UNIVERSIDADE DA BEIRA INTERIOR
Engenharia

Rule Induction for Sentence Reduction

Joao Paulo da Costa Cordeiro

Tese para a obtencao do Grau de Doutor em
Engenharia Informatica

Orientador: Prof. Doutor Gaél Harry Dias
Co-Orientador: Prof. Doutor Pavel Bernard Brazdil

Covilha, Novembro de 2010






I would like to dedicate this thesis to my loving wife, Adelina Amorim, and my three

precious children: David, Tiago, and André.

iii






Acknowledgements

A work like this is almost impossible to be achieved by a single individual working alone.
There are always several very important persons involved, more or less directly and in
various levels: scientific, personal, or even in the sentimental/spiritual level. In this few
lines | would like to express my deepest gratitude to those having been determinate for

the conclusion of this long and hard work.

| would like to start by acknowledging my supervisor, Prof. Doctor Gaél Harry Dias, for
his constant and relentless support throughout this journey. He was indeed an always
presently supporter, guiding me many times, and even motivating me toward new unex-
plored scientific and technological territories. My co-supervisor, Professor Pavel Bernard
Brazdil, was equally very important for the developing and conclusion of this work. With
his long experience as a leading scientist, every piece of advise received from him were
carefully observed and incorporated here. | also want to thank all the teachers | had, spe-
cially during my B.Sc. and M.Sc. degrees, who contributed significantly to my scientific

education.

At a personal level, | must thank my family, specially my wife, Adelina Amorim, for
her constant and almost unconditional support, during several years, allowing me to be
absent many times from our three children's family duties. | also thank my parents,
Anténio Cordeiro and Emilia Madeira, for their constant support. Last but not least, |
would like to thank God for all the love, meaning, peace, and direction brought to my
life. One day the God from the Bible changed my life, making me a very new being!
It is an honor to finish this acknowledgments by including the first three verses from a

beautiful biblical poem:

"The LORD is my shepherd; I shall not want. He maketh me to lie
down in green pastures: he leadeth me beside the still waters. He restoreth

my soul: he leadeth me in the paths ofrighteousnessfor his name's sake."

Psalms 23:1-3



vi



Abstract

The field of Automatic Sentence Reduction has been an active research topic, with sev-
eral relevant approaches being recently proposed. However, in our view many milestones
still need to be reached in order to approach human-like quality sentence simplification.
In this work, we propose a new framework, which processes huge sets of web news stories
and learns sentence reduction rules in a fully automated and unsupervised way. This is
our main contribution. Our system is conceptually composed of several modules. In the
first one, the system automatically extracts paraphrases from on-line news stories, using
new lexically based functions that we have proposed. In our system's second module,
the extracted paraphrases are transformed into aligned paraphrases, meaning that the
two paraphrasic sentences get their words aligned through DNA-like sequence alignment
algorithms, that has been conveniently adapted for aligning sequences of words. These
alignments are then explored and specific text structures called bubbles are selected.
Afterwards, these structures are transformed into learning instances and used in the last
learning module that exploits techniques of Inductive Logic Programming. This module
learns the rules for sentence reduction. Results show that this is a good approach for
learning automatic sentence reduction, while some pertinent issues still need future in-

vestigation.

Keywords

Sentence reduction, sentence compression, sentence simplification, paraphrase extrac-
tion, paraphrase alignment, automatic text summarization, natural language processing,

inductive logic programing, machine learning, artificial intelligence.
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Resumo

A area da Redugdo Automadtica de Frases tem sido um topico activo de investigacao, tendo
sido propostas recentemente varias abordagens relevantes. Todavia, do nosso ponto de
vista, para que tenhamos uma simplificacao de frases mais parecida com a que é feita
por humanos, é necessario ainda alcancar varias etapas importantes. Neste trabalho
propomos uma nova abordagem que aprende regras de reducao de frases, de forma com-
pletamente automatica e nao supervisionada e a partir do processamento de um elevado
volume de texto de noticias da web. Esta é a nossa contribuicdo principal. O nosso sis-
tema é conceptualmente composto por varios modulos. No primeiro, o sistema extrai
automaticamente parafrases de noticias web através de novas funcdes lexicais que pro-
pusemos. No segundo modulo do nosso sistema, as parafrases extraidas sdo transformadas
em parafrases alinhadas, significando isto que duas frases parafrasticas ficam com as suas
palavras alinhadas entre si, através de algoritmos alinhamento de sequéncias de ADN que
foram adaptados para o alinhamento de sequéncias de palavras. Posteriormente estes
alinhamentos sao explorados para que determinadas estruturas relevantes, denominadas
de bolhas, sejam seleccionadas e transformadas em instancias de aprendizagem. Estas,
por sua vez, serao utilizadas no ultimo maddulo do nosso sistema que através da Progra-
macdo Légica Indutiva aprende regras de reducao de frases. Os resultados mostram que
esta € uma abordagem promissora para a reducdo automatica de frases, sendo todavia

ainda necessario continuar a investigacao nalgumas questoes pertinentes deste dominio.

Palavras-chave

Reducao de frases, compressao de frases, simplificacdo de frases, extraccao de parafrases,
alinhamento de parafrases, sumarizacdo automatica de texto, processamento da lin-
guagem natural, programacdo logica indutiva, aprendizagem automatica, inteligéncia

artificial.






Resumo Alargado

Em termos gerais, o trabalho consistiu na criacdo de um sistema com capacidade para "aprender”
regras de simplificacao de frases, por reducao de certas componentes menos relevantes, a partir
da "observacao" de corpora. Trabalhando somente com textos de noticias relacionadas, extraidas
diariamente da Internet, o nosso sistema tem a capacidade de induzir estas regras de reducao de
frases, através de técnicas de aprendizagem automdtica. O sistema desenvolvido é composto por

quatro componentes principais:
1. Extraccao de parafrases.
2. Alinhamento de termos em parafrases.
3. Extraccao de bolhas.
4. Inducao de regras de reducao.

A primeira componente consiste na extraccao automatica de parafrases, que é realizada a partir de

textos de noticias relacionadas, obtidas diariamente a partir do "Google News"".

Um determinado
evento noticioso, como por exemplo um atentado terrorista, ou um discurso presidencial, contém no
minimo cerca de 30 textos oriundos de diversas fontes noticiosas. Sao textos que veiculam a mesma
informacao, no entanto escritos usando formas e estilos diferentes. Estas coleccdes constituem um
“terreno” propicio a extraccao de parafrases. Assim, foram propostas varias funcoes, baseadas em
ligacoes lexicais entre frases, para a identificacdo de um tipo de parafrases conveniente para o0 nosso
trabalho, isto é as parafrases assimétricas, nas quais uma das frases do par contém mais informacao

que a outra, tal como mostrado no exemplo que se segue:

0 ministro, que referiu o problema do desemprego, anunciou a subida do IRC.
0 ministro anunciou a subida do IRC.

A segunda componente do nosso trabalho consiste no alinhamento das palavras que compoe o par
de frases da parafrase. Foram adaptados algoritmos de alinhamento de sequéncias de ADN para al-
inhar sequéncias de palavras. Também propusemos um novo método para escolher dinamicamente
o algoritmo de alinhamento (global ou local), em tempo de execucado, consoante seja mais con-
veniente para o par considerado. Ainda neste modulo, propusemos uma nova funcdo simulando a
"mutacao genética” entre as palavras de uma parafrase. Esta funcdo tem como objectivo permitir
o alinhamento de termos lexicalmente proximos. Um exemplo de um alinhamento global, para a

parafrase apresentada anteriormente é mostrado a seguir:

TURL: http://news.google.com [Novembro de 2010]

Xi


http://news.google.com

0 ministro, que referiu o problema do desemprego, anunciou a subida do IRC.
0 ministro, , anunciou a subida do IRC.

Portanto, as duas primeiras etapas do sistema tem a capacidade de gerar automaticamente um corpus
de parafrases alinhadas com elevado nimero de casos (na ordem dos milhdes de exemplos), a partir
de texto de noticias publicadas electronicamente. Este corpus constitui a matéria-prima utilizada

no processo de inducao de regras de reducao de frases.

Na terceira componente do sistema, partir de um corpus de parafrases alinhadas, sao extraidas
um conjunto de instancias de aprendizagem, denominadas bolhas, com o objectivo de "alimentar”
um sistema indutor de regras de simplificacao de frases. Pela "observacao” de milhares de casos
sao generalizadas regras que permitem cortar certas porcdes menos relevantes de frases. Uma bolha
consiste numa porcao extraida de um alinhamento, no qual dois segmentos diferentes estdo alinhados
e delimitados por pares de segmentos iguais, um a esquerda, denominado de contexto esquerdo e
outro a direita, denominado de contexto direito. Ao alinhamento heterogéneo central foi dado o
nome de "centro” (o centro da bolha). O exemplo apresentado anteriormente contem precisamente
um caso de uma bolha, tomando para contexto esquerdo "0 ministro ,", para contexto direito a

sequéncia ", anunciou a subida do IRC ." e para o centro o par:

("que referiu o problema do desemprego" ---> ny

As duas sequéncias centrais, indicam uma possivel transformacdo de uma expressao linguistica de
tamanho m para uma outra de tamanho zero, mediante um contexto esquerdo e direito. Foram
investigadas e propostas condicdes para a extraccao de bolhas, a partir de parafrases alinhadas. A
funcado proposta garante que esta extraccao so se concretiza se existirem contextos "fortes”, i.e. com

um tamanho significativo em relacao ao tamanho do centro.

