
Text Pre-processing for Lossless Compression

Lúıs Batista1,2 and Lúıs A. Alexandre1,2

1 Dept. Informática, Univ. Beira Interior, Portugal
2 IT - Networks and Multimedia Group, Covilhã, Portugal

Textual data holds a number of properties that can be taken into account in or-
der to improve compression. Pre-processing deals with these properties by applying
a number of transformations that make the redundancy “more visible” to the com-
pressor. One of the most commonly used concepts in text pre-processing is called
Capital Conversion. Words with capital letters are converted to their lowercase ver-
sions while signaling the change with a flag. This way, not only context similarities
are increased but also dictionaries used for word replacement only need to contain
words in their lowercase versions. Word replacement consists of replacing words
with shorter codes which are references to their location in a dictionary.
We propose the creation of “online” dictionaries presenting different alternatives for
word orderings - by frequency, prefix, sufix and frequency x size-of-word - and a
new implementation of the Capital Conversion technique. In our implementation of
Capital Conversion, only two flags are needed to deal with words that have capi-
tal letters. Flags that encode words with first capital letter and totally uppercase
words are used in the same way. When the word starts with a few uppercase letters
and ends with lowercase letters, the uppercase flag is used for the first part and a
flag that encodes a word with first capital letter is inserted before the last capital
letter. We found that this is of great benefit since words that usually appear as a
concatenation of two or more different words are now, most of the times, correctly
separated. We also found that the contextual prediction also benefits with the use
of only two different flags. Additionally, we reduce the use of escape flags needed to
make the distinction between real flags and symbols that appear in files that aren’t
100% text. Our method improved over existing methods.
Most schemes making use of word replacement must have the dictionary given in
advance, making the approach language dependent and having the shortcoming of
not always being suited for text files with specific vocabulary (ex. mathematics,
programming, etc.). To avoid this, we propose the idea of creating the dictionary
immediately before pre-processing and append it to the pre-processed file to be com-
pressed. The cost of compressing the file plus the dictionary is compensated by the
gain achieved by means of a tuned dictionary and the fact that the dictionary itself
is compressed. The tests showed that dictionary word ordering has an impact in
compression. From the different orderings we presented, the prefix dictionary proved
to be the best for a 100Mbyte test file. It improved the compression by 2.8%. For
small files, we consider only words that occur at least 25 times over the text to form
the dictionaries.



Text Pre-processing for Lossless Compression

Lúıs Batista1 and Lúıs A. Alexandre1,2

1 Dept. Informática, Univ. Beira Interior, Portugal
2 IT - Networks and Multimedia Group,

Covilhã, Portugal

Abstract

In this paper we present several pre-processing techniques devel-
oped to help general-purpose compressors achieve better results in
the task of (lossless) text compression. The possibility to create dic-
tionaries “online”, together with the ability to store them within the
compressed file, has revealed itself an attractive one, resulting in sig-
nificant compression improvement. Moreover, this technique has the
advantage of being independent for languages whose vocabulary is
built upon the use of prefixes and sufixes. In our experiments, we
achieved an improvement representing almost 3% over existing tech-
niques on a large (100Mbyte) file.

1 Introduction

In recent years we have seen most state-of-the-art compressors become aware
of some specific data-type properties that can be taken into account in order
to improve compression. These compressors incorporate specialized algo-
rithms to handle such data-types. In this paper we make an approach on
one of those types: text. The two main paths, when it comes to text com-
pression, are either the creation of specialized text compressors or the use of
text pre-processing techniques. While the first surely has its own advantages,
the fact that pre-processing can be used together with the vast majority of
compressors makes it more appealing.
The use of pre-processing techniques can already boost compression gains
up a few percent. A great number of text properties are handled by many

