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Abstract. Binary decision trees based on univariate splits have traditionally 
employed so-called impurity functions as a means of searching for the best 
node splits. Such functions use estimates of the class distributions. In the pre-
sent paper we introduce a new concept to binary tree design: instead of working 
with the class distributions of the data we work directly with the distribution of 
the errors originated by the node splits. Concretely, we search for the best splits 
using a minimum entropy-of-error (MEE) strategy. This strategy has recently 
been applied in other areas (e.g. regression, clustering, blind source separation, 
neural network training) with success. We show that MEE trees are capable of 
producing good results with often simpler trees, have interesting generalization 
properties and in the many experiments we have performed they could be used 
without pruning.  
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1   Introduction 

Decision trees are mathematical devices largely applied to data classification tasks, 
namely in data mining. The main advantageous features of decision trees are the se-
mantic interpretation that is often possible to assign to decision rules at each tree node 
(a relevant aspect e.g. in medical applications) and to a certain extent their fast com-
putation (rendering them attractive in data mining applications). 

We only consider decision trees for classification tasks (although they may also be 
used for regression). Formally, in classification tasks one is given a dataset X as an 
n×f data (pattern feature) matrix, where n is the number of cases and f is the number 
of features (predictors) and a target (class) vector T coding in some convenient way 
the class membership of each case xi, )( ij xωω = , cj ,,1K= , where c is the number 
of classes and ω is the class assignment function of X into }{ jω=Ω . The tree deci-
sion rules also produce class labels, Ω∈)( ixy . 

In automatic design of decision trees one usually attempts to devise a feature-based 
partition rule of any subset L ⊂ X, associated to a tree node, in order to produce m 
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subsets Li ⊂ L with “minimum disorder” relative to some m-partition of Ω, ideally 
with cases from a single class only. For that purpose, given a set L with distribution of 
the partitioned classes )|( LP iω , mi ,,1K= , it is convenient to define a so-called 
impurity (disorder) function, ( ))|(,),|()( 1 LPLPL mωωφφ K≡ , with the following 
properties: a) φ achieves its maximum at (1/m, 1/m,…, 1/m); b) φ achieves its mini-
mum at (1,0,…,0), (0,1,…,0),…,(0,0,…,1); c) φ is symmetric. 

We only consider univariate decision rules, )( ij xy relative to two-class partitions 
(m=2), also known as Stoller splits (see [3] for a detailed analysis), which may be 
stated as step functions: ,;)(, kkijij xyx ωω=Δ≤ otherwise (xij is one of the xi 
features). The corresponding trees are binary trees. For this setting many impurity 
functions have been proposed with two of them being highly popularized in praised 
algorithms: the Gini Index (GI) applied in the well-known CART algorithm pioneered 
by Breiman and co-workers [2], and the Information Gain (IG) applied in the equally 
well-known algorithms ID3 and C4.5 developed by Quinlan [7, 8]. 

The GI function for two-class splits of a set L is defined in terms of 

( ) ( ) [ ]5.0,0|1)( 2
1

2 ∈−== ∑ =j j LPLgL ωφ & ; 

namely, ( ) ( ) ( )∑ =−= 2
1 ||)( i iyiy LLgLLPLgLIG   

In other words, GI depends on the average of the impurities gy(Li) of the descend-
ing nodes Li of L produced by rule y. Since g(L) doesn’t depend on y, the CART rule 
of choosing the feature which maximizes ( )LIG y  is equivalent to minimizing the 
average impurity. 

The IG function is one of many information theoretic measures that can be applied 
as impurity functions. Concretely, it is defined in terms of the average of the Shannon 
entropies (informations) of the descending nodes of node set L:  

( ) ( ) ( )∑ =−= 2
1 ||)( i iyiy LLinfoLLPLinfoLGI   

with ( ) ( ) ( )∑ =−== 2
1 |ln|)( k kk LPLPLinfoL ωωφ & ∈ [0, ln(2)]  

Again, maximizing IG is the same as minimizing the average Shannon entropy (the 
average disorder) of the descending nodes. In ID3 and C4.5 log2 is used instead of ln 
but this is inessential. Also many other definitions of entropy were proposed as alter-
natives to the classical Shannon definition; their benefits remain unclear. 

A fundamental aspect of these impurity measures is that they all are defined in 
terms of the probability mass functions of the class assignments ( )LP k |ω  and node 
prevalences ( )LLP i | . The algorithms use the corresponding empirical estimates. 