Na quarta componente do nosso sistema, foram exploradas técnicas de Programacdo Logica Indutiva,
em especial o sistema Aleph, para induzir regras de reducao de frases. Estas sdo aprendidas através

de grandes coleccoes de bolhas extraidas automaticamente, como descrito anteriormente.

A abordagem que propusemos para este problema é completamente inovadora, tendo-nos possibil-
itado alcancar um conjunto significativo de publicacdes relevantes em importantes conferéncias e

revistas internacionais da especialidade.
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Chapter 1

Introduction

"We can only see a short distance ahead, but we can see plenty there that needs to

be done."

Alan Turing

The advent of the so called Information Age, since the beginning of the 1990's and specially due
to the dawn and quick expansion of the World Wide Web (WWW), has produced a huge amount
of electronic on-line documentation of several types: text, image, video and audio. In the past,
knowledge was something very rare and only accessible to those belonging to a very restrict elite, like
rulers, clerics and naturally the narrowed academic community, which in most of the times was fused
with the clerics, as for example in the middle age. Hopefully, nowadays knowledge has benefited from
an admirable expansion through scientific, technological, philosophical, among others, remarkable
improvements and discoveries, and furthermore through electronic means it has become much more
democratized and widespread worldwide. Unlike to what happened in the past, people are now
facing a new difficulty which can be synthesized as the problem of information overload, the sense
of limitation that a present user feels whenever facing the huge amount of available information to

be "digested" in feasible time, especially information published in text format.

Considering this context and naturally the continued increasing computational power at our disposal,
during the last twenty years, several new information processing research fields have emerged and
developed during this time frame, such as Information Retrieval (IR), Information Extraction (IE)
and Automatic Text Summarization (ATS). All these three fields share the general common concern
of textual information selection/filtering from the huge whole of information available. In IR the
main goal is to select relevant documents related to a given subject, according to a specified user
query. In IE the goal is to select key-elements from text, for example name-entities, and in ATS the
main objective consists in producing more or less compressed summaries from given original texts,
without losing syntax, coherence, and the key semantic elements. In ATS one aims at generating the
minimum possible set of textual units from an original text maintaining the main original ideas, also

referred to as the gist (Jones, 1993; Mani, 2001; Nguyen et al., 2004) of the original text.

The field of Text Summarization is an old concern, studied even before the dawn of the Informa-
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tion Age. Since the earlier 1960's that we have professional summarizers, working in many domains,
from journalism to technical documentation. The summarization of text documents, still remains
and even became a more crucial issue nowadays, with new electronic documents being published
every day. The best summarization is still produced by humans. However, it is costly to have suffi-
cient numbers of professional summarizers to tackle the full necessities for the present information
volumes. Therefore automatic text summarization mechanisms have been gaining relevance. The
ultimate goal in ATS is to approximate, as near as possible, its quality of performance to the one of
human beings. This is also the main reason explaining the increasing attention ATS given recently by

the research community, with many challenges ahead, waiting to be solved.

The next section provides a general overview of the Automatic Text Summarization research area as
an introductory background for the work we have been developing, which consists in automatically

learn sentence reduction rules that can be applied to simplify new texts.

1.1 Automatic Text Summarization

Among many possible Automatic Text Summarization (ATS) definitions, published in many scientific
articles and books throughout the years, we have selected the following three of different authors,

each one widely known and closely related to this research area.

A reductive transformation of source text to summary text through content conden-

sation by selection and/or generalization on what is important in the source.

Spark Jones

A summary is a text that is produced from one or more texts, that contains a signif-
icant portion of the information in the original text(s), and that is no longer than half

of the original text(s).

Eduard Hovy

Text summarization is the process of distilling the most important information from

a source (or sources) to produce an abridged version for a particular user and task.

Mani and Maybury

Generally, ATS is mainly concerned with the simplification of text, keeping as much as possible their
original key information units. The main motivation is naturally applicational, aiming to ease the

user's work, by providing him with short versions of relatively long texts. The "user” here means any
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person working with electronic texts and aiming to have summarization capabilities in its system.
There are two opposite forces conditioning any ATS process, which may be stated as size and content.
In the limit ATS is an utopia, because beyond a certain horizon, the minimum text length containing
the maximum original information will simply become a pure mirage. There are clear boundaries
and the natural implication of text reduction will necessary result in information loss. Therefore the
key success of any ATS system relays on its ability to establish a trade-off between these two issues,
satisfying the particular user's needs at a given moment. Sometimes one may be more concerned
with time wishing to do fast reading, so a short overview serves well, while in other situations time
may be less relevant than losing original information details, and a less compressed version of the

original text may be appropriate.

1.1.1 Origins of Automatic Text Summarization

Historically ATS started approximately 50 years ago with the work of Hans Peter Luhn, an IBM scientist
which in 1958 published an article entitled "The Automatic Creation of Literature Abstracts" (Luhn,
1958). This was the first computational approach to the problem of text summarization. At that
time an IBM 704 computer was used to calculate word relevance statistics for a given set of scanned
documents, based on their frequency and distribution. Relevant words were chosen considering
their frequency range delimited by pre-defined upper (C) and lower (D) boundaries. Words having
frequency greater than C were considered not discriminatory, what nowadays are mentioned as stop-
words, and words with frequency smaller than D were considered as irrelevant for the domain being
processed, a kind of odd linguistic event produced by the author. A table with such relevant words,

obtained from the original Scientific American article is shown in Figure 1.1.

Sentence significance is calculated based on the number and position of relevant word occurrences
within the sentence, since positional proximity of relevant words will increase sentence significance.
Using this significance document sentences are ranked and the most relevant sentences are selected
to form a representative summary, which was called an automatic abstract in Luhn (1958). This is

nowadays referred to though an extractive summary.

A second early relevant milestone in ATS with many implications throughout the subsequent years,
was the work made by Edmundson (1969), which consists of a refinement and a substantial improve-
ment of Luhn's work, by introducing several new document features for extractive summarization.
Edmundson (1969) noticed that textual documentation contains several structural key features de-
noting content relevancy worth to be used for sentence identification and extraction, as for example
position of sentences in paragraphs, position of words in sentences, or words occurring in headings,
among others. The overall characteristics considered were divided into positive and negative de-
pending on whether they relate to selected or unselected sentences by human abstractors. Thus the

sentence numerical weight is computed based on a linear combination of four machine-recognizable
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Significant words in descending order of frequency (common words omitted).

46  nerve 12 body 6  disturbance 4 accumulate
40  chemical 12 effects 6  related 4  balance
28  system 12 electrical 5 control 4 block
22 communication 12 mental 5 diagram 4 disorders
19  adrenalin 12 messengers 5 fibers 4 end
18  cell 10 signals 5 gland 4 excitation
18  synapse 10 stimulation 5 mechanisms 4  health
16 impulses 8  action 5  mediators 4  human
16 inhibition 8  ganglion 5  organism 4  outgoing
15 brain 7 animal 5 produce 4  reaching
15 transmission 7  blood 5 regulate 4 recording
13 acetylcholine 7  drugs 5  serotonin 4  release
13 experiment 7  normal 4 supply
13 substances 4 tranquilizing
Total word occurrences in the document: . . . . . . . . . . . . . . . 2326
Different words in document:
Total of differentwords . . . . . . . . . . . . . . . . . . . 741
Less different common words . . . . . . . . . . . . . . . . . 170
Different non-commonwords . . . . . . . . . . . . . . . . 571
Ratio of all word occurrences to different non-common words . . . . . . . . ~4:l
Non-common words having a frequency of occurrence of 5 and over:
Total occurrences . . . . . . . . . . . ... 478
Differentwords . . . . . . . . . . . . . . L 39

Figure 1.1: A table from Luhn (1958) showing statistically significant words automatically selected from a sci-

entific article.

characteristics: number of cue words (C), key words (K), title words (T), and text location (L). For

a given sentence s, from a text document we have:

Weight(s) =a-C(s)+ B-K(s) +v-T(s) +-L(s) (1.1)

with &, B, v, d being the feature weighting factors. Cue words are non-functional words obtained
from a corpus according to predefined constraints based on statistics and also meeting certain lin-
guistic criteria. Three subclasses of cue words are obtained: bonus words which have frequency
values above an L-threshold, stigma words with frequency under a predefined U-threshold, and also
irrelevant words (residue), with frequency value within the [U, L] interval and having dispersion less
than another threshold. A total of 783 bonus, 73 stigma, and 139 residue words were obtained. Nat-
urally, bonus words will yield a positive effect while stigma words imply a negative effect in the final
calculation of C(s). Key words are thematic words, similar to cue words but restricted to the spe-
cific document being processed. The concept is similar to the one used by Luhn (1958), identifying
high-frequency relevant words in the document. Title words are obtained from document skeleton
key locations, as the title and headings, and they are considered as positively significant. Finally the
location method, also considers documental skeleton properties by looking at their ordinal positions
in the text, assuming for example that paragraphs occurring at the beginning and end of a document

will contain more key sentences as well as sentences starting and ending paragraphs.
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1.1.2 The "Renaissance" in Automatic Summarization