1



authors significantly in the same way, with minor variations. The conversion
of words with capital letters to lowercase is one such example. Grabowsky [1]
suggests the use of an escape symbol (flag) to encode the conversion. Abel
and Teahan [2] consider for this conversion only words that occur elsewhere
with lowercase letter and use a different flag for uppercase words. Skibinski
et. al. [3] use yet another flag for words that have only a few capital letters.
Still, minor modifications can sometimes have a great impact in compression,
either directly, or by optimizing other algorithms. Capital conversion makes
possible the use of only lowercase words in dictionaries meant for word re-
placement. As a result, they became smaller, a consequence of not having
to store the same words in the different forms that may occur with capital
letters.
Many schemes presented in literature making use of the idea of word replace-
ment must have the dictionary given in advance [1, 3]. Besides the obvious
limitation that such dictionaries make the approach language dependent,
they also have the shortcoming of not always being suited for text files with
specific vocabulary (ex. mathematics, programming, etc.). Nevertheless, on
average, this approach produces very significant results and is of common
use. Abel and Teahan [2], on the other hand, present a word replacement
scheme based in dictionaries that is language independent. Words are added
to the dictionary adaptively as they appear for the first time and are replaced
with tokens in their subsequent appearances. They also consider a similar
scheme for phrase replacement and a heuristic alphabet reordering scheme
to group symbols with similar context. Grabowsky [1] uses a promising tech-
nique invented by Taylor, trying to reduce the effect caused by the end-of-line
(EOL) symbols, which hamper the context, since words are usually separated
by spaces. He substitutes EOL symbols by spaces and encodes their former
positions.
In this paper we present improvements to existing ideas and also some new
ideas. A change of the flag position in words that have a few capital letters
is presented suppressing the need of an additional flag. We also consider
different algorithms to produce dictionaries in a pre-pass over the text, em-
beddeding them in the file to be compressed. All this resulted in a gain
reaching almost 2% over existing techniques.
The paper is organized as follows: the next Section contains a brief expla-
nation of the common techniques in text pre-processing, Sect. 3 proposes
our new approach, Sect. 4 presents the experiments and the final Section
contains the conclusions.

2



2 Text pre-processing in lossless compression

The idea behind the text pre-processing approach is to apply a number of
transformations to the original text file, converting it into another file (tem-
porary file), which is more redundant. In fact, what it does is make the
redundancy “more visible” to the compressor. Then, this new file can be
compressed in the exact same way as we would compress the original one,
but (hopefully) with better results. This process must be reversible, which
means that, it must be possible to reverse the transformations so that, in the
end, the decompressed file is an exact match of the original one.
Textual data holds a number of properties that are not always immediately
visible to the compressor. Pre-processing deals with these properties using
a series of algorithms that make the compressor become “aware” of them.
Although there are a number of valid algorithms for text pre-processing, we
will only consider for a brief review those used in our experiments. When-
ever possible we establish a parallel with TextFilter (a pre-processor based
in Skibinski’s WRT [4] ) which was the starting point for our work.

2.1 Capital Conversion

One of the most commonly used concepts in text pre-processing is called
Capital Conversion. It is based in the fact that, for example, “Letter” and
“letter” are not more than different representations of the same word, but are
treated as distinct words by most compressors which, obviously, means worse
compression ratios. In order to change this, words with capital letters are
converted to their lowercase versions while signaling the change with a flag
(usually a 1 byte flag). Among the advantages of using the capital conversion
technique are the significant increase of context similarities and, when using
word replacement, dictionaries only need to contain words in their lowercase
versions.

2.2 Word Replacement

This well known technique is undoubtedly the pre-processing scheme that
contributes the most to improve compression. It consists of replacing words
in the text with shorter codes (code-words), whenever they are present in
an external dictionary, i. e., words are replaced with references to where the
word is located in the dictionary. The immediate advantage is that code-

3



words are shorter than words and, thus, the same amount of text will require
less space. The size (in words) of the dictionary is limited to the number of
code-words available. In TextFilter code-words can be formed by one up to
four symbols (bytes) of the ASCII table above 128, since they are rarely used
in text files. Not only it helps compressors in their predictions but is also of
benefit when substituting word prefixes as we will see bellow. Still, not all
of the 128 symbols can be used for every position in the code-word. Each
position has its own sub-alphabet of symbols from which it takes values. In
TextFilter, since code-words can have up to four bytes, four sub-alphabets
have been formed: the first group has 64 symbols, the second 32, the third 16
and the fourth 16 symbols. Thus, words in the text matching one of the first
64 words in the dictionary will be replaced with code-words of length 1 byte,
2 bytes to the next 64 ∗ 32 words and so on. The most frequent words for
a given language will be usually stored at the begining of the dictionary so
that they will be given shorter code-words. Since the dictionaries are usually
static, word frequencies are determined training in a large corpus from that
language.