The present paper introduces a completely different “impurity” measure. One that 
does not directly depend on the class distribution of a node, ( )LP k |ω , and the preva-
lences ( )LLP i | , but instead it solely depends on the errors produced by the decision rule: 

( ) ( )iii xyxe −= ω , 

with convenient numerical coding of ( )ixω  and ( )ixy . 

We then apply as “impurity” measure to be minimized at each node the Shannon 
entropy of the errors ei. This Minimum Entropy-of-Error (MEE) principle has in  
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recent years been used with success in many different areas (regression, blind source 
separation, clustering, etc.); it has also been applied with success in neural network 
training for data classification (see e.g. [10]). 

The present paper describes in section 2 how MEE decision trees can be imple-
mented and how they perform in several real-world datasets in section 3. We also 
present a comparison of MEE and IG behaviors in section 4 and discuss the pruning 
issue in section 5. Finally we draw some conclusions and present future perspectives 
in section 6. 

2   The MEE Approach 

In accordance with [9] we consider ℜ∈ijx  (i.e. we do not consider categorical pre-
dictors), and at each node we assign a code t ∈{-1, 1} to the each candidate class ωj. 
We thus have: jiji xtxt ωωωω =−=== )(,1;)(,1  (t meaning t(ω(xi)). Likewise 
for y(xi).  

The support of the error random variable E, associated to the errors 
( ) ( ))()( iii xytxte −= ω  is therefore {-2, 0, 2}, with: 0 corresponding to a correct 

decision; 2 to a misclassification when xi class is the candidate class and the splitting 
rule produces the complement; and -2 the other way around. 

The splitting criterion is based on the Shannon entropy of E: 

[ ] [ ])3ln(,0lnlnln)|( 110011 ∈++−= −− PPPPPPLEH y , 

where P-1 = Py(E = -2), P1 = Py(E = 2) and P0 = Py(E = 0)=1 - P-1 - P1. Note that con-
trary to what happened with GI, IG (and other divulged impurity measures) there is 
here no room for left and right node impurities and subsequent average. One single 
function does it all. 

Ideally, in the case of a perfect split, the error probability mass function is a Dirac 
function; i.e., the “errors” are concentrated at zero. Minimizing Hy corresponds to 
constraining the probability mass function of the errors to be as narrow as possible 
and usually around zero. 

The main algorithmic operations for growing a MEE tree are simple enough and 
similar to what is done with other impurity measures: 

1. At each tree node we are given an n×f feature matrix X and an n×m class ma-
trix T (filled with -1, 1).  

2. The error probabilities are estimated using:  

2201,121,12 1;/)1(;/ −−−− −−=−== PPPnnpPnnpP  

with ',ttn  meaning the number of cases t classified as t’ and nnp
j

/ω=  the preva-
lence of the candidate class ωj. 

3. A univariate split y is searched for in the f×m space minimizing Hy. 
4. If a stopping criterion is not satisfied the corresponding left and right node 

sets are generated and steps 1 through 3 are iterated. 

Figure 1 illustrates two entropy-of–error curves relative to the Breast Tissue dataset 
presented later. In Figure 1a there is a clear class separation: the entropy curve is of 
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the “convex” type and a global minimum corresponding to the interesting split is 
found. In Figure 1b the curve is of the “concave” type and the global entropy mini-
mum is useless. As a matter of fact a reasonable split point for this last case would be 
located near the entropy maximum instead of the minimum. When we say “reason-
able” (and later on, optimal) we mean from the probability-of-error point of view. 

This phenomenon of the optimal working point for a Stoller split being located 
near the maximum of the entropy-of-error when there is a large class overlap, had 
already been studied in detail in [9]. This work also derives for a few class distribu-
tion settings the “turning point” when an entropy minimum turns into a maximum as 
the classes glide and overlap into each other. 

