
Weighted Convolutional Neural Network
Ensemble

Xavier Frazão and Lúıs A. Alexandre

Dept. of Informatics, Univ. Beira Interior
and Instituto de Telecomunicações ?

Covilhã, Portugal
xavierfrazao@gmail.com

lfbaa@ubi.pt

http://www.ubi.pt

Abstract. We introduce a new method to combine the output probabil-
ities of convolutional neural networks which we call Weighted Convolu-
tional Neural Network Ensemble. Each network has an associated weight
that makes networks with better performance have a greater influence
at the time to classify in relation to networks that performed worse.
This new approach produces better results than the common method
that combines the networks doing just the average of the output prob-
abilities to make the predictions. We show the validity of our proposal
by improving the classification rate on a common image classification
benchmark.

Keywords: Convolutional Neural Networks, Object Recognition, Net-
work Ensemble.

1 Introduction

Convolutional neural networks (CNNs) are hierarchical neural networks whose
convolutional layers alternate with subsampling layers, reminiscent of simple
and complex cells in the primary visual cortex [1]. Although these networks
are efficient when performing classification, they have the disadvantage of being
computationally heavy, which makes their training slow and cumbersome.

With the emergence of parallel programming and taking advantage of the
processing power of Graphics Processing Units (GPUs), training these networks
takes significantly less time, making it possible to train large networks [2, 3]
and also making it possible to train multiple networks for the same problem
and combine their results [4, 5], an approach that can significantly increase the
classification accuracy.

Besides the training time, the major problem of these networks is the overfit-
ting. Overfitting still remains a challenge to overcome when it comes to training

? We acknowledge the support given by Instituto de Telecomunicações through project
PEst-OE/EEI/LA0008/2013



2 Xavier Frazão and Lúıs A. Alexandre

extremely large neural networks or working in domains which offer very small
amounts of data. Many regularization methods have also been proposed to pre-
vent this problem. These methods combined with large datasets have made it
possible to apply neural large networks for solving machine learning problems
in several domains. Two new approachs have been recently proposed, DropOut
[5] and DropConnect [4], which is a generalization of the previous. When train-
ing with DropOut, a randomly selected subset of activations are droped. With
DropConnect, we randomly drop the weights. Both techniques are only possible
for fully connected layers. Combining the results from different networks trained
by these techniques significantly improves the classification rate. In this paper,
we propose a new method to combine the results of networks by applying a
different weight for each network, instead of using the common method, that
involves averaging the output probabilities of several networks.

2 Convolutional Neural Networks

A classical convolutional network is composed of alternating layers of convolution
and pooling. The purpose of the first convolutional layer is to extract patterns
found within local regions of the input images. This is done by convolving filters
over the input image, computing the inner product of the filter at every location
in the image and outputting the result as feature maps c. A non-linear function
f() is then applied to each feature map c : a = f(c). The result activations a are
passed to the pooling/subsampling layers. These layers aggregate the information
within a set of small local regions, {Rj}nj=1, producing a pooled feature map s
of smaller size as output.

Representing the aggregation function as pool(), then for each feature map
c, we have: sj = pool(f(ci)) ∀i ∈ Rj .

The two common choices to perform pool() are average and max-pooling.
The first takes the arithmetic mean of the elements in each pooling region, while
max-pooling selects the largest element of the pooling region.

A range of functions f() can be used as a non-linearity – tanh, logistic,
softmax and relu are the most common choices.

In a convolutional network model, the convolutional layers, which take the
pooled maps as input, can thus extract features that are increasingly invariant
to local transformations of the input image.

The last layer is always a fully connected layer with one output unit per class
in the recognition task. The activation function softmax, is the most common
choice for the last layer such that each neuron output activation can be inter-
preted as the probability of a particular input image belonging to that class.

3 Related Work

3.1 Ensembles of CNNs

Model combination improves the performance of machine learning models. Av-
eraging the predictions of several models is most helpful when the individual



Weighted Convolutional Neural Network Ensemble 3

Fig. 1. MCDNN architecture. DNNs are trained on inputs preprocessed in different
ways. The final prediction is a simple average of all DNNs predictions.

models are different from each other, in other words, to make them different
they must have different hyperparameters or be trained on different data.

An example of the combination of multiples CNNs appears in [6], as the
”Multi-column Deep Neural Networks for Image Classification”(MCDNN). In
that model, the input image is preprocessed by blocks. The dataset is prepro-
cessed before training, then, at the beginning of every epoch, the images are
distorted (block). An arbitrary number of CNNs can be trained on inputs pre-
processed in different ways. The final predictions are obtained by averaging in-
dividual predictions of each CNN. Fig. 1 shows the architecture of a MCDNN.

3.2 Regularization

Two new approachs for regularizing CNNs have been recently proposed, DropOut
[5] and DropConnect [4]. Applying DropOut and DropConnect amounts to sub-
sampling a neural network by dropping units. Since each of these processes acts
differently as a way to control overfitting, the combination of several of these
networks can bring gains, as will be shown below.

