
Neural Networks 21 (2008) 1302–1310
Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Data classification with multilayer perceptrons using a generalized error function
Luís M. Silva a,∗, J. Marques de Sá a,b, Luís A. Alexandre c,d
a INEB-Instituto de Engenharia Biomédica, Porto, Portugal
b Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
c Dep. de Informática, Universidade da Beira Interior, Covilhã, Portugal
d IT, Networks and Multimedia Group, Covilhã, Portugal

a r t i c l e i n f o

Article history:
Received 9 November 2007
Received in revised form
31 March 2008
Accepted 28 April 2008

Keywords:
Multilayer perceptrons
Data classification
Error functions

a b s t r a c t

The learning process of a multilayer perceptron requires the optimization of an error function E(y, t)
comparing the predicted output, y, and the observed target, t. We review some usual error functions,
analyze their mathematical properties for data classification purposes, and introduce a new one, EExp,
inspired by the Z-EDM algorithm that we have recently proposed. An important property of EExp is its
ability to emulate the behavior of other error functions by the sole adjustment of a real-valued parameter.
In other words, EExp is a sort of generalized error function embodying complementary features of other
functions. The experimental results show that the flexibility of the new, generalized, error function allows
one to obtain the best results achievable with the other functions with a performance improvement in
some cases.

© 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Multi-layer perceptrons (MLP) are a popular form of feedfor-
ward artificial neural networks with many successful applications
in data classification. The supervised learning (training) process of
an MLP with input data x and target t, requires the use of an objec-
tive function (or error/cost/loss function) E(y, t) in order to assess
the deviation of the predicted output values, y = MLP(x;w) from
the observed data values t and use that assessment for the con-
vergence towards an optimal set of weights w∗. There are many
MLP training algorithms using the ∂E

∂w
gradient information either

directly or indirectly. In the present paper we concentrate on us-
ing the well-known backpropagation (BP) algorithm without loss
of generalization of the main conclusions of the paper.
In what concerns the error function E(y, t), the well-known

mean square error (MSE) function is by far the most commonly
used, but as we will discuss later, it is not the most appropriate
for data classification problems. There are other alternatives,
such as the cross entropy (CE) error function and other entropy-
based functions, which have been specifically applied by us to
data classification problems (Santos, Alexandre, & Marques de
Sá, 2004; Silva, Marques de Sá, & Alexandre, 2005). We have

∗ Corresponding address: INEB - Instituto de Engenharia Biomedica, Campus da
FEUPRua Dr. Roberto Frias, s/n 4200-465 Porto, Portugal. Tel.: +351 22 508 16 23;
fax: +351 22 508 16 24.
E-mail addresses: lmsilva@fe.up.pt (L.M. Silva), jmsa@fe.up.pt

(J. Marques de Sá), lfbaa@di.ubi.pt (L.A. Alexandre).

0893-6080/$ – see front matter© 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.neunet.2008.04.004
also proposed a new error function inspired on entropic criteria:
the error density at the origin (Z-EDM) (Silva, Alexandre, &
Marques de Sá, 2005, 2006). In this paper, we review these
error functions, analyze their mathematical properties for data
classification purposes and clarify aspects that are commonly
omitted or have been misinterpreted in the literature. We also
propose a new error function, EExp, inspired by the Z-EDM, which
is capable of emulating the behavior of other error functions by the
adjustment of a single real-valued parameter. Experimental results
show that the flexibility of this new, generalized, exponential error
function, EExp, allows one to achieve the best results achievable
with the other functions, capitalizing on their complementary
properties, with a performance improvement in some situations.
The paper is organized as follows: sections two to four present

some error functions and study their behaviors in terms of the
corresponding gradient; section five deals with monotonic error
functions and presents the new error function; experimental
results are reported in section six and finally the paper ends with
some concluding remarks.

2. Usual error functions

We consider the usual classification problem where a pattern
x ∈ Rd is to be assigned to one of C classes, (ω1, . . . , ωC ), by an
MLPwith one hidden layer andweight vectorw. TheMLP is trained
using a set of training pairs (xi, ti), i = 1, . . . ,N , where each ti =
(t1,i, . . . , tC,i) is a realization of a (target) variable t = (t1, . . . , tC )
that describes the class towhich xi belongs in an 1-out-of-C coding,
with tk ∈ {0, 1} or tk ∈ {−1, 1} for k = 1, . . . , C . Hence, the MLP

http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
mailto:lmsilva@fe.up.pt
mailto:jmsa@fe.up.pt
mailto:lfbaa@di.ubi.pt
http://dx.doi.org/10.1016/j.neunet.2008.04.004


L.M. Silva et al. / Neural Networks 21 (2008) 1302–1310 1303
has an output layer described by a vector y = (y1, . . . , yC ) that
produces for each xi its corresponding output yi = (y1,i, . . . , yC,i).
We assume this setting throughout the rest of the paper.

2.1. Mean square error

The MSE function is expressed as

EMSE =
1
N

N∑
i=1

‖ti − yi‖
2. (1)

Originally derived for regression problems, the MSE function can
be obtained by the maximum likelihood (ML) principle assuming
the independence and Gaussianity of the target data (see Bishop
(1995) for a detailed derivation of EMSE).
Note, however, that the Gaussianity assumption of the target

data in classification is not valid, due to its discrete nature
(representing discrete class labels). Nevertheless, it can be shown
(see below) that when using an 1-out-of-C coding scheme for the
targets, the MSE trained outputs of the network approximate the
posterior probabilities of the class membership, yk = P̂(ωk|x).