The main concerns of Automatic Text Summarization and subsequent research developments in the
1970's and 1980's were to refine the extractive methods proposed by the early original work, pre-
viously mentioned, mainly in what is known as the Edmundsonian extractive paradigm. In 1993 an
historical seminar took place in the Dagstuhl school, a German computer science research center,
which is known as the Dagsthul Seminar (Jones, 2007), marking the beginning of a new research phase
in ATS, a kind of renaissance in the area, envisioning new perspectives and goals, as multi-document
summarization and abstractive summarization. Also the 1997 ACL Workshop (ACL-97) on summa-
rization started a succession of workshops in this area, in the series of Document Understanding
Conferences (DUC)! in the subsequent years, between 2000 and 2007. The driving force in each one
of these DUC conferences, was a competition where several summarization tasks were pre-defined
and competitors, usually summarization research groups, tried to implement a system able not only

to achieve the objectives but also get it done more effectively, ideally winning the competition.

British scientist Karen Spark Jones was a quite important contributor and promotor of the ATS re-
search filed, in the last 20 year. She had a key role in the early Dagstuhl seminar, brought relevant
criticisms and insights into the field, generally pointing directions to what has to be done, in or-
der to turn automatic summarization closer to human performance. Spark Jones defined automatic

summarization as a three-step process.

« interpretation - From the input raw text, obtain a structured internal representation of it.

« transformation - An operation on the original text representation yielding a simpler/reduced

structure which represents the summary structure to be generated.

« generation - From the simplified text structure obtained in the previous step, generate the

corresponding text summary.

In Jones (1999) it is shown that more effective summarizing systems require a detailed and explicit
consideration of what is named as the context factors. As it was explained, the performance of an
ATS system depends on these factors, and a fair evaluation of any of such systems cannot ignore them.
For example the purpose for which the system is supposed to satisfy can widely vary, from a mere
set of key information, words or phrases, a rough preview of the text content, to a richer content
summary preserving text grammaticality and connectivity. Three main summarization context factors

that should be considered in any ATS problem were identified in Jones (1999).

« Input factors - These are related with the conditions and features contained in the source text,

which fall into three classes: source form, subject type, and unit. The first one tackles the

TURL: http://duc.nist.gov/ [June 2010]
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questions of text structure, scale (paragraph, article, book), medium and genre (a description,
or a narrative), while the second class handles the question of considering the purpose and
reader's knowledge about the text subject and the world. The third class distinguishes between

single and multiple input sources.

« Purpose factors - A summary is naturally intended to serve the purposes of a required type,
generally to ease user's work. Thus from the same source document several quite different
summaries might be produced for different target users. In many cases summarization is an
ambiguous process, and only the user's needs permit to define the source content to be high-
lighted. These factors were considered the most important in ATS and may also fall in three
categories: situation, the context in which the summary is to be used, audience, the class of
readers who are going to use the summary, and use, which specifies what the summary is going

to be used for.

o Output factors - These features define the format and content type to be included in the
summary, for example the extent to which the summary is intended to capture the whole
source content or just some key issues. It is also related with format, i.e: should it be a
normal running text or a list of headlines-like items. Another concern here is style, which may
include the following categories: informative (convey what the source text says), indicative
(identify the main topics present in the text), critical (commenting summary key ideas), and

aggregative (normally, when made from multiple sources).

Given the great difficulty involved in the evaluation of a summarization system, another issue stressed
and promoted by Sparck Jones was a correct automation of the evaluation of ATS systems (Jones,
1999, 2007). It was stated that any fair/correct evaluation process is closely tied with the context
factors mentioned previously and if they are not carefully observed then erroneous results will be

obtained in the comparative studies.

1.2 Motivation and Objectives

Automatic text summarization systems are classified in two main categories: extractive and abstrac-
tive (Hahn & Mani, 2000). This last one is much closer to the kind of summarization made by humans
and is naturally much more difficult to automate, since it requires a semantical and even pragmatical
understanding of the text and knowledge of the world. In abstractive summarization higher complex
linguistic issues are involved, like negation, anaphora resolution, paraphrasing, text rewriting and
even rhetorical discourse representation models (Jones, 1993), which nowadays are still be "hot"
research topics by themselves, and the solutions still need to be improved. On the other hand, so far
the majority of rich electronic linguistic resources are only available for the English language. Due

to such reasons, abstractive summarization has not yet been fully addressed by the research commu-



1.2 Motivation and Objectives

nity, that naturally decided to start by a relatively simpler and at least implementable approach - the
extractive summarization. Whereas in abstractive summarization "deep” linguistic analytical knowl-
edge is involved, extractive summarization relies essentially in statistical and shallow techniques, as
these are simpler to implement. The extractive summarization category is confined to the question
of creating summaries solely by selecting the best textual units from an original text. The degree of
textual unit granularity may vary and include phrases, sentences, or even paragraphs. Yet the most
used minimum textual unit is the sentence. As in the Edmundsonian Paradigm (Edmundson, 1969;
Mani, 2001), the whole idea in an extractive system is to find a rank value of any textual unit, based
on several predefined features like key and title words, and then select the units having highest
rank value and generate the final summary by the concatenation of these. The important difficulties
revealed by this approach, include the lack of cohesion and coherence. Besides we can also identify
another important limitation, which served as a motivation to start our work, and which is based on
the fact that this method is unable to summarize beyond the minimum textual unit considered, in
our case the sentence. That is, it is not concerned with the issue of sentence simplification, though
many text sentences are worth of it, due to their natural complexity. The tests over corpora we
made for the English language, in particular for web news stories, provides evidence that the mean
sentence length is equal to 20 tokens. In fact, this gave rise to a new research subfield inside the
ATS area, known as Automatic Sentence Reduction, or Compression, as well as Automatic Sentence
Simplification. In our case, we use this first nomenclature since in this class sentences are simplified
through adequate content removal, while in the latter it is meant to be based on more complex
syntactical transformations. As an problem illustration we show below an example of a sentence

reduction operation.

“In Louisiana, the hurricane landed with wind speeds of about 120 miles per hour and
caused severe damage in small coastal centers such as Morgan City, Franklin and New

Iberia.”

For this sentence one possible and quite good reduced sentence version can be:

“In Louisiana, the hurricane landed and caused severe damage."

As we can see, the reduced sentence preserves the most relevant information, while at the same
time maintains its grammaticality, and the final result is indeed a much simpler sentence. So this was
the challenge that started and drove our research work, which is going to be presented throughout

this thesis.

During the first decade of the 21st century, research in Automatic Text Summarization has been
continuing its objective to move from the traditional extractive methodology to a more abstrac-

tive resembling approach. In this context, sentence reduction has been an emerging field trying
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to contribute to this research direction, and as presented in the related work (Chapter 2) some
approaches have been experimented during this time period, based essentially on two main strate-
gies: knowledge-driven systems and supervised machine learning techniques. We think that despite
their individual virtues, both contain important drawbacks and practical limitations that were not
addressed. The former is hugely language-dependent, essentially depending on the availability of
rich linguistic knowledge resources, which are so far scarce for many non-english languages. Even
with linguistic resources at our disposal, knowledge-driven systems may always be incomplete and
require a huge human effort for creation of such resources. The latter strategy of using supervised
machine learning, requires a dataset of training examples that must have been manually crafted
by humans. So, both ways require considerable amounts of manual intervention, which is subject
to incompleteness and imperfection. Our approach aims at following a different strategy, by using
minimum linguistic resources and an unsupervised machine learning strategy. We intend to minimize

human inputs by automatically constructing training examples, just from the analysis of corpora.

1.3 Work Overview

In this work we propose a completely new approach within the Text Summarization research field,
for the specific task of Sentence Reduction, which follows an unsupervised learning methodology in
order to induce a set of relevant sentence compression rules, based on shallow linguistic processing.
We designed a system for learning sentence simplification rules in a completely autonomous manner
which is composed of five main modules, organized in a pipeline scheme as shown in Figure 1.2. The
first three are responsible for data extraction and preparation and in the fourth one the induction
process involves, giving as a result a set of rules, which might be applied (and evaluated) in other

web news, simplifying its sentences, which corresponds to the last module.

Let us analyze this process in more detail. In the first step, web news stories are gathered from
related news events, collected on a daily basis. For a given event, for example a terrorist attack,
several news stories are collected from different web news sources and their sentences joined in order
to discover paraphrases. Existing mathematical functions are explored and new ones are proposed,
and their performance is compared. A special relevance is given to a special type of paraphrases,
named asymmetrical (Definition 2, in Section 3.1), since they contain a variability factor which is
important for learning sentence simplification patterns, that is an asymmetry in terms of sentence
length. An example of an extracted paraphrase is shown below and more details about this issue are

presented in Chapter 3.