DropOut is applied to the outputs of a fully connected layer where each
element of an output layer is kept with probability p, otherwise being set to 0
with probability (1− p). If we further assume a neural activation function with
a(0) = 0, such as tanh and relu, the output of a layer can be written as:

r = m ∗ a(Wv) (1)

where m is a binary mask vector of size d with each element j coming indepen-
dently from a Bernoulli distribution mj ∼ Bernoulli(p), W is a matrix with
weights of a fully-connected layer and v are the fully-connected layer inputs [4].

DropConnect is similar to DropOut, but applied to the weights W . The
connections are choosen randomly during the training. For a DropConnect layer,
the output is given as:

r = a((M ∗W )v) (2)

where M is weight binary mask, and Mij ∼ Bernoulli(p). Each element of the
mask M is drawn independently for each example during training [4]. Fig. 2
illustrates the differences between the two methods.



4 Xavier Frazão and Lúıs A. Alexandre

Fig. 2. The left figure is an example of DropOut. Right figure is an example of Drop-
Connect.

Fig. 3. The output probabilities r are averaged to make the final prediction.

4 Model Description

The standard model architecture to combine networks can be seen in Fig. 3.
Given some input pattern, the output probabilities from all CNN are averaged
before making a prediction. For output i, the average output Si is given by:

Si =
1

n

n∑
j=1

rj(i) (3)

where rj(i) is the output i of network j for a given input pattern.
Our approach consists in applying a different weight for each network. In the

validation set, networks that had a lower classification error will have a larger
weight when combining the results. The model architecture can be seen in Fig. 4.
Given some input pattern, the output probabilities from all CNNs are multiplied
by a weight α before the prediction:

Si =

n∑
j=1

αjrj(i) (4)



Weighted Convolutional Neural Network Ensemble 5

Fig. 4. The output probabilities r are weighted based on the accuracy of the network
evaluated on the validation set.

We use two different approaches to calculate the weight α. The first method
consists on a weighted mean:

αk =
Ak∑n
i=1Ai

(5)

where Ak is the accuracy in the validation set for the network k, and i runs over
the n networks.

In the second method, the weight αk is chosen by rank. The weights are based
on the order of accuracy in the validation set. This means that the weights are
fixed, independently on the value of the error:

αk =
R(Ak)∑n
i=1R(Ai)

(6)

where R() is a function that gives the position of the network based on the
validation accuracy sorted in increasing order. For example, the network with
largest accuracy will have an R() value of n, the network with the second largest
accuracy an R() value of n− 1 and so on until the network with lowest accuracy
gets an R() = 1.

The first method has weights that are proportional to the accuracy in val-
idation set. If the errors are close, the weights have values close to each other,
and the result will be similar to a simple average.

The second method has the particularity of not looking only at the value of
the validation error, but at the network positions. Even though the difference
in error between the two networks might be minimal, the weight value remains
fixed, attributing a significantly greater importance to the network that achieved
better results in the validation set.



6 Xavier Frazão and Lúıs A. Alexandre

Table 1. CIFAR-10 average classification error in percentage and standard deviation
using 3 types of networks and 3 types of combiners, using 64 feature maps.

Model DropConnect DropOut NoDrop

5 networks 11.18 ±0.15 11.28 ±0.17 10.92 ±0.15

Method 1 9.81 10.45 10.06

Method 2 9.81 10.31 10.03

Simple Average 9.84 10.48 10.06

Table 2. CIFAR-10 average classification error in percentage and standard deviation
using 3 types of combiners, using 64 feature maps. Previous state-of-the-art using the
same architecture is 9.32% [4].

Model Method 1 Method 2 Simple Average

12 networks 9.50 9.37 9.47

In general, both methods give better results than doing just the simple av-
erage of the predictions, as will be shown in the results.

5 Experiments

Our experiments use a fast GPU based convolutional network library called
Cuda-convnet [7] in conjunction with Li’s code [4] that allows training networks
with DropOut and Dropconnet. We use a NVIDIA TESLA C2075 GPU to run
the experiments. For each dataset we train five networks with DropConnect,
DropOut and NoDrop (five of each).

Once the networks are trained we save the mean and standard deviation of
the classification errors produced individually by each network and the classifi-
cation error produced by these networks when combined with our two proposed
methods methods and simple average. These results are shown in Tables 1-4. We
use CIFAR-10 dataset [8] to evaluate our approach.

5.1 CIFAR-10

The CIFAR-10 dataset [8] consists of 32 x 32 color images drawn from 10 classes
split into 50 000 train and 10 000 test images.

Before feeding these images to our network, we subtract the per-pixel mean
computed over the training set from each image as was done in [5]. The images
are cropped to 24x24 with horizontal flips.