2.2. Cross-entropy

The CE cost function can also be derived from the maximum
likelihood principle. Each component yk, k = 1, . . . , C of the
output vector is interpreted as an estimate of the posterior
probability that input pattern x belongs to class ωk, yk = P̂(ωk|x)
associated with a ‘‘true’’ distribution p = (p1, . . . , pC ) where
pk = P(ωk|x), k = 1, . . . , C .
Assuming that the classes are mutually exclusive, the true,

p(t|x), and neural network, pw(t|x), probabilistic models for t can
be described by the multinomial distributions:

p(t|x) = pt11 p
t2
2 . . . p

tC
C (2)

pw(t|x) = y
t1
1 y
t2
2 . . . y

tC
C . (3)

We would like the model in (3) to approximate the true
distribution (2). For that purpose we may apply the ML principle,
or, equivalently, attempt to minimize the following Kulback-
Leibler divergence which measures howwell (3) approximates (2)
N∑
i=1

log
(
p(ti|xi)
pw(ti|xi)

)
=

N∑
i=1

log

(
pt1,i1,i . . . p

tC,i
C,i

yt1,i1,i . . . y
tC,i
C,i

)

= −

N∑
i=1

C∑
k=1

tk,i log
(
yk,i
)
+

N∑
i=1

C∑
k=1

tk,i log
(
pk,i
)
. (4)

Note that, as the values pk,i = P(ωk|xi) are unknown, (4) cannot be
used as an error function. However, the pk,i do not depend on the
parameters w of the MLP, which means that the minimization of
(4) is equivalent to the minimization of

ECE = −
N∑
i=1

C∑
k=1

tk,i log
(
yk,i
)
. (5)

Expression (5) is known in the literature as the cross-entropy
error function. For the two-class case we only need one output
such that y = P̂(ω1|x) (1 − y = P̂(ω2|x)) and the Bernoulli
distribution is used for p(t|x) and pw(t|x). The designation cross-
entropy associated to expression (5) may cause some confusion. In
fact, the cross-entropy between two distributions p and q, which
can be used as a measure of their discrepancy is defined as

−

∑
x
p(x) log q(x). (6)
Its minimum value is obtained when p = q. Expression (5) is
similar to (6) but one must note that the tk,i, or more precisely ti,
are not probabilities (are in fact random vectors with multinomial
distribution). The role of p(x) in (6) is played by the unknown
p(t|x) as defined above. Since it is not dependent on the network’s
parameters, it is of no consequence for the minimization process,
and thus, can be disregarded. Moreover, expression (6) is the
distribution version of the cross-entropy, while (5) is the empirical
one. There are some authors that interpret the tk,i as P(ωk|xi). This
is incorrect since as tk,i ∈ {0, 1} this would mean that a pattern
would always be correctly classified. In fact, the tk,i in (5) are just
acting as switches. When a particular tk,i = 1 (whichmeans that xi
belongs to class ωk), then yk,i must be maximum and thus we just
minimize− log(yk,i) (all the other tj,i = 0, j 6= k).

2.3. Mean square error or cross entropy

From the above discussion it seems natural to choose the Kull-
back–Leibler or more precisely the cross-entropy error function
to train neural network classifiers, because when interpreting the
outputs as probabilities this is the optimal solution. In fact, the CE
error function takes into account the binary characteristic of the
targets. Several authors have studied the conditions that the out-
puts of a neural network must satisfy in order to use them as esti-
mators of the posterior probabilities. In Gish (1990) and Richard
and Lippmann (1991) it is shown that for an 1-out-of-C coding
scheme, with large N and a number of samples in each class that
reflects the prior probabilities, networks trained withMSE provide
outputs that are approximations of posterior probabilities. These
authors also derived the CE cost function from themaximum likeli-
hood ormaximummutual information principles and have arrived
to the same conclusions. There are other reasons to choose CE.
Several authors reported marked reductions on convergence rates
and density of local minima (Matsuoka & Yi, 1991; Solla, Levin, &
Fleisher, 1988) due to the characteristic steepness of the CE func-
tion. In fact, it is easy to see that slight changes on the output of
the network have more effect when using CE than MSE, because
cancelations in the error gradients generate high error gradients
for outputs very distant from their targets. As a function of the ab-
solute errors, MSE tends to produce large relative errors for small
output values. As a function of the relative errors, CE is expected
to estimate more accurately small probabilities (Baum & Wilczek,
1987; Bishop, 1995; Gish, 1990; Hinton, 1989; Solla et al., 1988).

3. Zero-error density maximization

Let us now define the error (deviation) variable e = t − y.
One can easily see that when using the 1-out-of-C output coding,
the errors regarding each class lie in disjoint hypercubes with
the origin as their unique common point. The three-class case is
represented in Fig. 1 assuming the following 1-out-of-C coding:
t(ω1) = (1,−1,−1), t(ω2) = (−1, 1,−1) and t(ω3) =
(−1,−1, 1). Therefore, e = [−2, 2]3 with the errors in each
class varying in a distinct hypercube. For instance, the ω1 error
corresponds to the hypercube t(ω1) − y = (1,−1,−1) −
(y1, y2, y3) ∈ [0, 2] × [−2, 0] × [−2, 0], i.e., the rightmost
shadowed hypercube in Fig. 1.
We would optimally like that during the training process of an

MLP the output y gets as close as possible to the target t and thus
the errors (deviations) convergent to the origin. For a given data set
{(xi, ti)|i = 1, . . . ,N}, we would then get in this optimal scenario
ei = ti − yi = 0 ∀i, which amounts to a δ-Dirac distribution of
the error variable centered at the origin. As a matter of fact, when
using entropic error functions (Santos et al., 2004; Silva, Marques
de Sá et al., 2005) we observe the tendency as training evolves of
reaching higher peak distribution of the errors at the origin (the δ-



1304 L.M. Silva et al. / Neural Networks 21 (2008) 1302–1310
Fig. 1. Support space (shadowed cubes) for the error distribution in a three-class
(C = 3) problem, e = (e1, e2, e3).