In the second module, for every extracted paraphrase from the previous step, word alignment be-
tween the paraphrase sentences is performed. These similar-sentence word alignments are likely

to reveal local differences and asymmetric regions, among the common ones, indicating possible
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Figure 1.2: The Pipeline Architecture.

Sa: Police used tear gas to disperse protesters.

Sy,: Police responded by firing tear gas, sending the protesters scattering.

Figure 1.3: An example of an asymmetrical paraphrase extracted from related news events.

sentence transformation patterns that may be exploited in learning. Sequence alignment algorithms
used for DNA sequence alignments in Bioinformatics were adapted to make the word alignments be-
tween our paraphrase sentences. For that purpose, a hew dynamic algorithm is proposed in order
to select the most suitable alignment algorithm for a given sentence pair. More information about
this and their related issues are detailed in Chapter 4. Next we show the alighment obtained for the

paraphrase sentences previously shown in Figure 1.3.

police used tear gas _ to disperse protesters

police responded by firing ____ tear gas , sending the

protesters scattering .

Figure 1.4: An aligned paraphrase sentence pair.

The third step shown in Figure 1.2 aims at looking at these special regions and prepare sets of learn-
ing instances to be used in a machine learning environment in order to discover general sentence
simplification rules. A special kind of paired-sentence regions are observed, which we call bubbles,
extracted and conveniently preprocessed to feed the induction process. A complete description of

this issue is made in Subsection 6.1, and several examples of bubbles are shown there.
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The induction process generates sentence reduction rules having the following general structure:
|X| =1 A Leopg N Xeond N Reong = eliminate(X) (1.2)

This rule scheme means that a sentence segment X of size n may be eliminated if certain conditions
hold on the left (L), middle (X) and right (R) segments. In a sentence, the left and right segment
contexts are relative to the segment laying in between and called the kernel segment. Each seg-
ment may in general contain several words. In this work we have decided to maintain the maximum
segment size smaller than four, either for contexts and for the kernel, although in the future some
size variations may be explored. For the sake of simplicity and compactness, we will omit the con-
sequent rule, since in this rule scheme it will always be equal to “eliminate(X)". In order to provide
a quick overview and a general flavor of the system output, Figure 1.5 presents three different rules

automatically learnt by our system. These rules comply with the rule scheme presented in 1.2 and

IX|=1 A L.=NP A Xy=J]J AR =1IN (1.3)
|X| =2 A Ly =and A Xy =the A Ry = JJ (1.4)
|X| =3 A L, =VP A X; =the A Ry =NN (1.5)

Figure 1.5: Sentence Reduction Rules, automatically learned.

they are formed by a conjunction of several literals, setting constraints under which certain sen-
tence subparts may be deleted, thereby transforming the original sentence and giving, as a result, a

simplified version of it.

In the previous subset of induced rules, presented in Figure 1.5, the X symbol stands for the candidate
segment to be dropped - the kernel segment; the L(*) and R(*) are conditions over the left and right
context segments, respectively. The numeric subscripts indicate the sentence word position for which
a given segment condition applies, and it is always relative to the kernel. The position index starts
with 1 and is counted from left to right in the right context R and in the kernel segment X, and
from right to left in the left segment L, thus L; and X; will always represent the neighbor word or
part-of-speech tag. Such a sentence scheme is exemplified in the next figure, in which we have a

real news sentence targeted to be simplified by one of our induced rule.

L; IL> Ly X X5 X; R K> R;
Congressional leaders say the emerging stimulus program could cost

between %400 billion and $700 billion.

Figure 1.6: Sentence schematic division.

The "c" subscript, in the rules in Figure 1.5, indicates a reference to segments with a given syntactic

10
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chunk type. For instance, in the first rule, L. = NP means that the first chunk on the left of the
kernel segment must be a noun phrase. The | X| = n condition defines the kernel length, in terms of

the number of words it contains.

In order to illustrate how one of these learned rules can be applied to new raw text, let us for instance
consider the rule 1.5 from Figure 1.5. This rule says that a word sequence consisting of three words
(|X| = 3) will be eliminated if a verb phrase (VP) chunk is observed in the immediate left context
(L. = VP), and a noun in the right context, at position one (R; = NN). This rule also requires that
the first word of the sequence being eliminated (the kernel) must be "the", as we have X; = the.
This rule is a candidate to be applied to the sentence shown previously in Figure 1.6. To apply a rule
to a given sentence we have to mark it with a part-of-speech (POS) tagger and a chunker’ in order
to see whether the rule conditions are satisfied. Note that for POS tagging we are using the Penn
Treebank Tag set defined in Marcus et al. (1993). To help the reader we include a description of the
complete 48 tags in Appendix E. So, for the previous example we would obtain the following shallow

parsed sentence:

[NP congressional/jj leaders/mns] [VP say/vbp] [NP the/dt emerging/vbg stimulus/nn
program/nn] [VP could/md cost/vb] [NP between/in $/$ 400/cd billion/cd and/cc $/$
700/cd billion/cd]

In this notation each word is followed by a slash with its POS label and each sentence chunk is delim-
ited by brackets with the syntactic chunk label positioned at its beginning and written in uppercase
letters, unlike words and their POS labels, which are written in lowercase. With this notation it
turns out evident that rule 1.5 can be applied to this sentence and as a result the word sequence

"the emerging stimulus” would be delete, giving rise to the following reduced version:

Congressional leaders say program could cost between $400 billion and $700 billion.

This new sentence seems perfectly acceptable, as it preserves the main meaning, and provides a

reduction of three words from the original sentence.

Several rules may be applied to a given sentence, and obviously the more rules are applied the more
simplified the sentence will end-up. Compositional rule application can be made, if for instance
after a certain rule application the sentence is transformed in a new one complying with the con-
ditions of another rule which was not applicable earlier to the original sentence. In particular, we
propose a set of rules which allow the application of a simplification of a given sentence. Indeed,
some extra constraints must be observed in order to ensure syntactical correctness of the obtained
simplified versions. For that purpose a part-of-speech statistical model is employed for checking if

the candidate rule would yield a syntactically likely sentence, and if not it will prevent that particular

"We used the OpenNLP toolkit in this process. URL: http://opennlp.sourceforge.net/ [November 2010]

11


http://opennlp.sourceforge.net/

1. INTRODUCTION

rule from firing for that specific case. This process of sentence reduction rules applicability corre-
sponds to the fifth and last module from our system pipeline (Figure 1.6), where new unseen web
news documents, supplied by the user, are simplified through the application of previously learned
sentence reduction rules. Naturally our focus is the simplification of sentences. However, it could
be combined with other already known summarization techniques, in order, for example, to first
filter out irrelevant sentences and afterwards apply rule simplifications to remaining sentences in

the document.

1.4 Main Scientific Achievements

The research work developed in the course of preparing this thesis gave us the opportunity to achieve
several relevant scientific contributions. These were presented at specialized international confer-
ences, and published in the proceedings. We have scientific publications in each one of our three
main work components: extraction, alignment, and induction. A brief synthesis of the set of publi-
cations, is given here together with a brief description and explanation of each one. The list follows

the chronological order of the events.

In the field of paraphrase identification and extraction from text corpora, we have three publica-

tions:

» Cordeiro et al. (2007b) (IEEE - ICCGI 2007) - This article presents the Sumo metric as a better
function for paraphrase identification, providing the results of an experimental comparison
between this function and four other functions used by others for the same task. The Sumo

function is presented in Subsection 3.3.1.

o Cordeiro et al. (2007a), (AAAl - FLAIRS 2007), DBLP - This contribution is a refinement of the
previous one, in which some aspects are better clarified. It also contains an experiment carried
out with paraphrase clustering by using the Sumo function as a similarity metric between two

sentences. This issue is discussed in Section 3.4.

» Cordeiro et al. (2007c) (Journal of Software 2007), DBLP - Our third publication starts with
our Sumo function and goes a bit further by proposing a new family of functions sharing sev-
eral common characteristics ideal for asymmetrical paraphrase identification in corpora. This
work contains also a comparative study with the conventional existing functions for shallow
symmetrical paraphrase identification. The details of this contribution can be found in Section
3.3.

Related with the topic of word alignments in paraphrasic sentences, described in Chapter 4, we have

one contribution:

12
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» Cordeiro et al. (2007d) (ACL 2007 workshop) - This article is a concise introduction to the issues

presented in Chapter 4, related to the alignment of words between paraphrasic sentences.

Our last publication within the scope of this thesis, is related with the induction process, described

in Chapter 6:

» Cordeiro et al. (2009) (ACL 2009 workshop) - This article describes how Inductive Logic Program-
ming is used for learning sentence reduction rules, from our corpus of aligned paraphrases. This
work was presented in an ACL' workshop specially dedicated to the topic of automatic language

generation and summarization.

