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Abstract: One way of using the entropy criteria in learning systems is to minimize the entropy of the
error between two variables: typically, one is the output of the learning system and the other is the target.
This framework has been used for regression. In this paper we show how to use the minimization of the
entropy of the error for classification.

The minimization of the entropy of the error implies a constant value for the errors. This, in general,
does not imply that the value of the errors is zero. In regression, this problem is solved by making a shift
of the final result such that it’s average equals the average value of the desired target. We prove that,
under mild conditions, this algorithm, when used in a classification problem, makes the error converge
to zero and can thus be used in classification.
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1 Introduction

Since the introduction by Shannon [9] of the concept of entropy, and the posterior generalization made
by Renyi [8], that entropy and information theory concepts have been applied in learning systems.
Shannon’s entropy,

HS(x) =−
N

∑
i=1

p(xi)logp(xi) (1)

measures de average amount of information conveyed by the eventx which occurs with probabilityp.
The more uncertain the eventx, the larger is its information content which is measured by its entropy.
An extension of the entropy concept to continuous random variablesx∈C is:

H(x) =−
∫

C
f (x)log f(x)dx (2)

where f(x) is the probability density function (pdf) of the random variablex.
The use of entropy and relative concepts have several applications in learning systems. These appli-
cations are mostly based on finding the mutual information and the consequent relations between the
distributions of the variables involved in a particular problem. Linsker [5] proposed theInfomaxprinci-
ple that consists on the maximization of Mutual Information (MI) between the input and the output of
the neural network. Mutual information gives rise to either unsupervised or supervised learning rules
depending on how the problem is formulated. We can have unsupervised learning when we manipulate
the mutual information between the outputs of the learning system or between its input and output. Ex-
amples of these approaches are independent component analysis and blind source separation [1, 2]. If
the goal is to maximize the mutual information between the output of a mapper and an external desired
response, then learning becomes supervised.



With the goal of making supervised information-theoretic learning, several approaches have been pro-
posed:

• CIP (Cross Information Potential) - The CIP tries to establish the relation between the pdfs of two
variables. These variables could be the output of the network and the desired targets or the output
of each layer and the desired targets [11].

• The entropy maximization of the output of the network and simultaneously the minimization of the
entropy of the output of the data that belongs to a specific class. This method was proposed by
Haselsteiner [4] as a way of performing supervised learning without numerical targets.

• MEE - Consists of the minimization of the error entropy between the outputs of the network and the
desired targets. This approach was proposed by Denis Erdogmus [3] and used to make time series
prediction.

We made some experiments with these proposed three methods with the goal of performing supervised
classification but we did not achieve good results. This lead us to develop a new approach as described
next.

2 Renyi’s Quadratic Entropy and Back-propagation Algorithm

Renyi extended the concept of entropy and defined the Renyi’sα entropy, in discrete cases, as:

HRα(x) =
1

1−α
log

(
N

∑
i=1

pα
i

)
(3)

which tends to Shannon entropy whenα → 1. If we take the Renyi’s Quadratic Entropy(α = 2), to
continuous random variables, we obtain

HR2(x) =− log

(∫

C
[ f (x)]2dx

)
(4)

Renyi’s Quadratic Entropy in conjunction with the Parzen Window probability density function esti-
mation with gaussian kernel allows, as we will see later, the determination of the entropy in a non-
parametric, very practical and computationally efficient way. The only estimation involved is the pdf
estimation.
Let a = ai ∈ Rm, i = 1, ...,N, be a set of samples from the outputY ∈ Rm of a mappingRn 7→ Rm : Y =
g(w,x), wherew is a set of Neural Network weights. The Parzen window method estimates the pdff (y)
as

f (y) =
1

Nhm

N

∑
i=1

K(
y−ai

h
) (5)

whereN is the number of data points,K is a kernel function, andh the bandwidth or smoothing parameter.
If we use a simple Gaussian kernel (beingI the identity matrix)