Dirac distribution is the one with minimum entropy). This idea led
us to adjust the weight vector w by maximizing the error density
at the origin

w∗ = argmax
w

f (0;w), (7)

where w∗ is the sought for optimal weight vector for the MLP and
f is the error density (parameterized by w). In practice, the error
distribution is not known and making parametric assumptions
would be very restrictive. Thus, we rely on nonparametric density
estimation by using the well-known kernel density estimation
procedure of Parzen windows (Silverman, 1986). Given a set of
errors e1, . . . , eN , the estimated density at e = 0 is

f̂ (0) =
1
NhC

N∑
i=1

K
(
0− ei
h

)
, (8)

where K is a multidimensional kernel function, h is the smoothing
parameter (kernel bandwidth) and C the dimension of e (number
of classes). The multivariate Gaussian kernel with zero mean and
unit covariance (Silverman, 1986) is chosen forK . This is because of
its continuity and differentiability, which are crucial properties for
the BP algorithm. Also, as proven in Silva et al. (2006), the Gaussian
kernel satisfies the conditions needed to ensuring that the use of
kernel density estimation does not affect the optimal solution. The
final expression to be maximized becomes:

f̂ (0) =
1
NhC

N∑
i=1

1
(2π)C/2

exp
(
−

e2i
2h2

)
. (9)

This procedure, named Zero-Error Density Maximization (Z-EDM),
inspired by our previous work on using entropic error measures,
can be easily plugged in the usual backpropagation scheme as
described in Silva, Alexandre et al. (2005) and Silva et al. (2006).
Note that expression (9) depends on the kernel bandwidth h. This
parameter controls the smoothness of the density estimate and
consequently the smoothness of the error function. In order to
better understand the influence of h in the training process several
data sets were used for training 100 times (full data set) using
several different values of h. Fig. 2 shows the mean training curves
(the standard deviations are small) for two data sets: Olive and
Ctg16. We found that a value of h smaller than 1 does not work,
independently of the data set, number of classes and/or the number
of training examples. When h is increased, the curve is basically
shifted forward and a flat region appears in the earlier epochs.
This general behavior was found to be the same for all tested data
sets, regardless of the number of classes and number of examples
available for training.
(a) Olive: 9 classes, 8 features and 572 patterns.

(b) Ctg16: 10 classes, 16 features and 2126 patterns.

Fig. 2. Mean training curves with Z-EDM for different values of h in two data sets.

Let us now consider, for simplicity’s sake, an MLP with one
output for a two-class problem. The gradient of (9) with respect
to a particular parameterw (weight of the MLP) is derived as

∂ f̂ (0)
∂w
= −

1
Nh

N∑
i=1

ei
h2
√
2π

[
exp

(
−
e2i
2h2

)]
∂ei
∂w

. (10)

In this expression we may consider the function

ϕ(e) =
e

Nh3
√
2π
exp

(
−
e2

2h2

)
e ∈ [−2, 2] (11)

as a weight function of the gradient ‘‘particle’’ ∂e
∂w
. Fig. 3 shows

ϕ(e) for some values of N and h. We can see that gradient particles
corresponding to larger absolute values of e get larger weights,
whereas gradient particles corresponding to smaller values of e
will have a small contribution to the update value (10) of the
parameter w. Of course, if we increase N or h, then ϕ(e)→ 0 and
this is the reason for the initial flat platforms encountered in the
first epochs of the training error. If we also look to the order of
magnitude of the values given by (11), we can conclude that this
behavior is due to the initial convergence ‘‘effort’’ being doneby the
adaptive learning rate procedure1while attempting to compensate
those minuscule orders of magnitude.
In fact, we can make some modifications to our error function

in order to avoid this problem. Note that the maximization of (9) is
equivalent to the maximization of

EZEDM =
N∑
i=1

h2 exp
(
−

e2i
2h2

)
(12)

1We use an adaptive learning rate procedure as described in Silva, Alexandre
et al. (2005).



L.M. Silva et al. / Neural Networks 21 (2008) 1302–1310 1305
Fig. 3. ϕ(e) as in (11) for different values of N and h. For better visualization we restricted e to the interval [−1, 1].
in the sense that the same solutions are encountered, because
1

NhC (2π)C/2
and h2 are just positive scaling factors (we use the factor

h2 to allow a simplification of the gradient).