More recently, the work contained in the previously mentioned contributions? has been integrated in
new research tasks, which go beyond the aim of this thesis. In collaboration with other international
researchers, we have produced two publications on the topic of automatic word semantic relation

discovery from corpora:

« Grigonyté et al. (2010) (COLING? 2010) - This work uses an adapted version of the Sumo metric
and of the alignment algorithms in order to automatically discover synonyms from medical

corpora.

« Dias et al. (2010) (JNLE* 2010) - This work explores aligned paraphrase corpora to automatically

discover word semantic relations.

1.5 Thesis Plan

This thesis started by giving a short introduction to the area of Automatic Text Summarization, in
which our work is integrated. This was followed by a presentation of our work main motivations
and objectives. After, a work overview about sentence reduction was supplied to give the reader a
quick introduction about the research work developed. The work is composed by three main research
components, which are investigated separately and then adequately combined in order to produce

results to fulfill our initial objectives. These areas are:

1. Automatic paraphrase extraction from corpora,
2. Automatic paraphrase word alignment,

3. Sentence reduction rule induction, from aligned paraphrases, and application of rules.

TACL - Association for Computational Linguistics.

Z|n particular the work related with paraphrase detection and alignment.
3COLING - Computational Linguistics

4INLE - Journal of Natural Language Engineering
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1. INTRODUCTION

The last one is certainly the most relevant of our research goals, but its strength is also dependent
on the data automatically collected in the first two components. In each component new solutions
were investigated and proposed. Therefore we dedicate one chapter for each one of these three

components.

In Chapter 2 we present the relevant related work in the area of sentence reduction, giving detailed
description and also addressing some critical aspects by indicating strengths and difficulties of each

approach.

In Chapter 3 we address the problem of automatic paraphrase extraction from corpora, mainly fo-
cused on using shallow techniques. Some already existing functions are presented and new ones are

proposed, together with justifications favoring the use of these last ones.

The issue of automatic paraphrase word alignment is discussed in Chapter 4. Optimal global and local
sequence alignment algorithms are detailed as well as their technical adaptation to our problem of
word alignment between paraphrase sentence pairs. Even here, in a well studied area having ma-
ture procedures and algorithms established, mainly from bioinformatics, we propose new solutions,

relevant for the particular problem faced.

Some theoretical foundations like First Order Logic and Inductive Logic Programming, as well as the
induction tools used, are presented in Chapter 5, before giving a complete description of our learning

process in Chapter 6. The reader with experience in those areas may skip Chapter 5.

In Chapter 7, we provide detailed experimental results obtained from every relevant issues developed
and presented throughout this thesis and finally Chapter 8 presents the main conclusions of our work

and points out several future directions of research worth to be followed.
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Chapter 2

Related Work in Sentence Reduction

"No man is an island, entire of itself ..."

John Donne (1572-1631)

Sentence reduction' has been an active subject of research during this decade. A set of approaches
involving linguistic knowledge, machine learning algorithms and statistical models has been investi-
gated, employed, and discussed in literature. Throughout this chapter we present various relevant
approaches found in the literature that address the issue of sentence reduction. We see this as a
promising area for enhancing the quality of automatic text summarization. However, so far, we
have not found much research work on sentence reduction. It is still an area with many issues to be

explored.

We noticed that the main approaches made to this area lie in three different sub-areas, in terms
of the main methodology employed. These can be labeled as translation-based, heuristic-based,
and learning-based methods. In the approaches inspired by automatic machine translation, the
problem of sentence reduction is interpreted as a kind of translation task, from a "source language”
of expanded sentences (input sentences) to a target language of their possible "compressed versions"”
(output sentences). Section 2.1 addresses the translation-based approach. The heuristic-based
approaches use rich linguistic knowledge resources available electronically. These approaches are
presented in Section 2.2. The approaches based on machine learning, presented in Section 2.3, use
supervised learning methods, in which a set of sentence pairs is used to train a system for learning
sentence reduction patterns. Each pair consists of a sentence accompanied by its reduced version.
Some systems employ techniques from more than one of these three categories, for example exploit

machine learning and also linguistic knowledge.

Our approach is machine learning based. It differs from other existing systems in that it extracts
and formulates the required learning instances, from web news stories text, without any human

intervention.

"In the literature it is also referred as sentence compression, sentence summarization, or even as sentence simplification.
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2. RELATED WORK IN SENTENCE REDUCTION

2.1 Automatic Translation Methodologies

Historically, Automatic Machine Translation (AMT) was the main motivation leading to the creation of
the Natural Language Processing (NLP) discipline, back in 1950. Therefore a wide range of research
efforts have been dedicated to this throughout the subsequent decades, pursuing the goals of AMT,
which originally seemed quite reachable, but has revealed itself as a very hard problem with many
open questions to be solved even in the XXI century. Naturally a huge set of methods, algorithms,
and approaches developed in the AMT field have proved themselves to be useful in other NLP fields,
like automatic text summarization (ATS). In fact original ATS approaches began to appear roughly in
the second half of the 1990 decade. Many researchers were been working in AMT before realized
that their techniques could naturally be adapted to ATS. Therefore, several AMT approaches serve as
a basis for summarization. This includes in particular the sentence reduction problem, representing
a simplified version of a translation task, from a source language to a target language. In this section
we discuss several earlier sentence reduction approaches, mainly inspired by this AMT paradigm, as

well as some more recent ones which continue this tradition.

2.1.1 Origins - Pioneering Projects

One of the earliest work starting the sentence reduction field was carried out by Chandrasekar &
Srinivas (1997) which aimed at simplifying long sentences so as to serve several practical purposes,
among those, to ease machine translation. The whole idea was to transform a long and complicated
sentence into two or more shorter sentences and consequently simplify the process of automatic
machine translation. The following example was retrieved from the original article and included

here for illustration.

Talwinder Singh, who masterminded the Kanishka crash in 1984, was killed in a fierce

two-hour encounter.

The previous sentence would be split into the two following sentences:

Talwinder Singh was killed in a fierce two-hour encounter.

Talwinder Singh masterminded the Kanishka crash in 1984.

This method of long sentence splitting was described as a two stage process. The first one provides a
structural representation of the sentence and the second one applies a sequence of rules to identify
and extract the components that can be simplified. Special sentence splitting points ("articulation-
points”) such as phrasal extremes, punctuation, subordinate/coordinate conjunctions and relative

pronouns are identified, based on predefined rules and grammatical formalisms.
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2.1 Automatic Translation Methodologies

To avoid full sentence parsing, two simpler formalisms were experimented and compared to generate
sentence structural representations: the Finite State Grammar (FSG) and a Dependency Model (DM).
The first one is simpler than the second one, yielding sentence phrase chunks, while the DM formalism
uses partial parsing and is based on a dependency representation provided by a Lexicalized Tree
Adjoining Grammar (LTAG). An example of a sentence simplification rule, retrieved from the original

article is shown below:
X:NP, RelPron Y, Z — X:NP Z. X:NP Y.

This rule states that a sentence segment composed by a noun phrase X followed by a relative pronoun
Y and some other subsequence Z, will be transformed in two sentences starting with the same noun

phrase X and the first one ending with sequence Z, and the other ending with Y.

The evaluation of this work was rather too simple from our current perspective, sixteen years later.
However, as far as we can tell it was a pioneering work in the field, if not the first attempt in sentence
simplification. Using a corpus of newswire data and only considering relative clauses and appositive
simplification, 25 out of 28 relative clauses and 14 out of 14 appositives were correctly recovered,
by using the DM formalism, whereas with the FSG only 17 relative clauses and 3 appositives were

recovered. However, this work is exclusively based on a set of handcrafted rules.

Another pioneering approach in sentence reduction was the work by Grefenstette (1998) aiming at
simplifying text to provide audio scanning service for blind users. The major concern of this work
was not the generation of grammatically correct reduced sentences, but rather to provide relevant
sentence word sequences (telegraphic type). The aim was to let the targeted users to obtain a quick
preview of the text and help them to decide whether they would want to hear the original full text.
The input sentences are transformed by using a part-of-speech tagger which also groups words into
chunks and marks them with group markers identifying verb and noun groups. For each group, special
component types are identified, like for example "Head of Passive Verb Group”, "Head of Infinitive
Verb Group”, "FreeNoun" or "PrepNoun”. By including a set of filters the system can also identify
syntactic dependencies, such as subject-verb, verb-indirect objects, etc. Afterwards the groups and
annotated text are transformed using a process which eliminates words depending on the level of
reduction specified according to one of the eight predefined levels, which are shown below. In each

case the rule describes which items are kept. The rest is eliminated.

1. Keep only proper names, no subclauses;

2. Keep only subjects and object nouns, no subclauses;

3. Keep only subjects, head verbs, and object nouns, no subclauses;

4. Keep only subjects, head verbs, and object nouns, preposition and dependent noun heads, no subclauses;

5. Keep only proper names, including subclauses;
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2. RELATED WORK IN SENTENCE REDUCTION

6.

7.

8.