2.3 Prefix Replacement

Sometimes, it happens that a given word is not found in the dictionary but a
smaller part of it is (e.g. the prefix of the word). A partial substitution can
still occur. Since the alphabet for code-words is disjoint from the alphabet
for original words, that part of the word can be replaced by the respective
code-word without the need for any flag to mark the separation.

3 Our proposals

In this Section we propose some new ideas for text pre-processing as well as
improvements to existing ideas. A text pre-processor was built from scratch
to implement them. Although we based part of our work on what was done
in Textfilter, we have decided to ignore many of its algorithms. The reason is
that we focused on the creation and use of “online”dictionaries, and therefore
were only interested in techniques that contribute in some way to the process
of word replacement. We now present the implemented techniques.

4



3.1 Modified Capital Conversion

As we’ve seen above, capital conversion helps the process of word replacement
so that only lowercase words need to be stored in the dictionaries. In our
implementation only two flags are needed to deal with words that have capital
letters as opposing to three flags in Textfilter. The two flags that encode
respectively words with first capital letter and totally uppercase words are
used in the same way. When the word starts with a few uppercase letters and
ends with lowercase letters, the uppercase flag is used for the first part but,
instead of using a third flag to separate it from the lowercase part, the same
flag that encodes a word with first capital letter is inserted before the last
capital letter. We found that this is of great benefit since words that usually
appear as a concatenation of two or more different words are now, most of
the times, correctly separated. We also found that the contextual prediction
also benefits with the use of only two different flags. Additionally, we reduce
the use of escape flags needed to make the distinction between real flags and
symbols that appear in files that aren’t 100% text, since we use one less flag.

3.2 Modified Word Replacement

The process of word replacement was also subject to changes. We decided to
change the maximum size of code-words to three bytes instead of the previous
four used in Textfilter. Consequently, the size of the byte groups used to build
code-words has changed too. The choice of the new sizes was motivated by
the work of Alexander Ratushniak in his (successful) attempts at the Hutter
Prize [5]. He uses three groups with the following amount of bytes: 80 for
the first group, 32 for the second group and 16 for the third, allowing that
the second symbol of the code-word might be both from the second and third
groups. This gives a total of 80 + 80 ∗ 32 + 80 ∗ 16 + 80 ∗ 32 ∗ 16 = 44880
code-words available which, we believe, is an acceptable amount of words
since the size of the dictionary has to be a compromise between replacing a
fair amount of words in the text and creating a very large dictionary, since
it will be stored with the compressed data. The choice of the group sizes is
such that it is easy to distinguish to which group a certain symbol of a code
word belongs to using only its most significant bits. Once a word of the text
file is found in the dictionary, it is replaced by the respective code-word in
the temporary file.

5



3.3 Online Dictionaries

Code-words are references to words in a dictionary so, in order to make Word
Replacement, both the compressor and decompressor must have access to the
same dictionary. If a static dictionary is used, which is the usual approach, it
is assumed it will be delivered with the decompressor. To compress a different
language text file, a different dictionary would be needed. The same would
happen with other text files that use specific terms and vocabulary. In short,
we would need as many dictionaries as all the languages and file types we
wanted to compress. To avoid this, we propose the idea of creating the dictio-
nary immediately before pre-processing and append it to the pre-processed
file to be compressed. That way, a single relatively small decompressor does
the job, without the need of extra dictionaries, many of which are rarely
used. The cost of compressing the file plus the dictionary is compensated
by the gain achieved by means of a tuned dictionary and the fact that the
dictionary itself is compressed. Once we decompress the file, the dictionary
can be detached and used to reverse pre-processing. For obvious reasons,
we want the dictionaries to be built automatically. Several authors pointed
out that the order in which words appear in the dictionary has an impact in
compression. The two main reasons for it are: 1 - relatively big words be-
come smaller (at least their representation) since they are replaced by shorter
code-words; 2 - the number of context similarities can be greatly increased if
words that usually appear in the same context are grouped together in the
dictionary. Thus, the second question is how to order the words. The answer
to this question is not as obvious as it may seem, and the solution we found
was to produce differently ordered dictionaries. The following word ordering
schemes were implemented.