4. Gradient analysis

Let us now compare the gradients of MSE, CE and Z-EDM. For
simplicitywe analyze the one output case (two-class problem).We
have

∂EMSE
∂w
= −

N∑
i=1

ei
∂yi
∂w

, (13)

∂ECE
∂w
= −

N∑
i=1

ei
yi(1− yi)

∂yi
∂w

, (14)

∂EZEDM
∂w

=

N∑
i=1

exp
(
−
e2i
2h2

)
ei
∂yi
∂w

. (15)

Note that we now write the gradients in terms of the gradient
particle ∂y

∂w
. Consider the following weight functions

ϕMSE(e) = e, (16)

ϕCE(y) =
e

y(1− y)
=

t − y
y(1− y)

t ∈ {0, 1}, (17)

ϕZEDM(e) = exp
(
−
e2

2h2

)
e. (18)

Fig. 4 shows these functions for some values of their corresponding
parameters. From this figurewe can see the linear behavior ofϕMSE:
the gradient particles ∂yi

∂w
have a weight equal to the correspond-

ing error. The ϕCE function also confers larger weights to gradient
particles corresponding to larger errors. Note that, when t = 1
(t = 0) larger errors correspond to y closest to zero (one). How-
ever, the weight attribution is not linear but hyperbolic. For ϕZ-EDM
we can distinguish three basic behaviors. Whenwe let h→ 0 then
ϕZ-EDM → 0. If the parameters of the network are initialized in
[−b, b] with b close to zero, then in the early phase of the train-
ing process, all the errors are around the values −1 and 1. Thus,
with h too small, the algorithmwill have difficulties to converge (or
even will not be able to start at all!) because ϕZ-EDM gives weights
close to zero. Formoderate h (h ≈ 2),ϕZ-EDM is a nonlinear function
(similar to a sigmoid) where, again, gradient particles correspond-
ing to larger errors get larger weights. Note, however, the contrast
with ϕCE: for larger errors ϕCE ‘‘accelerates’’ the weight value while
ϕZ-EDM ‘‘decelerates’’. Finally, when h is large, ϕZ-EDM behaves like
ϕMSE. In fact, it is easy to see that limh→+∞ ϕZ-EDM = ϕMSE.
5. Monotonic error functions

As discussed earlier, when a neural network is trained using
MSE or CE minimization, its outputs approximate the posterior
probabilities of class membership. Thus, in the presence of large
data sets, it tends to produce optimal solutions in the Bayes sense.
However, as argued in Hampshire and Waibel (1990) and Møller
(1993), minimization of the error function does not necessarily
imply misclassification minimization in practice (especially for
small data sets or in the presence of local minima). Sub-optimal
solutions may occur due to flat regions in weight space. This can
be seen with a simple example. Let us assume a two class problem
with one output per class. The squared error for a particular pattern
x from class ω1 can be written as (considering t(ω1) = (1, 0))

E(x) = (t1 − y1)2 + (t2 − y2)2 (19)

= (1− y1)2 + y22. (20)

The contours of E are shown in Fig. 5. Using the rule that x
belongs to class ω1 if y1(x) > y2(x) we can see that while x2
is correctly classified, x1 is misclassified. However, x1 has a lower
MSE than x2, which reinforces the idea that sub-optimal solutions
may occur. The same happenswith CE. Thus,minimization of these
error functions does not imply misclassification minimization. For
this reason, they were designated non-monotonic in Hampshire
and Waibel (1990). In the same work, a monotonic error function
is proposed: classification figures of merit (CFMmono). This error
function focuses mostly on the reduction of misclassification (this
is known as differential learning) and not on achieving an exact
convergence to the target values. However, training with CFMmono
was found to be much slower than with MSE or CE.

5.1. A simple monotonic error function

We can define a simple monotonic error function for a two-
class problem. We consider an MLP with one output per class y =
(y1, y2) and a class encoding defined by t = (t1, t2) = (1,−1)
and t = (t1, t2) = (−1, 1) for classes ω1 and ω2, respectively. By
the definition presented above, a monotonic error function should
have contours parallel to y1 = y2. This can be achieved with the
following error function:

ESMF =
1
2

N∑
i=1

[(y1i − y2i)− (t1i − t2i)]2. (21)

This is a simple transformation (rotation and shifting) of the
parabolic cylinder z = x2. Note that as ESMF ≥ 0 it has a global
minimumof E = 0when the outputs equal the targets. Fig. 6 shows
the error surface and corresponding contour plot for patterns from
ω1 and ω2.



1306 L.M. Silva et al. / Neural Networks 21 (2008) 1302–1310
(a) ϕMSE(e). (b) ϕCE(y)with t = 1. (c) ϕCE(y)with t = 0.

(d) ϕZ-EDM(e)with h = 0.3. (e) ϕZ-EDM(e)with h = 2. (f) ϕZ−EDM(e)with h = 10.

Fig. 4. Gradient-weighting functions for MSE, CE and Z-EDM.
Fig. 5. Contours of MSE for a ω1 pattern.

The gradient can be calculated as

(
∂ESMF
∂y1i

,
∂ESMF
∂y2i

)
= ((y1i − y2i)− (t1i − t2i),

−[(y1i − y2i)− (t1i − t2i)]) , (22)

where we note that ∂E
∂y1i
= −

∂E
∂y2i
.

The flexibility of E could be enhanced using the following
version of (21):

ESMF =
1
2

N∑
i=1

[(y1i − y2i)− (t1i − t2i)]γ . (23)

The parameter γ is an even integer positive number ensuring that
ESMF is always non-negative. The major effect of increasing γ is
exemplified in Fig. 7. The steepness is increased in regions far from
the desired target, whereas in regions near the desired target the
function is flattened.

