
 

OPTIMIZATION OF THE ERROR ENTROPY MINIMIZATION 
ALGORITHM FOR NEURAL NETWORK CLASSIFICATION 

JORGE M. SANTOS 
Instituto de Engenharia Biomédica, 
Porto, Portugal. 
Instituto Superior de Engenharia do 
Porto, Dep. Matemática, Porto, 
Portugal; jms@isep.ipp.pt 
 

JOAQUIM MARQUES DE SÁ 
Instituto de Engenharia Biomédica, 
Porto, Portugal. 
Faculdade de Engenharia da 
Universidade do Porto, DEEC, 
Porto, Portugal 

LUÍS A. ALEXANDRE 
Instituto de Engenharia Biomédica, 
Porto, Portugal. 
IT - Networks and Multimedia 
Group, Covilhã, Portugal 

FERNANDO SERENO 
Escola Superior de Educação, 
Instituto Politécnico do Porto, Porto, 
Portugal 
 

ABSTRACT 
One way of using entropy criteria in learning systems is to minimize the 
entropy of the error between the output of the learning system and the desired 
targets. In our last work, we introduced the Error Entropy Minimization 
(EEM) algorithm for neural network classification. There are some sensible 
aspects in the optimization of the EEM algorithm: the size of the Parzen 
Window (smoothing parameter) and the value of the learning rate parameter 
are the two most important. In this paper, we show how to optimize the EEM 
algorithm by using a variable learning rate during the training phase. 

INTRODUCTION 
The Error Entropy Minimization (EEM) algorithm minimizes the Reniy’s 

Quadratic Entropy of the error between the output of the neural network and the 
desired targets. Reniy’s Quadratic Entropy is used because, when using a non-
parametric estimate of the probability density function (pdf) by the Parzen 
Window method, a simplified expression for the entropy is obtained. 

The size of the Kernel window, h, used in Parzen Window method is one of 
the two most sensible aspects in the implementation of the EEM algorithm. The 
other important aspect is the backpropagation learning rate. We implemented a 
variable learning rate, similar to the one used in the MSE algorithm, and the 
results were better than the ones obtained with the previous algorithm. 

RENYI'S QUADRATIC ENTROPY AND BACK-PROPAGATION ALGORITHM 
 
Renyi extended the concept of entropy introduced by Shanon and defined 

the Renyi's α  entropy, applied to continuos random variables, as (Renyi 1976): 

[ ]∫−=
CR dxxfH α

α )(log  (1) 



 

Renyi's Quadratic Entropy, 2=α , in conjunction with the Parzen Window 
pdf estimation with gaussian kernel allows, the determination of entropy in a 
non-parametric, practical and computationally efficient way. The Parzen 
window method estimates the pdf )(xf  as 

∑
=

⎟
⎠
⎞

⎜
⎝
⎛ −

=
N

i

i
m h

xxK
Nh

xf
1

1)(  (2) 

where N  is the number of data points, K is a kernel function, m  is the 
dimensionality of vectors x  ( mx ℜ∈ ) and h  the bandwidth or smoothing 
parameter. We usualy use the simplest Gaussian kernel with zero mean and Σ  
equal to I (the identity matrix) 

⎟
⎠
⎞

⎜
⎝
⎛−= xxxG T

m 2
1exp

)2(

1),(
2π

I  (3) 

Let m
iaa ℜ∈= , be a set of samples from x . Reniy's Quadratic Entropy can 

be estimated, applying the integration of Gaussian kernels (Xu and Principe, 
1999), by 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−= ∑∑

= =
−

N

i

N

j

ji
mR h

aa
G

hN
H

1 1
1222 )2,(1logˆ I = )(log aV−  (4) 

Principe (1998) calls )(aV  the information potential in analogy with the 
potential field in physics. For the same reason he also calls the derivative of 

)(aV  the information force F. Therefore 

∑
=

+ −
−

−=
N

j
ji

ji
mi aa

h
aa

G
hN

F
1

122 ))(2,(
2

1 I   (2) 

This information force at each point is backpropagated into the MLP in the 
same way as with the MSE algorithm. 

THE EEM ALGORITHM AND ITS OPTIMIZATION 
 
In order to make neural network classification we use the information-

theoretic concepts, applying an entropy approach to the classification task, 
using, as cost function, the entropy minimization of the error between the output 
of the network and the desired targets: the EEM algorithm. 

The error entropy minimization approach, introduced by Erdogmus and 
Principe (2002) in time series prediction, states that Renyi's Quadratic Entropy 
of the error, with pdf approximated by Parzen window with Gaussian kernel, has 
minima along the line where the error is constant over the whole data set. Also 
the global minimum of this entropy is achieved when the pdf of the error is a 
Dirac delta function. 

In classification problems we proved (Santos et al., 2004) a more strict 
result than simply the equality of the errors. As a matter of fact, we proved that 
by imposing some conditions to the output range and target values, the EEM 



 

algorithm drives all errors towards zero. Those conditions consist in a relation 
between the set of the output of the neural network and the set of the desired 
targets. In an unidimensional case the targets should be defined as { }ppt ,−∈  
and the output of the network as [ ]ppy ,−∈ . 