3.3.1 Words ordered by Frequency

According to the scheme adopted for code-word attribution, the first 80 words
in the dictionary will be replaced by 1 byte length code-words, the next
80 ∗ 32 + 80 ∗ 16 words will be given 2 bytes and the remaining words 3
bytes tokens. The idea of ordering words by their frequency is that the most
frequent words will be replaced by shorter codes. The resulting pre-processed
file will therefore be smaller to the benefit of compression. A first pass is done
while counting the number of occurrences of each word. The most frequent
word will be the first in the dictionary, the second most frequent word will be

6



the second and so on until one of two things happen: either we have reached
the end of the text file, and thus have already the least frequent word in
the dictionary, or we have reached the limit of words for which there are
code-words available, i. e., 44880 words.

3.3.2 Words ordered by Prefix

The reason for this type of word ordering is that words that start with the
same prefix have a tendency to appear in similar contexts. As an example, the
words “interregional”, “intercontinental”, “intertropical” or “interglacial” all
suggest a certain relation between or among things, a similarity that is likely
to be found in similar contexts. So the idea is to group them together in the
dictionary so that they will be referenced by code-words whose first symbols
are similar. That way, contexts are effectively extended and compressor
predictions greatly improved. In our scheme to build these dictionaries, we
do not use a truly alphabetic prefix ordering. Only the first four letters
of each word (or less, if the word is smaller) are taken into account to form
groups of words and even those groups are not sorted alphabetically. Instead,
the first word is still the most frequent and the following words are the ones
with the same prefix (four bytes). From the remaining words, again the most
frequent is chosen followed by those with the same prefix. As before, we
repeat the process until there are no more words or the dictionary is full.

3.3.3 Words ordered by Suffix

The procedure used for prefix ordering is also used for this type of dictionar-
ies. The only difference is that instead of the prefix, it is the suffix (last four
bytes) that is used. The justification is also the same: words with the same
suffixes also tend to appear in similar contexts throughout the text.

3.3.4 Words ordered by Frequency x Size-of-Word

This scheme favors the substitution of less frequent words if their length
compensates their count. Conversely, shorter words are favored if they are
very frequent. The idea is similar to the Frequency ordering seen above with
the advantage of providing a mechanism to “ensure” it is worth to trade the
word by the code-word. The result is that some of the more frequent words
will give their place to longer words while others will have their position
swaped in the dictionary.