5.2. Exponential error function

Møller (1993) proposed an error functionwith a soft-monotonicity
property, controlled by a positive parameter. It is defined as

EMoller =
1
2

N∑
i=1

C∑
k=1

exp
(
−α(yk,i − tk,i + β)(tk,i + β − yk,i)

)
(24)

and was designated exponential error function. The parameters β
and α are positive; β is the width of a region, R, of acceptable
error around the desired target and α controls the steepness of
the error function outside that region (R̄). If we increase α then
EMoller becomes more steep in R̄, forcing the outputs towards the
boundary ofR. By decreasingβ , the outputs are pulled towards the
desired targets (see Møller (1993) for a detailed discussion). When
α→+∞, EMoller becomes monotonic, while varying α the degree
of monotonicity is controled (soft-monotonicity).

5.3. Another exponential error function

The analysis of MSE, CE and Z-EDM gradient behaviors
(presented in Section 4), suggested that it might be possible to



L.M. Silva et al. / Neural Networks 21 (2008) 1302–1310 1307
Fig. 6. Left: Error surface and contour plots of ESMF in the presence of a pattern from ω1; Right: The same but for a pattern from ω2 .
Fig. 7. Effect of increasing the power of a polynomial function xγ .

create a parameterized error function capable of ‘‘emulating’’ those
gradients. This error function (another exponential error function)
is a generalization of (12), that allows positive arguments in the
exponential function. It is expressed as

EExp =
N∑
i=1

τ exp
(
e2i /τ

)
=

N∑
i=1

τ exp

(
1
τ

C∑
k=1

e2k,i

)
, (25)

where τ is a real number. Clearly, EExp resembles EMoller for β = 0.
There is, however, a significant difference: the location of the sum
over k. In detail, in EMoller we sum the exponentials of the (squares
of) errors while in EExp we compute the exponential of the sum of
those quantities. This implies a fundamental difference in terms of
the gradients (for β = 0):

∂EExp
∂yk,i

= −2
∑
i

[
exp

(
1
τ

C∑
k=1

e2k,i

)]
ek,i (26)

∂EMoller
∂yk,i

= −

∑
i

α
[
exp

(
+αe2k,i

)]
ek,i. (27)

We see that with EExp, the backpropagated error through the
output yk uses information from all other outputs (present in
exp

(
1
τ

∑C
k=1 e

2
k,i

)
), while EMoller only uses the error associated to

that particular output (present in exp
(
+αe2k,i

)
). It is easy to see
Fig. 8. Plot of the gradient of EExp for one output and different positive values of τ .
For visualization purposes, e is restricted to the interval [−1, 1].

that if τ < 0, EExp recovers the (negative) Z-EDM error function.
Thus, we may also say that for τ → −∞, EExp behaves like MSE.
When τ > 0, EExp behaves like CE. This can be seen in Fig. 8 where
the gradient of EExp (for one output) is plotted for different positive
values of τ . From small to moderate values of τ , the function has a
marked hyperbolic shape, in the same sense as CE: smaller errors
get smaller weights with an ‘‘accelerated’’ increasing when the
errors get larger. The parameter τ is, as α in EMoller, controlling
the steepness of EExp. Also for τ → ∞, EExp behaves like MSE. In
summary, EExp has the appropriate flexibility to emulate the whole
range of Z-EDM - MSE - CE behaviors with a control of the degree of
monotonicity.

6. Experiments

To evaluate and compare the capabilities of the different error
functions presented, we conducted an experimental procedure
using several publicly available data sets (mainly from the UCI
repository (Blake & Merz, 1998)). The problems were chosen so as
to comprise a wide range of real world applications as well as to
include several complexities: different number of features, classes
and patterns. Table 1 summarizes themain characteristics of these
data sets.



1308 L.M. Silva et al. / Neural Networks 21 (2008) 1302–1310
Table 1
Data sets used in the experiments

Procedure 1 # patterns # features # classes Source Procedure 2 # patterns # features # classes Source

Ionosphere 351 34 2 UCI Pima 768 8 2 UCI
Liver 345 6 2 UCI Spambase 4601 57 2 UCI
Wdbc 569 30 2 UCI Vehicle 846 18 4 UCI
Wine 178 13 3 UCI Vowelc 990 10 11 UCI
New Thyroid 215 5 3 UCI Pb12 608 2 4 Jacobs et al. (1991)
Olive 572 8 9 Forina and

Armanino (1981)
Ctg16 2126 16 10 Marques de Sá

(2001)
Fig. 9. Choice of τ in EExp for New Thyroid.

6.1. Procedure 1

Data sets with a small number of patterns (less than 600) were
evaluatedwith this procedure. Each data setwas randomly divided
in training (50%) and test set (50%). The training set was used to
train the MLP during l epochs and the test set error was recorded
for each of the l epochs. The training and test sets interchange their
roles and the train and test procedure is again performed. This is
repeated 100 times, using different initial weights and randomized
training and test sets. The minimum mean test error over the 100
repetitions is then reported. The number of hidden units in theMLP
architecture is varied from 2 to 20. For a fair comparison, the initial
weights and train/test set partitions of the 100 repetitions were
equal for the different error functions.
Choosing the value of τ , α and γ
To use EExp, EMoller and ESMF one must set values for τ , α and