In our algorithm we stick to the entropy minimum. This means that we do not con-
sider the possibility of a “reasonable” split when there is considerable class overlap 
reflected by a “concave”-type entropy curve. This has an impact on the pruning issue 
as discussed in section 5. For that purpose our algorithm classifies every entropy 
curve as being of the “concave” or “convex”-type using a very crude rule: set a 100-
point grid on the whole feature range and divide it into five equally sized intervals; 
compare the average of the three central intervals, mc, with the average of the end 
intervals, me; if mc > me than the curve is classified as “concave”, otherwise is classi-
fied as “convex”. We tried other modifications of this basic scheme but didn’t find 
any clear improvement. 
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Fig. 1. Entropy-of-error curves for two splits of the Breast-Tissue dataset (splitting the balls 
from the crosses): a) feature x9 with class 6; b) feature x2 with class 2 

When there is no valid split for any descendent node of a node L (all entropy 
curves are concave or the number of cases for any candidate class is very small), the 
node is considered a leaf. 

In a large number of experiments performed with the MEE algorithm we found 
that one often found better splits (with lower H) when attempting to partition merged 
classes from the remaining ones. Such “multiclass” splits could even provide good 
solutions in cases where it was difficult or even impossible to obtain “convex” en-
tropy curves. Figure 2 illustrates an example of a tree with multiclass splits. When 
evaluating the tree, cases falling into multiclass nodes are assigned to the class with 
the larger number of cases. The multiclass feature, considering combinations of 
classes up to c/2, is included in the MEE algorithm. 
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Fig. 2. Tree structure for the Ecoli4 dataset (see below) showing 2-class combinations 

3   Application to Real-World Datasets 

The MEE algorithm was applied to the datasets presented in Table 1 and its results 
confronted with those obtained with the CART algorithm implemented by Statistica 
(StatSoft, Inc.) and the C4.5 implemented by Weka (open source software). 

Table 1. Datasets (main characteristics) 

 Breast (a) Breast4 
(a) 

Olive 
(b) 

Ecoli 
(c) 

Ecoli4 
(c) 

ImSeg 
(c) 

Glass 
(c) 

No. cases 106 106 572 327 327 2310 214 
No. features 9 9 8 5 5 18 9 
No. classes 6 4 9 5 4 7 6 

(a) “Breast Tissue” dataset described in [6]. Breast4 is Breast reduced to 4 classes: merging 
{fad,mas,gla}. 

(b) “Olive Oils” dataset described in [4]. 
(c) “E-coli”, “Image Segmentation” and “Glass” datasets described in [1]. We removed 

classes omL, imL and imS from E-coli because they have a low number of cases (resp., 5, 
2, 2). Ecoli4 is Ecoli reduced to 4 classes: merging {im, imU}. 

All algorithms used unit misclassification costs (i.e., tree costs are misclassification 
rates). CART and C4.5 used, as is common practice, the so-called midpoint splits: 
candidate split points lie midway of feature points. In our algorithm we kept the origi-
nal feature values as split candidate points. 

CART was applied with the Gini criterion an cost-complexity pruning [2]. Weka 
C4.5 applied a postpruning scheme. The MEE algorithm was applied without pruning 
(justification below). 

We applied cross-validation procedures to all datasets, namely leave-one-out with 
C4.5 and MEE and 25-fold cross-validation to CART (the leave-one-out method 
wasn’t available for CART). Confusion matrices and estimates of the probability of 
error were computed as well as statistics regarding the tree size (number of nodes). 

Table 2 shows the mean error rate and standard deviation (between brackets) for 
the cross-validation experiments. For the Breast and Ecoli datasets the errors for some 
classes were always quite high (also found with other classification methods). This 
led us to merge the poorly classified classes setting up the Breast4 and Ecoli4 datasets 
(see Table 1). 
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Table 2. Comparative table of results with mean (std) in cross-validation experiments 

 Breast Breast4 Olive Ecoli Ecoli4 Imseg Glass 

CART 
0.3679 
(0.047) 

0.1698 
(0.036) 

0.0962 
(0.012) 

0.2049 
(0.022) 

0.1040 
(0.017) 

0.0675 
(0.005) 

0.3738 
(0.033) 

C4.5 0.3396 
(0.046) 

0.1226 
(0.032) 

0.0979 
(0.012) 

0.1743 
(0.021) 

0.1498 
(0.020) 

0.0290 
(0.003) 

0.3224 
(0.032) 

MEE 
0.3679 
(0.047) 

0.0943 
(0.028) 

0.1031 
(0.013) 

0.2110 
(0.023) 

0.1070 
(0.017) 

0.1182 
(0.012) 

0.2664 
(0.030) 

 
The three methods were compared using multiple comparison tests based either on 

the Oneway Anova or the Kruskal-Wallis test according to the p-value of a variance 
homogeneity test (p < 0.05 selects Kruskal-Wallis, otherwise selects Oneway Anova). 
Multiple comparison was performed at 5% significance level. In Table 2 the signifi-
cantly best results are printed bold and the significantly worst results are underlined. 