The gradient of Renyi’s Quadratic Entropy of the Error is back-propagated 
into the MLP in the same way as with the MSE algorithm. The updating of the 
neural network weights is performed using 

w
Vw ∂
∂±=∆ η . The choice of the 

learning rate η  is one of the most important aspects in the implementation of the 
EEM algorithm. We will see in the next section how the variation of the learning 
rate along the training process can yield good results. 

We started the optimization of EEM algorithm by trying to make the kernel 
smoothing parameter (kernel window size) h variable along the training process, 
namely proportional to the error variance. This strategy was based on the fact 
that, as we approach the optimal solution, the errors tend to zero (m-tuples of 
zeros) and so, it makes sense to decrease h since the points are all near. The 
entropy and the subsequent information force depends on the values of h 
(smaller h originates higher entropies and information forces), and that could be 
opposite to our objective of minimization of the entropy of the error. However, 
if, in each instance of the algorithm, we minimize the entropy function we can, 
at least theoreticaly, get an optimal solution. The problem in the variablility of h 
is that, in the proximity of the minimum training error the algorithm is very 
unstable and looses the capability of convergence. 

In the next optimization phase of the EEM algorithm we used a variable 
learning rate and a fixed smoothing parameter h. 

The variability of the learning rate follows a simple but efective rule. If the 
entropy of the error decreases between two consecutive epochs of the training 
process then the algorithm produces an increase in the learning rate parameter. 
Similarly, if the entropy of the error increases between two consecutive epochs 
then the algorithm produces a decrease in the learning rate parameter and, 
furthermore, it restarts the update step. 

The rule for learning rate variability is: 

⎪⎩

⎪
⎨
⎧

>

<
=

−−

−−

)1(
2

)(
2

)1(

)1(
2

)(
2

)1(
)(

if.

f.
n

R
n

R
n

n
R

n
R

n
n

HHd

HHiu

η

η
η  (3) 

where )(nη and )(
2
n

RH are the learning rate and the Renyi’s Quadratic entropy of 
the error in nth iteration, respectively, and u and d are the increasing and 
decreasing factors. 

We performed several experiments in order to find good values for u and d. 
We used a bi-dimentional data set (Jacobs(1991)), with 608 data points, 4 
classes, consisting of two separable groups of two classes each. The two classes 
in each group are non separable. 

In Fig. 1 we show the training phases with fixed learning rate, FLR, (doted 
lines) and with variable learning rate, VLR, (solid lines), of two experiments 
that have produced the least classification errors. The use of VLR produces a 
continuos decreasing entropy curve and a minimum training error is achieved. 

In Table 1 we present the results of the experiments made with diferent 
values for u and d.  The column (restart) indicates the number of times that the 



 

algorithm restarts the update step. These experiments suggest that, if the 
algorithm produces an increase on the entropy then the learning rate should be 
decreased by a considerable factor. Based in the several tests that we performed 
and in the fact that our errors are allways limited to a restrict set, due to the 
conditions mentioned in (Santos et al., 2004), we recommend a value around 0.2 
for d and around 1.2 for u. However this issue deserves further extensive tests 
with multidimentional errors to support this recommendation. The solid line in 
Fig. 1 represents a case with 2.0=d  and 2.1=u . 

 

Table 1 - Results for the variable learning rate 

u d restart Training Error u d restart Training Error
1.2 0.2 36 5.26 1.6 0.2 90 5.59

1.2 0.4 65 5.26 1.6 0.4 154 5.26

1.2 0.6 112 5.59 1.6 0.6 279 5.59

1.2 0.8 256 5.92 1.6 0.8 640 5.26

1.4 0.2 64 5.59 1.8 0.2 112 5.59

1.4 0.4 115 5.26 1.8 0.4 193 5.59

1.4 0.6 197 24.34 1.8 0.6 352 5.59

1.4 0.8 465 5.59 1.8 0.8 801 5.26

EEM-VLR VERSUS MSE-VLR 
 
We made a first experiment, using multilayer perceptrons (MLP), to show 

the application of the Error Entropy Minimization with Variable Learning Rate 
(EEM-VLR) algorithm to data classification and compare it with Mean Square 
Error with Variable Learning Rate (MSE-VLR) algorithm. 

In this experiment we used the data set described in the previous section. 
Several MLP’s with 2 inputs, n neurons in the hidden layer and 2 outputs 
(2:n:2), were trained and tested 40 times, 300 epochs, using the EEM-VLR and 
also the MSE-VLR. We made n vary from 3 to 18. Each time, half of the data 

 
Fig. 1 - Two best results for FLR (doted) and VLR (solid) 

 



 

set was randomly chosen for training and the other half for testing. Then the data 
sets were used with inverted roles (the original training set became the test set 
and the original test set became the training set). The results of this experiment 
are shown in Table 2. 