γ , respectively. In what concerns EExp and EMoller, the experiments
were repeated for several values of |τ | andα, ranging from0.1 to 10
(usually by steps of 0.5). Figures like Fig. 9were produced to help in
the choice of the best value. Some data sets ‘‘prefer’’ smaller values
of those parameters, while others ‘‘prefer’’ higher ones, with an
obvious and expected reversed behavior between EExp and EMoller.
However, there is no evident pattern for this behavior.
The EExp experiments were performed with positive and

negative values (denoted τ+ and τ−). Note that the EExp results
with τ− corresponds to applying the Z-EDM algorithm. We found
that, in general, the best choices for τ− were low values (usually
τ− = −10), with the exception of Wdbc, where τ− = −1.2.
This was also the best result (with 2 hidden units) among all
the error functions, a result that was already found and reported
in Silva et al. (2006). These findings show that the flexibility of
EExp provides a valuable option to the usual error functions. We
also used τ+ = 100 and τ− = −100 to verify whether EExp
behaves like MSE. These results are denoted Exp ↔ MSE(+) and
Exp↔ MSE(−), respectively. We also varied γ in ESMF. The values
used were {2, 4, 6}, but we found no evident advantage in higher
values than γ = 2.
Table 2 shows the results for selected numbers of hidden units

(denoted hid) in [2, 20] with the aim of better illustrating the
similarities and differences between the several error functions.
The results are reported in this way: ‘‘mean test error(std.
deviation)-epoch’’. We start by observing that the results of EExp
for τ+ = 100 and τ− = −100 are similar or equal to
the ones obtained with MSE, which means that EExp is indeed
emulating MSE. Also, by choosing an appropriate value of τ ∈
R and thus, controlling the steepness of the error function, EExp
can perform equally or even better than the CE error function.
EExp also compares favorably to EMoller. We point out the results
obtained in New Thyroid: EExp achieves the best result, improving
the solution at least 15% over the other methods (statistically
significantly better at 5% probability level). Here, we may also see
that the number of epochs used is approximately 3 times smaller
than the other error functions. We should also emphasize that
the EExp results exhibit similar or even lower standard deviations
than the other methods, which suggests a smaller dependency on
the train/test partitions. At the same time, this same aspect is an
indication that EExp is not very sensitive to the choice of optimal τ .
As a matter of fact, we noticed in all experiments that a change of
τ of roughly 50% had no influence in the results. For instance, for
the Ionosphere data set practically the same results were obtained
for τ ∈ [1.5, 3]. However, each data set can have its own best
value of τ . The function ESMF also performed well in the two-class
problems. It should, however, be extended to the multi-class case
to be better evaluated.

6.2. Procedure 2

For data sets with more than 600 cases, a different procedure
was applied. Now, the data set is divided in training (50%),
validation (25%) and test (25%) sets. For each data set, networks
with 2 to 20 hidden units are trained during 1000 epochs.
This is repeated 100 times with different initial weights and
train/validation/test partitions. At each time, the test set error at
the epoch ofminimummean validation error is reported. The same
partitions are kept through the different error functions. For this
procedure we excluded ESMF as well as EExp for τ+ = 100 and
τ− = −100.
Choosing the value of τ and α
The strategy of how to choose the best value for τ andαwas the

same as above. However, the choice is now ruled by the minimum
validation error.
Table 3 shows the results for this experimental procedure as

‘‘mean test error(std. deviation)-epoch of minimum validation
error’’. We start by observing that MSE performs badly in some
data sets: Pb12, Vowelc and Vehicle. This was found to be caused
by several non-convergent runs over the 100 repetitions. On the
contrary, the other error functions performed well, achieving the
generalization errors reported in the literature for these data
sets (see the papers cited in Blake and Merz (1998)). Again, EExp
is capable of achieving the best result among the other error
functions and even obtain slight improvements in some cases. For
example, in Pb12 for four hidden units or Vehicle with seventeen
hidden units, EExp has the lowest mean error.



L.M. Silva et al. / Neural Networks 21 (2008) 1302–1310 1309
Table 2
Results from the application of Procedure 1 to six data sets given in the form ‘‘%test error(standard deviation)-number of epochs’’

hid Ionosphere τ+ = 2, τ− = −10, α = 0.5, γ = 4 Wine τ+ = 5, τ− = −10, α = 0.5
2 7 10 2 3 6

MSE 12.60(0.90)-15 12.50(0.89)-11 12.63(0.98)-10 2.37(1.06)-17 2.13(1.00)-16 1.99(0.91)-14
CE 12.26(1.38)-89 12.23(1.28)-81 12.21(1.15)-57 2.64(1.25)-23 2.10(1.03)-20 2.02(0.95)-18
EExp 12.32(1.38)-63 12.31(1.21)-37 12.30(0.98)-24 2.38(1.11)-15 2.12(0.95)-13 1.96(0.89)-13
EMoller 12.33(1.34)-67 12.29(0.98)-28 12.35(1.04)-28 2.33(1.03)-20 2.12(0.92)-18 1.95(0.88)-18
Z-EDM 12.66(0.89)-17 12.53(0.91)-12 12.66(0.97)-12 2.46(1.01)-22 2.17(1.02)-17 2.01(0.91)-16
ESMF 12.56(1.03)-10 12.54(0.87)-10 12.54(0.89)-9 – – –
Exp↔ MSE(−) 12.59(0.89)-15 12.52(0.90)-11 12.61(0.94)-11 2.35(1.12)-17 2.11(0.98)-16 1.97(0.91)-15
Exp↔ MSE(+) 12.63(0.95)-15 12.50(0.90)-11 12.61(0.95)-13 2.35(1.01)-17 2.16(0.94)-15 1.97(0.91)-14

hid New Thyroid τ+ = 0.1, τ− = −10, α = 5 Liver τ+ = 10, τ− = −10, α = 0.1, γ = 2
2 4 8 17 18 19