4   MEE versus Information Gain 

In order to compare both entropy-based criteria, MEE and IG, we generated two-class 
datasets with an equal number of points, n, represented by 2 features (x1, x2) with  
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Fig. 3.  Comparing IG (top figures) and MEE (bottom figures) in the separation of balls from 
crosses. IG prefers feature x1 with IGmax=0.1639, whereas for x2 IGmax=0.1325. MEE prefers 
feature x2 with MEE=0.4609, whereas no valid minimum is found for x1. 
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randomly and uniformly distributed values in [0,1[. One of the features was then se-
lected according to MEE and to IG decision criteria. 

For n = 10 and several batches of 1000 repetitions of the experiment we found that 
on average only 1% of the experiments where MEE found a solution that was differ-
ent from the IG solution. Moreover, we found that all differences between MEE and 
IG were of the type illustrated in Figure 3. The error probability mass functions for 
Figure 3a (IG selects x1) and Figure 3d (MEE selects x2) are shown in Figure 4. From 
these figures one concludes that whereas MEE preferred a more “balanced” solution, 
resembling a Dirac function at zero, IG emphasized the good classification of only 
one of the two classes, even at the cost of increased errors of the other class.  
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Fig. 4. Probability mass functions of the errors corresponding to: a) Figure 3a (IG selects x1); b) 
Figure 3d (MEE selects x2) 

5   The Pruning Issue 

Tree pruning is a means of obtaining simpler trees, i.e., simpler models, therefore 
with better generalization capabilities. CART, C4.5 and other tree design methods 
employ pruning techniques whenever some evidence of overfitting is found. The 
MEE method has an important characteristic: it doesn’t attempt to find a split when-
ever the class distributions show a considerable degree of overlap. The quantifica-
tion on theoretical grounds of what “considerable” means isn’t easy. Taking into 
account the results in [9] one may guess that whenever the distance of the class 
means is below one pooled standard deviation the entropy-of-error curve will be 
“concave” and no valid split under the MEE philosophy is found. We believe that 
this characteristic is one of the reasons why the MEE algorithm always produced 
smaller trees, on average, than those produced by C4.5 (no tree size statistics were 
available for CART). 

In our experiments MEE trees also showed a tendency to generalize better than 
those produced by other methods, as measured by the difference between resubstitu-
tion estimates of the error rate and the cross-validation estimates with significantly 
lower smmR CVR /−= , where mR is the mean resubstitution error and mCV the 
mean cross-validation error. 
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Fig. 5. Mean (solid) and mean±std (dashed) of the training set error (black) and test set error 
(grey) in 50 experiments on trees designed with 80% of the cases (randomly drawn) and tested 
in the remaining cases 

 
We have also performed a large number of experiments with the MEE algorithm 

designing the tree with 80% of randomly chosen cases and testing in the remaining 
20% cases, and plotted the mean and mean±standard deviation of the training and 
test set error estimates along the tree level for 50 repetitions of each tree design. 
The results of Figure 5 clearly indicate the absence of overfitting. The same  
conclusion could be drawn in all experiments (over 20 for each dataset) we have 
carried out. 

6   Conclusions 

The basic rationale of the MEE approach is that it searches for splits concentrating the 
error distribution at zero. For the classic approaches what the split is doing in terms of 
the error distribution is unclear. 

From the large number of experiments we carried out we conclude that possible 
benefits of the MEE trees are the no need of applying a pruning operation and the 
obtaining of more interesting splits corresponding to errors distributed in a more bal-
anced way as exemplified in section 4. This last aspect could be of interest for some 
datasets. The results obtained with MEE trees applied to real-world datasets, de-
scribed in section 3, look quite encouraging especially taking into account that they 
were obtained with the first version of the algorithm and that there is still much space 
for improvements.  

Besides of introducing obvious improvements in the algorithm (e.g. using mid-
point splits) we also intend to study in more detail the following issues: the turning 
point from “convex” to “concave” behavior of the empirical error distribution; the 
stopping conditions of the algorithm; Generalization issues such as the evolution of 
training and test errors with the number of cases. We also intend to study in a  
comparative way the performance of MEE trees in a larger number of real-world 
datasets. 
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