

The update equations for the thresholds can be obtained by finding ∂J
∂θR

k

and
∂J
∂θI

k

. These equations are

∂J

∂θR
k

=
2
h

N∑

i=1

N∑

u=1

K ′
(

ei − eu

h

)
((s(zR

i ) − s(zI
i ))s′(zR

i )−

(s(zR
u ) − s(zI

u))s′(zR
u ))

(18)
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and

∂J

∂θI
k

=
2
h

N∑

i=1

N∑

u=1

K ′
(

ei − eu

h

)
((s(zI

i ) − s(zR
i ))s′(zI

i )−

(s(zI
u) − s(zR

u ))s′(zI
u))

(19)

4 Experiments

4.1 Datasets

We tried to find datasets were measurements were made with real and imaginary
parts (complex numbers) because we suspected that these would be the most
adequate settings for the type of network we are studying. Unfortunately it is
very hard to find this type of data. We used an artificial dataset to simulate
complex data and a real one, with actual complex measurements.

The artificial generated problem (Checkerboard) is a 2 by 2 grid of points
with alternate classes (similar to the XOR problem). It contains 400 points, 100
per grid position and 200 per class. In this case we consider that the value of
the X coordinate of a point is the real part of a complex measurement and the
Y coordinate is the imaginary part.

The second is a breast cancer dataset. It consists of electrical impedance
measurements that were performed on 120 samples of freshly excised breast
tissue. The problem has 6 classes, 120 points and 24 features (real and imaginary
parts of 12 measurements of impedance at different frequencies) [13].

The data was centered and reduced for all algorithms with the exception of
the SVM where a normalization in the interval [-1,1] was done for each feature.
We used the LIBSVM [14] implementation.

4.2 Results

The results are in table 1. This table contain the average error and standard
deviation of 30 repetitions of a two-fold cross-validation. We show also the results
using SVM with RBF kernel (best value obtained for g varying from 2.2 to 0.8
in steps of 0.2, for C=10 and C=100), k-NN (best value from k=1, 3, 5 and 7)
and the C4.5 decision tree. For the MEE version there were 3 results for each
value of the learning rate, one for each of values of the kernel bandwidth used
(1.0, 1.2 and 1.4). We only show the best to save space. The presented results
for the CVNNs were the best values obtained when the training run for 4000
epochs, which were evaluated at 20 epochs intervals on the test set.

The results for the Checkerboard problem are very impressive: the CVNN is
able to attain almost perfect classification and the second best method, the SVM
with RBF, is still a bit behind. In this dataset, the batch MEE version is also
the best for the tested values of the parameters, when compared with the other
two versions. For the Checkerboard problem we also show the more informative
balanced error rate since this is a two class problem (we cannot show this value
for the second dataset since it has 6 classes).
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Table 1. Average error and balanced error (BER), in percentage, with standard devi-
ation for 30 repetitions of a two fold-cross validation for both datasets

Dataset -> Checkerboard Breast cancer

Method Parameters Error (std) BER (std) Parameters Error (std)

SVM RBF g=1.8, C=10 2.92 (0.60) 5.37 (1.14) g=1.0, C=10 31.83 (3.23)
k-NN k = 1 4.48 (0.98) 7.18 (1.38) k = 5 34.42 (2.99)
C4.5 - 25.22 (0.29) 49.91 (0.55) - 35.28 (5.28)

Stochastic η = 0.09 0.51 (0.38) 0.38 (0.34) η = 0.09 32.11 (5.68)
Batch MSE η = 0.09 0.60 (0.43) 0.47 (0.39) η = 0.09 33.25 (6.05)
Batch MEE η = 0.09, h = 1.0 0.30 (0.22) 0.22 (0.21) η = 0.09, h = 1.0 33.14 (5.55)

Stochastic η = 0.07 0.43 (0.26) 0.32 (0.29) η = 0.07 32.69 (5.30)
Batch MSE η = 0.07 0.48 (0.39) 0.37 (0.33) η = 0.07 33.25 (6.05)
Batch MEE η = 0.07, h = 1.4 0.32 (0.31) 0.24 (0.28) η = 0.07, h = 1.4 33.47 (6.19)

Stochastic η = 0.05 0.57 (0.50) 0.46 (0.54) η = 0.05 33.64 (5.07)
Batch MSE η = 0.05 0.45 (0.30) 0.33 (0.26) η = 0.05 33.03 (5.26)
Batch MEE η = 0.05, h = 1.4 0.33 (0.24) 0.22 (0.16) η = 0.05, h = 1.0 33.00 (4.94)

Stochastic η = 0.03 0.72 (0.55) 0.59 (0.51) η = 0.03 33.17 (6.18)
Batch MSE η = 0.03 0.58 (0.36) 0.44 (0.34) η = 0.03 32.94 (5.74)
Batch MEE η = 0.03, h = 1.4 0.37 (0.22) 0.27 (0.21) η = 0.03, h = 1.0 33.50 (4.43)

Stochastic η = 0.01 0.68 (0.32) 0.57 (0.34) η = 0.01 33.28 (5.66)
Batch MSE η = 0.01 0.68 (0.54) 0.59 (0.57) η = 0.01 33.61 (5.29)
Batch MEE η = 0.01, h = 1.0 0.23 (0.31) 0.18 (0.27) η = 0.01, h = 1.0 34.58 (3.84)

For the Brest Cancer problem, the SVM with RBF was the best classifier.
The CVNN came in second place. Within the 3 variants of the CVNN, the best
results were obtained by the stochastic version. The MEE based version showed
in general (4 out of 5) smaller standard deviations in the results. The exception
was for η = 0.07.

5 Conclusions

In this paper we showed how to extend the previous existing single layer com-
plex valued neural network to batch MSE training and batch MEE training. We
present some experiments showing the validity of the proposals. It is interest-
ing to see that in one of the experiments (Checkerboard), the CVNN improves
substantially the results of other approaches. It would be important to try to un-
derstand what are the features of this dataset that make CVNNs so adequate to
it, but this is beyond the scope of the present work. As future work, we would like
to try to accelerate the MEE based algorithm, since it is quadratic in the num-
ber of data points. A possibility is the application of a mixed batch-sequential
approach as in [15].

Acknowledgments. We acknowledge Prof. Marques de Sá for providing the
datasets used in the experiments.
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