We use two feature extractors to perform the experiment. The first, consists
in 2 convolutional layers, with 64 feature maps in each layer, 2 maxpooling
layers, 2 locally connected layers, a fully connected layer which has 128 relu
units on which NoDrop, DropOut or DropConnect are applied and a output
layer with softmax units. We train for three stages of epochs, 500-100-100 with



Weighted Convolutional Neural Network Ensemble 7

Table 3. CIFAR-10 average classification error in percentage and standard deviation
using 3 types of networks and 3 types of combiners, using 128 feature maps.

Model DropConnect DropOut NoDrop

5 networks 10.53 ±0.14 10.53 ±0.13 10.53 ±0.17

Method 1 9.77 9.68 9.63

Method 2 9.68 9.55 9.61

Simple Average 9.81 9.71 9.64

Table 4. CIFAR-10 average classification error in percentage and standard deviation
using 3 types of combiners, using 128 feature maps. Previous state-of-the-art using the
same architecture is 9.32% [4].

Model Method 1 Method 2 Simple Average

12 networks 9.20 9.12 9.22

an initial learning rate of 0.001, that its reduced by factor 10 between each stage.
We chose this fixed number of epochs because it is when the validation error
stops improving. Training a network takes around 4 hours. The second feature
extractor is similar but with 128 feature maps in each layer and the number of
epochs is smaller, 350-100-50. Training a network with 128 maps takes around
20 hours.

In these experiments we compared the results using the three approaches
for combining networks described in this paper. The first experiment used a
feature extractor with 64 feature maps (summarized in Table 1) and combined
networks that were trained with DropConnect, DropOut and NoDrop. NoDrop
individually obtained better results and networks with DropOut were the ones
with the worst individual results. By combining the nets, DropConnect achieved
better results. In addition we combine our 12 best networks (see Table 2) and the
results were significantly better than the result shown in Table 1. With method
2 we achieved an error of 9.37%.

The second experiment used a feature extractor with 128 feature maps (sum-
marized in Table 3), we also combine networks that were trained with DropCon-
nect, DropOut and NoDrop. DropOut individually achieved better results, and
networks trained with DropConnect were the ones with worst result. When com-
bining our 12 best networks, we obtained better results, as can be seen in Table
4. Using our second method we obtain 9.12%, improving the classification rate
of CIFAR-10.

6 Conclusions

In this paper, we propose two methods to combine the results of CNNs by
applying different weights for each network, instead of simply averaging the
output predictions of several networks.



8 Xavier Frazão and Lúıs A. Alexandre

The experiments showed, that applying a weight to each network based on
performance ranking (method 2), ensures better results than the other two ap-
proaches. We also conclude that when combining a large number of networks,
the weighted mean (method 1) performance was similar to the simple average.
We also concluded that a feature extractor 128 feature maps achieves better
results than a feature extractor with 64 feature maps. However when using 128
maps we have to use less epochs because the network tends to overfit, losing its
ability to generalize. We also tested more maps (not presented in results), but
the networks overfitted very quick, producing worst results. At the end, with one
of our methods, we improved the classification rate of CIFAR-10.

In summary, we demonstrate with our contribution that there are better
alternatives to combine the results than doing just the simple average of the
networks predictions.

References

1. Kunihiko Fukushima, “A neural network model for selective attention in visual
pattern recognition,” Biol. Cybern., vol. 55, no. 1, pp. 5–16, Oct. 1986.

2. K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is the best multi-
stage architecture for object recognition?,” in Computer Vision, 2009 IEEE 12th
International Conference on, Sept 2009, pp. 2146–2153.

3. Kumar Chellapilla, Sidd Puri, and Patrice Simard, “High Performance Convolu-
tional Neural Networks for Document Processing,” in Tenth International Work-
shop on Frontiers in Handwriting Recognition, Guy Lorette, Ed., La Baule (France),
Oct. 2006, Université de Rennes 1, Suvisoft, http://www.suvisoft.com Université
de Rennes 1.

4. Li Wan, Matthew Zeiler, Sixin Zhang, Yann L. Cun, and Rob Fergus, “Regular-
ization of neural networks using dropconnect,” in Proceedings of the 30th Inter-
national Conference on Machine Learning (ICML-13), Sanjoy Dasgupta and David
Mcallester, Eds. May 2013, vol. 28, pp. 1058–1066, JMLR Workshop and Conference
Proceedings.

5. Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov, “Improving neural networks by preventing co-adaptation of feature
detectors,” CoRR, vol. abs/1207.0580, 2012.

6. Jurgen Schmidhuber, “Multi-column deep neural networks for image classifica-
tion,” in Proceedings of the 2012 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), Washington, DC, USA, 2012, CVPR ’12, pp. 3642–3649,
IEEE Computer Society.

7. Alex Krizhevsky, “Cuda-convnet,” http://code.google.com/p/cuda-convnet/,
2012.

8. Alex Krizhevsky, “Learning multiple layers of features from tiny images,” Tech.
Rep., 2009.