 
Table 2 – Classification errors for EEM-VLR and MSE-VLR 

 Number of neurons in hidden layer  

 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18  

EEM-VLR 9,68 8,18 8,54 8,73 9,22 8,67 9,03 8,77 9,90 9,30 10,16 10,01 10,14 11,50 10,72 12,68 Mean 

 3,31 2,30 2,81 2,51 4,60 2,60 2,51 1,88 3,55 2,56 2,83 2,50 2,16 5,54 1,94 4,47 Std 

MSE-VLR 24,46 17,49 15,86 13,80 14,35 12,29 12,46 11,95 11,34 10,67 9,44 9,46 8,61 9,22 9,77 10,61 Mean 

 9,84 9,10 8,61 7,61 8,26 6,58 7,48 6,64 6,66 6,01 3,84 3,63 1,30 3,48 4,97 6,18 Std 

 
We see in Table 2 that EEM-VLR algorithm produces better results 

comparing to MSE-VLR algorithm. Only for larger values of the number of 
neurons in the hidden layer the MSE-VLR algorithm produces better results. 
However this could be due to overfitting. We also see that similar results are 
achieved with less complex MLP’s in the EEM-VLR algorithm (Fig. 2). This 
sugests that, with EEM-VLR, we need less complex neural nerworks, compared 
to MSE, in order to solve a particular classification problem. 

 
Two more experiments were made applying the two algorithms in real data 

sets. These data sets are publicly available (diabetes can be found in Marques de 
Sá (2003) and wine can be found in the UCI repository of machine learning 
databases, http://www.ics.uci.edu/˜mlearn/MLRepository.html. Table 3 contains 
a summary of the characteristics of these data sets.  

 
Table 3 - The data sets used in second experiments 

Data set N. points N. Features N. Classes 

Diabetes 768 8 2 

Wine 178 13 3 

8,618,18

0,00

5,00

10,00

15,00

20,00

25,00

30,00

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Number of neurons in hiden layer

M
ea

n 
Er

ro
r (

%
)

MSE-VLR

EEM-VLR

 
 

Fig. 2 - Classification mean error between EEM-VLR and MSE-VLR algorithms 



 

Several MLP’s were trained and tested 10 times, 120 epochs, with d=0.2 
and u=1.2. Each time, half of the data sets were randomly chosen for training 
and the other half for testing. Then the data sets were used with inverted roles. 
The results of this experiments are shown in Table 4. Again, the best results 
(bold), in this three classification problems, were achieved with the EEM-VLR 
algorithm. 

 
Table 4 – Classification errors for the EEM-VLR and the MSE-VLR algorithms. 

  Number of neurons in hidden layer  

  4 5 6 7 8 9 10  

 23,8 24,1 24,1 23,9 24,3 23,6 Mean 
EEM-VLR 

 1,04 1,33 0,9 0,71 1,42 0,86 Std 

 25,1 24,7 24,4 23,9 24 24,1 Mean 

D
ia

be
te

s 
MSE-VLR 

 1,8 1,8 1,06 1,18 0,95 1,2 Std 

1,94 2,5 2,47 2,44 2,16 2,22 2,31 Mean 
EEM-VLR 

0,72 1,01 1,2 1 0,92 0,83 0,51 Std 

3,03 3,2 3,06 2,39 2,92 2,5 2,95 Mean W
in

e 

MSE-VLR 
1,08 1,83 1,43 1,5 1,07 1,35 1,29 Std 

CONCLUSIONS 
In this paper we present an improved version of the EEM algorithm, using a 

variable learning rate parameter, which we call the EEM-VLR algorithm. This 
algorithm shows a very good performance achieving good results in 
classification problems when compared to MSE-VLR algorithm. 

Despite the fact that the results using variable smoothing parameter h were 
not satisfactory we think that, this issue deserves further investigation, namely 
on how to combine the two variable factores, η  and h in order to produce an 
even more efficient algorithm. 

REFERENCES 
Erdogmus D. and Principe J., 2002, “An Error-Entropy Minimization Algorithm for Supervised 

Training of Nonlinear Adaptive Systems”, Trans. On Signal Processing, Vol. 50, No. 7, pp. 
1780-1786. 

Jacobs, R., Jordan, M., Nowlan, S. and Hinton, G., 1991, “Adaptive mixtures of local experts”, 
Neural Computation, pp.79-87. 

Marques de Sá, J., 2003, Applied statistics using SPSS, STATISTICA and MATLAB, Springer. 
Principe J., Fisher J. and Xu D., 1998, “Information-Theoretic Learning”, Computational 

NeuroEngineering Laboratory, University of Florida, Florida. 
Renyi A., 1976, “Some Fundamental Questions of Information Theory”, Selected Papers of Alfred 

Renyi, Vol. 2, pp. 526-552. 
Santos J., Alexandre L. and Marques de Sá J.,2004, “Neural network Classification using Error 

Entropy Minimization”, submitted to the Int. Conf. on Recent Advances in Soft Computing, 
Nottingham, United Kingdom. 

Silva, F. and Almeida, L., 1990, “Speeding up Backpropagation”, Advanced Neural Computers, 
Eckmiller R. (Editor), pp. 151-158. 

Xu D. and Principe J., 1999, “Training MLPs layer-by-layer with the information potential”, Intl. 
Joint Conf. on Neural Networks, pp.1716-1720. 