G(y, I) =
1

(2π)
m
2

exp

(
−1

2
yTy

)
(6)

then, the estimated pdff (y) using Parzen window and Gaussian kernel will be:

f (y) =
1

Nhm

N

∑
i=1

G

(
y−ai

h
, I

)
(7)



The Renyi’s Quadratic Entropy can be estimated, applying the integration of gaussian kernels [11], by

ĤR2(y) =− log




∫ +∞

−∞

(
1

Nhm

N

∑
i=1

G(
y−ai

h
, I)

)2

dx




=− log

[
1

N2h2m−1

N

∑
i=1

N

∑
j=1

G(
ai−a j

h
,2I)

]
=− logV(a)

(8)

Principe [7] callsV(a) the information potentialin analogy with the potential field in physics. For the
same reason he also calls the derivative ofV(a) the information forceF . Therefore

F =
∂

∂a
V(a) =

∂
∂a

[
1

N2h2m−1

N

∑
i=1

N

∑
j=1

G(
ai−a j

h
,2I)

]

Fi =− 1
2N2h2m+1

N

∑
j=1

G(
ai−a j

h
,2I)(ai−a j)

(9)

This information forceat each point is back-propagated into the MLP using the back-propagation algo-
rithm (the same used by the MSE algorithm). The update of the neural network weights is performed
using∆w =±η ∂V

∂w. The± means that we can maximize(+) or minimize(−) the entropy.

3 Supervised Classification with Error Entropy Minimization

We make use of the information-theoretic concepts, applying an entropy approach to the classification
task using the entropy minimization of the error between the output of the network and the desired
targets: the Error Entropy Minimization, EEM.
Let d∈Rm be the desired targets andY the network output from the classification problem andei = di−Yi

the error for each data samplei of a given data set. The error entropy minimization approach, introduced
by Erdogmus [3] in time series prediction, states that Renyi’s Quadratic Entropy of the error, with pdf
approximated by Parzen window with Gaussian kernel, has minima along the line where the error is
constant over the whole data set. Also the global minimum of this entropy is achieved when the pdf of
the error is a Dirac delta function.
Taking the quadratic entropy of the error

ĤR2(e) =− log

[
1

N2h2m−1

N

∑
i=1

N

∑
j=1

G

(
ei−ej

h
,2I

)]
(10)

we clearly see that this entropy will be minimum when the diferences of all the error pairs(ei −ej) are
zero. This means that the errors are all the same. In classification problems with separable classes, the
goal is to get all the errors equal to zero, meaning that we don’t get any errors in the classification. In
classification problems with non separable classes the goal is to achieve the Bayes error.
In the following we prove that, in classification problems, imposing some conditions to the output range
and target values, the EEM algorithm makes the error converge to zero. The objective is to minimize the
entropy of the errore= d−Y and, as stated above, to achieve the goal ofe= 0 for all data samples.



Theorem:
Consider a two class supervised classification problem with a unidimensional output vector.Y ∈ [r,s] is
the output of the network andd∈ {a,b} the target vector of the desired output. Ifr = a, s= b anda=−b
then the application of the EEM algorithm makes the errors on each data point be equal and equal to zero.

Proof:
Define the targets asd ∈ {−a,a} and consider the output of the network asY ∈ [−a,a].The errors are
given bye= d−Y.
If the true target for a given inputxi is {a} then the errorei varies inP = [0,2a].
If the true target for a given inputx j is {−a} then the errorej varies inQ = [−2a,0].
Since the minimization of the entropy of the error makes the errors all have the same value,r, we get
ei = ej = r.
r must be inP andQ. P∩Q = {0} thusr = 0 andei = ej = 0.

A similar proof can be made for multidimensional output vectors.

Therefore, by minimizing the Renyi’s Quadratic Entropy of the error, applying the back-propagation
algorithm, we find the weights of the neural network that yield good results in classification problems as
we illustrate in the next section.