Keep only subjects and object nouns, including subclauses;
Keep only subjects, head verbs, and object nouns, including subclauses;

Keep only subjects, head verbs, and object nouns, preposition and dependent noun heads, including

subclauses.

For example, level eighth is somewhat similar to the process of stop-word elimination from text. It

has a relatively minor impact on text reduction. The generated telegraphic text version could feed a

speech synthesizer and fulfill the system design main objective. An example from the original article

is included below, where the input sentence is:

Former Democratic National Committee finance director Richard Sullivan faced more pointed ques-
tioning from Republicans during his second day on the witness stand in the Senatets fund-raising
investigation. While he grew flustered at times, the 33-year-old Sullivan stayed tight-lipped,

downplaying concerns about former fund-raiser John Huang.

The generated reductions for each one of the eight predefined levels would be:

1.

Richard Sullivan Republicans Senate Sullivan John Huang.

. Richard Sullivan pointed questioning. Sullivan tight-lipped concerns.

. Richard Sullivan faced pointed questioning. Sullivan stayed tight-lipped concerns.

Richard Sullivan faced pointed questioning from Republicans during day on stand in Senate fund-raising

investigation. Sullivan stayed tight-lipped concerns about John Huang.

. Richard Sullivan Republicans Senate Sullivan John Huang.

. Richard Sullivan pointed questioning. Sullivan tight-lipped concerns.

Richard Sullivan faced pointed questioning from Republicans during day on stand in Senate fund-raising

investigation, he flustered, Sullivan stayed tight-lipped concerns about John Huang.

. Richard Sullivan faced pointed questioning from Republicans during day on stand in Senate fund-raising

investigation, he flustered at times Sullivan stayed tight-lipped concerns about John Huang.

The work of Witbrock & Mittal (1999) used more sophisticated approach for this task. It was also

inspired by previous work' in machine translation, and has already employed machine learning to

train their language models. Here the summarization task is described as the process of translation

from a verbose (source) language into a succinct (target) language. It was claimed that it is simpler

than translation because here we do not have to capture every sense and nuances of the source docu-

ment. This work only aims at generating very small summaries, such as just a headline, representing

the original document. This system may be trained by feeding it with a set of (document, summary)

'Essentially the IBM CANDIDE system.
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2.1 Automatic Translation Methodologies

pairs that are used to learn translation mappings between the source and the target formulations.
During the training process the system constructs a statistical model, representing a mapping be-
tween the two formulations. The training process is subdivided in two main tasks named as: content
selection and surface realization. The first one models the likelihood for a given word from the

source document to be present in the target document (summary):
P(word € sumary | word € document) (2.1)

The second task aims at producing likely sequences of words in the summary, based on a language
bigram model. The overall likelihood of a word sequence with n tokens S = [wl,wz, ey wn] is calcu-

lated by multiplying the sequence of their bigram probabilities:

likelihood(S) = P(wy) * ﬁP(wi | wi 1) (2.2)
i=2

Actually the log-probability (LP) is taken, as is usual in such cases. For unseen bigrams the back-off
discount method (Katz, 1987) is used. For example the probability of the sequence "Details of sexual

affair" would be equal to:
LP(details) + LP(of |details) + LP(sexual|of) + LP(affair|sexual) (2.3)

These two models are combined in a single one, in order to rank candidate summaries which can
meet certain constraints, like for example compression rate'. This combination is made simply by
weighted sum of the two model probabilities from equations 2.1 and 2.2. In our previous example

we would have:

o % [LPeopq(details) + LPuoya(0f ) + LPooya(sexual) + LPc(affair)] + (2.4)

B * [LP(details) + LP(of |details) + LP(sexual|of) + LP(affair|sexual)]

where LP,y,;(word) means log [P(word € sumary | word € document)|, and a and 8 are weights

equal to one.

The application of these models for sentence compression on new text rises the issue of searching
good combinations in order to generate good sentence compression. That is, choosing the sequence
of words that maximizes the probability of the model combination, as in the example shown in 2.4.
Thus, a first order Markov model was used and a Viterbi beam search algorithm (Forney & David,

1973) to efficiently find a sub-optimal summary.

To evaluate the system, a set of (document, summary) pairs were extracted from the Reuters news
agency, where each "summary" is just the "document" (news) headline. The evaluation procedure
consisted in simply counting term overlaps between the generated headlines and their corresponding

original data.

"This expression means the size of the summary over the size of the original document.
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2. RELATED WORK IN SENTENCE REDUCTION

2.1.2 Using an HMM for Optimizing Translation Templates

Another work in the field of sentence reduction, highly influenced by the AMT area, was made by
Nguyen et al. (2004). First, they adapted a translation-template learning (TTL) method, used in
the example-based machine translation (EBMT) framework, to the sentence reduction problem. To
avoid the problem of complexity that arises in rule combinations, they proposed an optimization
based on a Hidden Markov Model (HMM), in order to efficiently find the best template reduction rule

combinations for a given sentence.

The work on EBMT was initiated by Nagao (1984) and was one of the main approaches to AMT based
on corpora. Within this framework, the TTL method (Guvenir & Cicekli, 1998) has been successfully
applied in learning translation examples among two languages, for example, from English to Turkish.
Therefore in Nguyen et al. (2004) sentence reduction is interpreted as a kind of translation task, from
a sentence source language to a target language of reduced sentences, in order to apply this TTL
method to sentence reduction. This method learns a set of reduction rules, referred to as template-
reduction rules, from a set of learning examples, which are pairs of long and reduced sentences

(05, U't>1 , obtained from a parallel corpus. A template-reduction rule (TRR) is a structure defined as:
51 Sz SN A Tl T2 TK

where each S; and T; are either constants or variables in the source and target languages, respec-

tively. One example is shown in Figure 2.1. In TRRs, a constant might be a word or a phrase and a

It is likely that % will work on | -i'_/ S,
T 1':}7 will work on 7 T,

Figure 2.1: An example of a learned template-translation, in the context of sentence reduction. It is assumed

that T7 is in some sense a shorter version of S,.

variable, like those Sy, Tq, S4, and T3 in Figure 2.1, might be substituted by a constant. A TRR without
any variable is called a lexical rule, and these may substitute variables in other template-reduction
rules. For example in a system having already the rule shown in Figure 2.1 and the following two

lexical rules

both companies < companies

high performance computing « computing

it would reduce the sentence

"The s and t indexes mean respectively source and target.
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2.1 Automatic Translation Methodologies

It is likely that both companies will work on high performance computing

into

Companies will work on computing

just by combining the TRR with the two lexical rules, by substituting the corresponding variables.

To obtain a template-reduction rule as the one shown previously the template learning algorithm
requires two similar reduction cases in the training corpus of (cs, 0}) sentences. For example, the
following two training examples

o, + The document is very good and includes a tutorial to get you started

oy : Document is very good.

and

052 : This paper is very good and includes a tutorial to get you started

atz : Paper is very good.

will give rise to the TRR shown in Figure 2.2. The details about this generalization are explained in

S is very good and includes a
' tutorial to get you started

:f'_- T, ) is very good

Figure 2.2: An example of a template reduction rule, learned from two similar cases.

Nguyen et al. (2004). Hence, this system performs a generalization for two similar learning cases
encountered in the training data. Such generalization policy may yield a high number of TRRs, and
in our opinion of low quality, heavily affected by the variability or noise in the corpora. This issue

will be explained in more detail in Chapter 8, discussing our work.

The major difficulty of this work is its huge computational complexity, arising with even small learn-
ing datasets. The problem arises due to the possibility of combining lexical rules with any TRR
variable. For instance, in the experiments reported in the author's article (section 4), 1500 {c;, 03)
pairs gave rise to 11034 TRRs and 2297 lexical rules. For a new sentence with a matching TRR having
n variables and k matching lexical rules, a brute-force approach would have to explore k" reduction

combinations! For example, let us assume that the system has the TRR shown in Figure 2.1, together
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2. RELATED WORK IN SENTENCE REDUCTION

with the following six lexical rules shown below. Let us further assume that it is seeking the best

strategy to reduce the following sentence

It is likely that two companies will work on integrating multimedia with database tech-

nologies.

For the first TRR aligned variable pair (Sz, T) one gets:

two companies «— two companies
two companies — companies

two companies — @

For the second TRR aligned variable pair (S4, T3) one gets:

integrating multimedia with database technologies — <unchanged>
integrating multimedia with database technologies — multimedia

integrating multimedia with database technologies PN dayabase technologies

In this case one would end up with a total of 9 = 32 combinations. To overcome this complexity
barrier, the authors implemented a Hidden Markov Model (HMM) to efficiently compute the most
likely sequence of lexical rules to be combined, in a given sentence matched to TRR. For this problem,
the lexical-rules are the model hidden states and the probabilities for the HMM are trained using the
corpus of (05, 0}) sentences through the Baum-Welsh learning algorithm (Baum & Eagon, 1967). More
details about it may be found in Nguyen et al. (2004). The introduction of this HMM technique allowed
to lower the previously mention complexity factor, from O (k") to O(n kz), thanks partly to the use

of the Viterbi algorithm (Viterbi, 1967).