MSE 4.69(1.63)-137 4.23(1.40)-126 4.17(1.16)-108 28.89(1.85)-81 28.86(1.89)-83 28.75(1.73)-75
CE 4.26(1.28)-109 4.07(1.06)-44 3.98(1.00)-39 29.37(1.93)-65 29.15(1.91)-66 29.26(1.88)-55
EExp 3.25(1.04)-48 3.21(0.78)-48 3.22(0.89)-47 28.99(1.84)-84 29.05(1.94)-68 28.76(1.87)-76
EMoller 3.97(1.04)-148 3.80(0.99)-120 3.81(0.98)-129 28.90(1.88)-93 28.94(1.98)-98 28.71(1.84)-90
Z-EDM 5.46(2.64)-200 4.45(2.04)-149 4.39(1.40)-136 29.01(2.09)-97 28.91(1.75)-91 28.87(1.80)-83
ESMF – – – 29.10(1.87)-60 28.87(1.80)-71 28.86(1.78)-76
Exp↔ MSE(−) 4.73(1.69)-200 4.22(1.38)-135 4.19(1.20)-129 28.81(1.86)-74 28.83(1.93)-89 28.74(1.69)-74
Exp↔ MSE(+) 4.54(1.55)-186 4.16(1.13)-117 4.13(1.09)-92 28.89(1.83)-77 28.78(1.83)-73 28.94(1.75)-88

hid Wdbc τ+ = 9, τ− = −1.2, α = 0.1, γ = 2 Olive τ+ = 5, τ− = −10, α = 0.5
2 3 4 2 3 6

MSE 2.57(0.55)-12 2.56(0.53)-13 2.59(0.53)-13 5.55(0.62)-111 5.41(0.62)-103 5.27(0.57)-108
CE 2.51(0.54)-14 2.58(0.53)-15 2.57(0.50)-14 5.50(0.67)-56 5.37(0.62)-65 5.29(0.65)-56
EExp 2.57(0.53)-11 2.58(0.51)-12 2.59(0.53)-12 5.39(0.62)-93 5.30(0.59)-104 5.28(0.60)-93
EMoller 2.56(0.53)-27 2.54(0.53)-29 2.56(0.54)-29 5.49(0.67)-113 5.46(0.67)-92 5.26(0.58)-94
Z-EDM 2.49(0.57)-17 2.53(0.58)-19 2.55(0.60)-19 5.61(0.63)-121 5.53(0.72)-96 5.38(0.62)-103
ESMF 2.62(0.56)-10 2.62(0.54)-11 2.64(0.61)-11 – – –
Exp↔ MSE(−) 2.56(0.54)-12 2.56(0.53)-13 2.59(0.55)-14 5.55(0.62)-111 5.41(0.62)-104 5.28(0.60)-113
Exp↔ MSE(+) 2.58(0.55)-12 2.56(0.53)-13 2.58(0.55)-13 5.55(0.58)-100 5.39(0.64)-90 5.28(0.58)-104
Table 3
Results from the application of Procedure 2 to six data sets given in the form ‘‘%test error(standard deviation)-number of epochs’’

hid Pima τ+ = 0.5, τ− = −10, α = 4 Pb12 τ+ = 9, τ− = −10, α = 0.1
2 3 6 2 4 8

MSE 24.48(3.17)-93 25.09(2.75)-61 25.36(2.83)-46 10.49(8.22)-999 11.66(12.07)-956 13.96(16.62)-990
CE 23.45(2.64)-31 23.61(2.41)-38 23.26(2.67)-34 7.74(1.89)-941 7.54(1.83)-380 7.19(1.70)-486
EExp 23.36(2.79)-26 23.23(2.79)-22 23.38(2.90)-23 8.02(2.24)-427 7.40(1.80)-642 7.10(1.78)-995
EMoller 23.42(2.78)-67 23.43(3.02)-110 23.30(2.80)-87 7.99(2.54)-937 7.50(1.82)-597 7.17(.189)-743
Z-EDM 23.35(2.74)-67 23.44(2.65)-27 23.22(2.68)-24 8.66(4.50)-974 7.72(1.97)-253 7.56(1.92)-704

hid Spambase τ+ = 5, τ− = −10, α = 0.1 Vowelc τ+ = 3, τ− = −10, α = 2
3 4 6 18 19 20

MSE 7.85(0.77)-942 7.88(0.75)-609 8.07(0.77)-586 35.27(5.41)-1000 35.54(4.95)-991 35.48(6.30)-1000
CE 6.86(0.58)-107 6.77(0.63)-103 6.65(0.64)-141 13.31(2.46)-340 13.00(2.34)-426 12.06(2.50)-372
EExp 6.86(0.64)-90 6.78(0.61)-129 6.78(0.64)-98 13.10(2.48)-475 12.65(2.61)-514 12.69(2.32)-519
EMoller 6.96(0.73)-306 6.79(0.61)-111 6.72(0.64)-104 13.10(2.48)-475 11.89(2.58)-965 11.53(2.15)-978
Z-EDM 7.04(0.72)-249 6.87(0.64)-105 6.80(0.64)-131 18.16(2.84)-876 17.90(2.81)-989 16.56(3.08)-907

hid Vehicle τ+ = 4, τ− = −10, α = 0.3 Ctg16 τ+ = 10, τ− = −10, α = 0.1
14 17 20 15 18 20