4 Experiments

We made several experiments, using multilayer perceptrons (MLP), to show the application of the EEM
algorithm to data classification. The learning rateη and the smoothing parameterh were experimentally
selected. However this is one subject that must be studied with more detail in our subsequent work.
In the first experiment we created a data set consisting of200data points, constituting4 separable classes
(figure 1).
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Figure 1: Dataset for the first problem

Several (2;n;2) MLP’s were trained and tested 40 times, 150 epochs, using EEM and also for MSE. We
maden vary from3 to 6. Each time, half of the data set was randomly used for training and the other
half for testing. Then the data sets were used with inverted roles. The results of the first experiment are
shown in table 1.

In the following experiments we used three data sets publicly available (Diabetescan be found in [6]
andWineandIris can be found in the UCI repository of machine learning databases). Table 2 contains a
summary of the characteristics of these data sets.

Several MLP’s with one hidden layer were trained and tested 40 times, 150 epochs, for EEM and also



Table 1: The error results of the first experiment

n 3 4 5 6 STD
EEM 2,43 2,2 2,01 2,09 Mean 0,18

1,33 1,2 1,09 1,02 Std
MSE 2,93 2,55 2,64 2,91 Mean 0,19

1,46 1,24 1,13 1,73 Std

Table 2: The data sets used in the second set of experiments

Data set N. Points N. Features N. Classes

Diabetes 768 8 2
Wine 178 13 3
Iris 150 4 3

for MSE. We made the number of neurons in hidden layer,n, varying from3 to 10. Each time, half of
the data set was randomly used for training and the other half for testing. Then the data sets were used
with inverted roles. The results of these experiments are shown in table 3.

Table 3: The error results of the second set of experiments

n 3 4 5 6 7 8 9 10 STD
Diabetes EEM 23,8 24,1 24,1 23,9 24,323,6 Mean 0,25

1,04 1,33 0,9 0,71 1,42 0,86 Std
MSE 25,1 24,7 24,4 23,9 24 24,1Mean 0,46

1,8 1,8 1,06 1,18 0,95 1,2 Std
Wine EEM 1,94 2,5 2,47 2,44 2,16 2,22 2,31Mean 0,20

0,72 1,01 1,2 1 0,92 0,83 0,51 Std
MSE 3,03 3,2 3,06 2,39 2,92 2,5 2,95Mean 0,30

1,08 1,83 1,43 1,5 1,07 1,35 1,29 Std
Iris EEM 4,36 4,43 4,38 4,3 4,41 4,31 Mean 0,05

1,12 1,3 1,34 1,16 1,42 1,27 Std
MSE 4,72 4,75 4,15 3,97 5,18 4,65 Mean 0,44

4,75 1,27 1,32 1,05 4,74 1,32 Std

The results show, in almost every experiments, a small, but better, performance of the EEM algorithm.
They also show, especially in the second set of experiments, that the variation of the error alongn
is smaller in the EEM than in the MSE (last column STD - standard deviation over the different "n"
sessions). This could mean that the relation between the complexity of the MLP and the results of the
EEM algorithm is not so tight as for the MSE algorithm, although this relation must be studied with more
detail in our future work.

5 Conclusions

We have presented, in this paper, a new way of performing classification by using the entropy of the error
between the output of the MLP and the desired targets, as the function to minimize. The results show that
this is a valid approach for classification and, despite the small diference comparing to MSE, we expect
to achieve better results in high dimensional data. The complexity of the algorithm,(N2), imposes some



limitations on the number of samples in order to get results in a reasonable time. Some aspects in the
implementation of the algorithm will be studied in detail in our future work: how to chooseh andη and
make their values adjust during the training phase to improve the classification performance. We have
already tested the adjustment ofh during the training phase, but we did not achieved good results. We
know that the variation ofη during the training process improves the performance [10]. So, we plan to
adjustη as a function of the error entropy instead of adjusting it as a function of the MSE.
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