The evaluation of this system was performed using a set of sentence pairs of long and reduced sen-
tences, obtained from a vietnamese news agency, where 1500 pairs were manually corrected and
used to generate the TRR and lexical rules. Afterwards additional 1200 sentence pairs were used,
from which 32 pairs were randomly selected for testing and the remaining for HWM parameters esti-

mation.

The authors described a similar evaluation procedure as used by Knight & Marcu (2002) and claimed
that the system achieved a human comparable performance. However some key issues were not well
clarified, as for example the kind of manual corrections needed for the 1500 sentence set extracted.
Moreover, since they claimed that the algorithms could easily be adapted for any language, why did
they not test the system with the English language? In particular with the dataset used by Knight &

Marcu (2002), since they made several qualitative comparisons of their work with this system. We
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2.2 Heuristic Based Methodologies

suppose that the main reason for that is because their induced templates are weak generalizations,
learned from a very few examples, leading to a set of lexical rules with low support, unlike in AMT,
where this technique has been used for induction of translation templates, where a huge set of
examples, obtained from parallel corpora, is usually employed. In our work, we have conducted
an experiment having several fundamental similarities with this approach and the results obtained
were in fact much worse when compared to the performance obtained when rules have a higher
generalization power. In our case we use a special type of learning instances, named bubbles (Section
6.1) to feed an induction engine and obtain more general sentence reduction rules. Our baseline
experience was to employ the set of bubbles directly as being sentence reduction rules, since they
represent such cases, and the obtained results are clearly much lower (see line BL in Table 7.10),

when compared with more general reduction rules, obtained after the induction process.

2.2 Heuristic Based Methodologies

In this section we present methodologies which are mainly based on rich language knowledge, as well
as specific heuristics designed for sentence reduction, like for example a set of handcrafted rules.
These approaches may also employ other methodologies, like machine learning, although their main

force relies mainly on supplied linguistic knowledge.

2.2.1 Using Rich Linguistic Knowledge

The work of Jing (2000) presents a sentence reduction system for automatically removing extraneous
phrases' by combining multiple resources of knowledge in order to decide which are the most appro-
priate sentence phrases for deletion. As in the majority of work in this field, the main objective is to

eliminate or reduce sentences as much as possible, while maintaining their grammatical correctness.

Six major operations that can be used were identified in a previous work (Jing & McKeown, 2000).

These are:

1. remove extraneous phrases,

2. combine reduced sentences,

3. syntactic transformations,

4. substitute phrases by their paraphrases,

5. substitute phrases with more general or specific descriptions,

6. reorder extracted sentences.

A phrase is a group of words functioning as a single unit in the syntax of a sentence, for example a noun phrase, or a

verb phrase.
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2. RELATED WORK IN SENTENCE REDUCTION

Naturally, for sentence reduction the most effective from is removal of extraneous phrases, which

was named as sentence reduction.

The implemented system operates by using multiple sources of knowledge to make decisions concern-
ing sentence reduction, which include lexical, syntactical, and corpus computed statistics. Basically

four linguistic resources were employed, which are summarized in the following list.

e Corpus - From a collection of news documents and their corresponding human-written ab-
stracts, a set of 500 sentence pairs were extracted, where for each pair of sentences of the
form (so,igmal, Sreduc), the sentence Soriginal €@me from the original article and s,.4,, from the

human-written abstract.

« Lexicon - A combination of lexical resources, including the computational lexicon COMPLEX
(Grishman et al., 1994), which provides a detailed syntactic information for 380k English head
words; English verb classes and alternations (Levin, 1993), which studies and defines syntactic
and semantic verb proprieties; The WordNet lexical database (Miller, 1995) and the Brown
Corpus tagged with WordNet senses. The lexicon includes subcategorizations for over 5000

verbs and was used to identify the obligatory arguments of verb phrases.

« WordNet (Miller, 1995) - Provides information on lexical relations: synonym, antonym, meronym,

entailment and causation. These lexical links are used to identify the focus in the local context.

« Syntactic Parser - The IBM English Slot Parser (McCord, 1990), for sentence full parsing includ-

ing thematic role identification (e.g. subject, object).

These elements are used first to produce a full parse tree, then to identify the critical undeletable
sentence components for ensuring grammatical correctness as well as rule exceptions for those sen-
tence components that are usually deleted, like prepositional and to-infinitive phrases, as well as

the adjectives.

Afterwards the system computes a score for each sentence phrase, which represents the amount of
relatedness to the main topic. This computation is performed by weighting WordNet lexical relations

of each phrase word to the main topic, through the function shown in Equation 2.5.

9
ContextWeight(word) = ) L; * NUM,;(word) (2.5)
i=1

In this function nine types of lexical relations are considered and each one is represented by the i
index. The function NUM,;(word) counts the number of i type lexical relations between the word
and any other word in the phrase (context), and L; is a weighting factor for that connection type.

The phrase score is calculated by adding all weighted lexical contextual relations.
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The last procedure performed by the system is the computation of the likeliness of sentence subtree
removal, from the training data of <son~giml, Sreduc) SENteNce pairs, ending up with a set of phrase

removal probabilities, such as:

Prob{remove(when-clause) | verb = "give”}

which in this case represents the probability of removing a "when-clause”, when the main verb is

"give".

This last system component was the only one independent from linguistic knowledge and it aims at
modeling how likely humans delete certain phrases from sentences though for probabilistic models.
In our view a training set of 500 sentence pairs seems really insufficient. Moreover, the paper does not
present a detailed description or algorithm showing how the final reduction decisions are carried out
and generally the only thing mentioned is that the system will decide to remove a sentence subtree if
it is not grammatically obligatory, if it is not the focus of the local context, and if it has a "reasonable
probability” of being removed by humans. However, detailed decision parameters and procedures
are omitted. For example, what is the level of the "reasonable probability” just mentioned? In terms
of evaluation the authors claim that 81.3% of reduction decisions made by the system agreed with

those of humans, though no evaluation concerning grammatical correctness was performed.

This system is hugely dependent on the availability of all rich language knowledge resources and
therefore can hardly be adapted to non-english languages, most of them with very scarce computa-

tional linguistic tools.

2.2.2 As an Optimization Problem

Recently a different approach to the sentence reduction problem was presented as an optimization
problem, where the goal is to find the optimal reduced sentence version satisfying a set of integer
programming constraints (Clarke & Lapata, 2006). In this work a sentence S is characterized as a
sequence of n words (S = (w1, wy, ..., wy)) and the space of all possible reductions contains all the
2" reduced versions of S, obtained by word elimination. As in any optimization problem, a set of
constraints guides the search through the narrowing subset of valid solutions (here reductions), until
the optimum is reached. The authors codify a set of linguistic constraints as linear inequalities,
in order to ensure the structural and semantical validity for the generated reductions. Indeed, in-

teger programming technique was used in which solutions must be linear combinations of integer
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quantities. For example their objective function z is given by

n
maximizez = )_y;- P(w;)
i=1
n
+ Z pi - P(w;|start)
i=1
n—2 n—1 n
+ 2 Z x,-]-k~P(wk|wi,wj)
i=1 j=i+1k=j+1
n—1 n
=+ 2 qi]--P(end|wi,w]-)
i=0 j=i+1
subject to:
Yi, Pis qij, Xijk = 0 or 1 (2.6)

where P(-) represents n-gram models. In particular unigram, bigram, and trigram models were em-
ployed, as well as a special unigram model for sentence start and a bigram for sentence termination.
Thus parameters y;, p;, qij, X;jx are binary functions indicating whether a given n-gram probability

counts or not for the final scoring function.

Afterwards sequential and linguistic constraints were defined, which encode a set of language knowl-
edge to guide the search for a useful, correct, and relevant (likely) solution which naturally in this
case will be a reduced sentence version from the original one. Naturally, the aim is to reduce the

search space as much as possible.

The sequential constraints define some sentence positional restrictions, like for example, a condition

that only one word can start a sentence, through the equation

Yopi=1 2.7)
i=1

or a more complex one stating that if a word is included in a sentence then it must either start it,
or be preceded by two words or one other word and the start token "start" through the following
condition

k—2k-1

Vk:k € {1,...,1’1} Y — Px — 2 injk:()' (2.8)
i=0 j=1

Overall five sequential constraints were defined. In addition to the linguistic constraints encoding
grammatical conditions that must be preserved for the generated reduced sentences, like modifier
constraints ensuring that head words and their modifiers must still be connected in the reduction,
sentential constraints express some general intuitions, like one stating that at least one verb must
be included in the reduction as shown in Equation 2.9.

i yi =1 (2.9)

i€verbs

Other constraints state that if a verb is present in a sentence so must be its arguments and vice-versa.

Coordination is also handled in this constraint category, i.e. if two head words are conjoined in the
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original sentence, then if they are included in the compression the coordinating conjunction must
also be included. The third and last linguistic constraint category - compression-related constraints
- impose hard restrictions on the reduction output, by rejecting any sequence within brackets, forc-
ing personal pronouns to be included and forcing minimum sentence length. Details about such

constraints definitions are in the original paper.