MSE 24.15(2.90)-1000 24.32(3.25)-999 24.65(3.11)-942 21.24(4.03)-990 20.52(2.73)-1000 21.09(2.24)-996
CE 18.57(2.23)-674 18.49(2.60)-743 18.07(2.38)-885 16.51(1.35)-307 16.10(1.47)-400 15.71(1.45)-427
EExp 18.57(2.44)-954 18.07(2.50)-962 18.29(2.64)-928 15.70(1.38)-982 15.67(1.35)-974 15.59(1.50)-915
EMoller 18.53(2.60)-868 18.53(2.46)-1000 18.22(2.57)-937 16.07(1.48)-998 15.65(1.56)-982 15.50(1.31)-967
Z-EDM 19.06(2.43)-988 18.62(2.71)-988 18.74(2.24)-901 16.33(1.41)-972 16.20(1.65)-988 16.42(1.36)-783
7. Conclusions

We have analyzed the mathematical properties of several error
functions with a focus on MLP data classification. This analysis led
us to propose two parameterized error functions for MLP training.
The first one, ESMF, is a monotonic error function applicable only
to two-class problems and was shown to perform equally well as
other functions. However, it should be extended to the general
multi-class problem for a better evaluation of its capability. The
second one, EExp, an exponential-type error function, constitutes
the main contribution of the present paper. This function is able
to emulate the behaviors of classic error functions and, as a matter
of fact, by single parameter adjustment it is able to implement an
infinite family of error functions, with different behavior of the
error gradient weighting. This flexible behavior can be valuable
in practical applications. The experimental tests described in the
paper provide abundant evidence that MLPs trained with EExp can
achieve the best results obtainable with classic error functions and
sometimes improve upon them. The EExp function can be plugged
in the usual BP algorithm without increasing the computational
complexity, revealing good perspectives for software applications.



1310 L.M. Silva et al. / Neural Networks 21 (2008) 1302–1310
Although EExp was used in data classification with MLPs trained
with the BP algorithm, there are no prior reasons precluding its
successful use with other training algorithms and/or other types of
neural networks in data classification or regression. Several issues
concerning theoretical questions (like learning rates, optimality,
etc) but also practical ones deserve future attention. Aβ parameter
could eventually be introduced in EExp as in EMoller and τ could
also be made adaptive by analyzing predefined data properties.
This would, in principle, not only extend the flexibility of the
training process itself but also relieve the user of the choice
of τ .

References

Baum, E. B., &Wilczek, F. (1987). Supervised learning of probability distributions by
neural networks. In D. Z. Anderson (Ed.), NIPS (pp. 52–61). American Institute
of Physics.

Bishop, C. (1995). Neural networks for pattern recognition. Oxford University Press.
Blake, C., &Merz, C. (1998). UCI repository ofmachine learning databases. University
of California, Irvine, Dept. of Information and Computer Sciences.

Forina, M., & Armanino, C. (1981). Eigenvector projection and simplified non-linear
mapping of fatty acid content of italian olive oils. Annali di Chimica (Rome), 50,
127–155.

Gish, H. (1990). A probabilistic approach to the understanding and training of neural
network classifiers. In Proceedings of the 1990 IEEE international conference on
acoustics, speech, and signal processing .
Hampshire, J., & Waibel, A. (1990). A novel objective function for improved
phoneme recognition using time-delay neural networks. IEEE Transactions on
Neural Networks, 1(2), 216–228.

Hinton, G. E. (1989). Connectionist learning procedures. Artificial Intelligence,
40(1–3), 185–234.

Jacobs, R., Jordan, M., Nowlan, S., & Hinton, G. (1991). Adaptive mixtures of local
experts. Neural Computation, 3, 79–87.

Møller, M. (1993). Efficient training of feed-forward neural networks. Ph.D. thesis.
Computer Science Department - Aarhus University.

Marques de Sá, J. (2001). Pattern recognition: Concepts, methods and applications.
Springer Verlag.

Matsuoka, K., & Yi, J. (1991). Backpropagation based on the logarithmic error
function and elimination of local minima. In Proceedings of the 1990 IEEE
international joint conference on neural networks.

Richard, M., & Lippmann, R. (1991). Neural network classifiers estimate bayesian a
posteriori probabilities. Neural Computation, 3, 461–483.

Santos, J., Alexandre, L., & Marques de Sá, J. (2004). The error entropy minimization
algorithm for neural network classification. In int. conf. on recent advances in soft
computing .

Silva, L., Alexandre, L., & Marques de Sá, J. (2005). Neural network classification:
Maximizing zero-error density. In LNCS: Vol. 3686. ICAPR 2005 (pp. 127–135).

Silva, L., Alexandre, L.A., &Marques de Sá, J. (2006). Newdevelopments of the Z-EDM
algorithm. In Proceedings of the sixth international conference intelligent systems
design and applications: Vol. 1 (pp. 1067–1072).

Silva, L.,Marques de Sá, J., &Alexandre, L. (2005). Neural network classificationusing
Shannon’s entropy. In European symposium on artificial neural networks.

Silverman, B. (1986). Density estimation for statistics and data analysis. Chapman &
Hall.

Solla, S. A., Levin, E., & Fleisher, M. (1988). Accelerated learning in layered neural
networks. Complex Systems, 2(6), 625–639.


	Data classification with multilayer perceptrons using a generalized error function
	Introduction
	Usual error functions
	Mean square error
	Cross-entropy
	Mean square error or cross entropy

	Zero-error density maximization
	Gradient analysis
	Monotonic error functions
	A simple monotonic error function
	Exponential error function
	Another exponential error function

	Experiments
	Procedure 1
	Procedure 2

	Conclusions
	References