7



4 Experiments

To carry out our experiments we decided to use the PAQ8h [6] compressor.
The PAQ8 series are, at the moment, among the best existing compressors
and are ranking at the “top” of several compression competitions and bench-
marks. This specific version of PAQ was chosen mainly because it already
comes with a built in text pre-processor (Textfilter 3.0), against which, the
results of our own pre-processor can be compared with. Part of our tests
were made in the extract of the Wikipedia ENWIK8 [7], that is being used
in the Hutter Prize [5] competition. The file size is 100Mbytes. We also made
tests on some of the textual files of the Canterbury Corpus. The results are
shown in Tables 1 and 2.
Our modification to the Capital Conversion scheme outperforms the existing
TextFilter Capital Conversion scheme by 0.9%, as we can see on the EN-
WIK8 tests (Table 1). For the smaller files (Table 2), the results are equal
for both schemes since in these files there is no situation where to apply the
differences between these schemes.
We also see in Table 1 that the new group sizes for codewords (ENWIK8A)
outperforms the old one (except for the sufix dictionary).
The tests showed that dictionary word ordering does in fact matter. From
the different orderings we presented, the prefix dictionary proved to be the
best for the large file. It improved the compression by 2.8% when compared
to the original Capital Conversion scheme.
Our technique for creating dictionaries online didn’t seem to perform very
well on the small files. In fact, our first experiments showed that for these
files we achieved better results if we didn’t use it. The reason for this is that
there are few word repetitions. Storing a word on the dictionary that only
occurs once in the text results in adding size to the temporary file, which
is the oposite of our objective. To overcome this problem, we introduced a
small change in the creation of dictionaries meant for small files: to form the
dictionaries, we consider only words that occur at least 25 times over the
text. This way we improved results and surpass the ones obtained without
the use of dictionaries for the ASYOULIK and PLRABN12. The case of
LCET10 is interesting because none of these methods improves compression
over the compression without pre-processing. We think this may be due to
the fact that the file contains technical writing, which means it has a limited
vocabulary where the use of dictionaries isn’t compensated by the cost of
having to store it within the file.

8



ENWIK8 ENWIK8A
No Pre-processing 18.166.126 -
Capital Conv. 18.214.883 -
Mod. Cap. Conv. 18.198.049 -
Frequency 17.762.265 17.755.292
Prefix 17.710.781 17.706.851
Suffix 17.780.548 17.785.612
Count * Size 17.764.947 17.756.491

Table 1: Large file tests. Sizes after compression with PAQ8h. The col-
umn ENWIK8A represents the results obtained with the new group sizes for
codewords. Best results are in bold. Sizes are in bytes.

ALICE29 ASYOULIK LCET10 PLRABN12
No Pre-proc. 35.223 33.176 84.086 122.274
Capital Conv. 34.982 33.130 84.090 122.137
Mod. Cap. Conv. 35.085 33.236 84.215 122.336
Frequency 36.284 34.165 88.100 126.127
Prefix 36.192 34.126 87.137 125.249
Suffix 36.261 34.142 87.905 126.129
Word count > 25
Frequency 35.065 32.920 84.871 121.483
Prefix 35.041 32.928 84.830 121.481
Suffix 35.063 32.921 84.859 121.476

Table 2: Small file tests. Sizes after compression with PAQ8h. Best results
are in bold. Sizes are in bytes.

5 Conclusion

In this paper we presented several techniques to improve lossless text com-
pression. The proposals are pre-processing techniques. We showed that com-
pression can be improved using dictionaries built “on-the-fly” and storing
them within the compressed file. We discussed different alternatives of order-
ing the words in the dictionary and presented some improvements over exist-
ing pre-processing schemes. We are currently studying other pre-processing
techniques as well as ways of predict how many times a word must occur in
the text to make it worth to store it in the dictionary so that smaller files

9



can also benefit consistently from this scheme.

References

[1] Grabowski, S.: Text Preprocessing for Burrows-Wheeler Block Sorting
Compression Proc VII Konferencja Sieci i Systemy Informatyczne – Teo-
ria, Projekty, Wdrozenia, Lódź, Poland, 1999.

[2] Abel, J., Teahan, W.: Universal Text Preprocessing for Data Compres-
sion IEEE Trans. Computers, 54(5):497-507, 2005.

[3] Skibiński, P., Grabowski, S., Deorowicz, D.: Revisiting dictionary-based
compression Software – Practice & Experience, 35(15):1455-1476, 2005.

[4] Skibiński, P.: Homepage of Przemyslaw Skibiński
http://www.ii.uni.wroc.pl/~inikep/research/WRT/WRT46.zip, 2006.

[5] Hutter, M.: 50.000 Euro Prize for Compressing Human Knowledge
http://prize.hutter1.net/, 2006.

[6] Mahoney, M.: The PAQ Data Compression Programs
http://cs.fit.edu/~mmahoney/compression/paq8h.zip, 2006.

[7] Mahoney, M.: About the Test Data
http://cs.fit.edu/~mmahoney/compression/enwik8.zip, 2006.

10