Aiming at having relevant content words in the reduction, the first component in the objective func-
tion (Equation 2.6) was replaced by a significance score, and so a modified unigram model was

utilized, replacing Y_"' ; y; - P(w;) by
l Fg
I(wz)—ﬁ'fz'l()gfi (2.10)

where f; and F; are the frequency of w; in the document and corpus, respectively, and F, is the
sum of all topic words in the corpus. Considering the sentence parse tree, [ is the number of clause

constituents above w;, and N is the deepest level of embedding.

Regards results, the authors claim comparability with their current state-of-art, namely the work
of Knight & Marcu (2002) (see Subsection 2.3.1) and followed a similar evaluation method, though
using a greater number of human evaluators. Although no parallel corpus was necessary to train the
system, it is hugely knowledge-driven and generally can be described as an approach that makes
sentence reduction through a human supplied rule set, codified as constraints in the framework of
integer linear programming. This approach is not easily transportable to other languages, since a
redefinition of handcrafted linguistic knowledge is necessary. Furthermore it fails to cover a variety

of linguistic phenomena involved in the sentence reduction process.

2.3 Machine Learning Methodologies

In the last twenty years, a great variety of Al problems have been successfully solved by applying
machine learning (ML) techniques. The fundamental idea behind is to have trainable systems capable
of being dynamically adjusted as needed, by obtaining the information from the surrounding envi-
ronment. Nowadays one can find ML solutions in almost all NLP main subareas, ranging from machine

translation to automatic text generation, and including naturally automatic text summarization.

2.3.1 Training a Noisy-Channel Model

The work of Knight & Marcu (2002) is an interesting example of a method that involves applying ma-
chine learning to the sentence reduction task. This work expresses the sentence reduction problem
by following two different directions. The first one, referred to as the noisy-channel model, is based
on a bayesian learning model, borrowed from the coding and communication theory. The second one

a decision tree learning method that induces a set of sentence reduction rules in a form of sequences
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of syntactic transformations.

The fist approach was inspired by a quite "old" NLP metaphor introduced by the well-known informa-
tion theorist Claude Shannon around 1960 - the noisy channel model and decoding, in the context of
language transmission through media, like communication channels and speech acoustics (Jurafsky &
Martin, 2000). The general idea consists of looking at the sentence reduction problem as a message
transmission phenomenon, from a source space of reduced sentence versions to a target space of
expanded versions, where the extra information responsible for this expansion is considered to come
from some sort of random effect which superfluously inflates the original pure and concise sentence.
Therefore the main task of this approach consists in learning a new model - the decoder - from train-
ing examples of sentence pairs, in order to decode the expanded sentences back to their reduced

versions.

In this sentence transmission adaptation of the noisy-channel model there are two sentences involved
s and t, standing for the compressed and expanded sentence versions respectively, as illustrated in

Figure 2.3. The transmission process adds some noise to s, some spurious words, and as a result

compressed space

s: The operations of products vary

noisy
channel

t: Beyond that basic level, the operations of the three products vary

expanded space

Figure 2.3: The noisy channel model for sentence transmission.

an expanded sentence version is obtained from the transmission output. The goal of the sentence
reduction system is to recover the most likely original message from their noisy, expanded version t.
In order to do that the process is normally subdivided into three steps, common in any noisy channel

problem.

« The source model: Where the probabilities of the source sentences, P(s), are calculated
and estimated from corpora, hence preserving certain language principles, as low value for

ungrammatical sequences of words.
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» The channel model: It calculates the probability that sentence s is transformed into sentence
t through the noisy communication channel, which can be expressed as P(¢ | s), that is, a
probability of t given s. This information is obtained from the training process, by looking at a

set of n training examples in the form of {{(s1,t1),..., (su, tn)}-

o The decoder: This model applies the previous models, estimated during the training process,
to compute the most likely source sentence (reduced sentence version), for a particular new
assumed expanded sentence ¢. This is done by searching the sentence s that maximizes P(s | t),

through the usually used bayesian equivalent form:

argmax P(s|t) = argmax P(t|s)* P(s) (2.11)
s S

To compute the source model probabilities, aiming at grammatical correctness and language word
sequence likelihood, a combination of a Probabilistic Context Free Grammar (PCFG) score and a

standard word-bigram score is employed. First, the sentences are fully parsed through Collin's parser

tree(s)

T

NP VP

| RN
George VB NP

meets Kate

Figure 2.4: The parse tree for the "George meets Kate" sentence.

(Collins, 1997) and then the model probabilities are calculated from the parsed trees. For example, to
calculate the source probability of the sentence s = "George meets Kate", tree(s) will be taken (see
Figure 2.4) and its PCFG computed as shown below, where each conditional probability is estimated

from language corpora.

P{tree(s)} = P.fe{TOP -=> S | TOP} x Pore{S -=> NP VP | S}x
P.so{NP --> George | NP} x P.fo{VP --> VB NP | VP} x
P go{VP -=> meets | VB} x P.fo{NP --> Kate | NP} %
Pyigram{George | EOS} * Ppigrqm{meets | George} x

Pyigram{Kate | meets} * Pyigray {EOS | Kate}

For the channel model probability estimation the authors use a parallel corpus of sentences and their
reduced versions, extracted from the Ziff-Davis corpus of newspaper articles announcing computer
products. A total of 1067 pairs were extracted and used to train the model by aligning related

tree nodes among reduced and expanded sentences. From these related subtree alignments the
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estimates of syntactical tree expansions were used to define the decoder model. Such pairs are
called expansion-templates. Below we show five examples of possible expansion-templates from the

"NP --> DT NN"structure and their estimated probabilities:

Pexp{NP --> DT NN | NP --> DT NN} = 0.8678

Pexp{NP --> DT JJ NN | NP --> DT NN} = 0.0287
Pexp{NP --> DT NNP NN | NP --> DT NN} = 0.0230
Pexp{NP --> DT JJS NN | NP --> DT NN} = 0.0115

Pexp{NP --> DT NNP CD NN | NP --> DT NN} = 0.0057

Afterwards the system is ready to compute the decoder model, based on the learnt source and
channel models. The aim is to apply it to the new unseen sentences and obtain their likely reduced
versions. For a sentence t with n words, there exist a huge set of possible reduction combinations,
namely 2" — 1 possibilities, though many of them may be eliminated a priori due to their ungram-
maticality. In order to generate a set of grammatical reduced sentence versions from ¢ the authors
applied a generic extractor which was designed for a hybrid symbolic-statistical natural language
generation called Nitrogen (Langkilde, 2000). With this tool a selection of sentence subtrees from ¢
are scored, guided by the combination of word bigrams and expansion-templates inferred during the

training process. A ranked set of such generated sentence reductions for the sentence

"Beyond that basic level, the operations of the three products vary widely"

is shown in Figure 2.5. Each sentence is followed by its negative log-probability score, divided by

Beyond that basic level, the operations of the three products vary widely (1514K)
Beyond that level, the operations of the three products vary widely (1430K)
Beyond that basic level, the operations of the three products vary (1333K)
Beyond that level, the operations of the three products vary (1249K)
Beyond that basic level, the operations of the products vary (1181K)

The operations of the three products vary widely (939K)

The operations of the products vary widely (872K)

The operations of the products vary (748K)

The operations of products vary (690K)

Operations of products vary (809K)

The operations vary (522K)

Operations vary (662K)

Figure 2.5: A rank of reduced sentences, obtained from a given sentence.

the reduction length and this way rewarding longer strings. Generating such a sentence reduction
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ranking with different sentence lengths is certainly an interesting feature which enables a system to

better comply the user's desired compression rate.

Later Turner & Charniak (2005) made an extension of this work, showing a cleaned-up, and slightly
improved the noisy-channel model by incorporating supervised and semi-supervised methods for sen-
tence compression and additional linguistic constraints to improve compression. This work stresses
out conceptual problems inherent to the original noisy channel model used by Knight & Marcu (2002).
Since the noisy-channel is a statistically-based method its quality depends on large training quanti-
ties of data, contrary to the relatively scarce amount of data used in Knight & Marcu (2002) - 1035
training and 32 test sentences. The main reason for that was naturally the great difficulty involved
in extracting (s, t) examples selection from corpora. Therefore Turner & Charniak (2005) proposed
an unsupervised method to compress sentences without parallel training data by selecting sentence
joint rules' from the Penn Treebank, counting probabilistic context free grammar (PCFG) expansions
and then matching up other similar rules to form unsupervised joint events. An example of such a

joint rule is

(NP — DT NN, NP — DT JJ NN).

This data was used to train a new version of the decoder-model, which was named as Pexpand(t | s).
In order to avoid ungrammatical compressions, due to artificially generated training pairs, several
constraints were added, like for example one that does not allow the deletion of any subtree head,

as well as others preventing the deletion of syntactic complements.

The last section of Turner & Charniak (2005) explains the existence of a more theoretical problem in
using the noisy-channel model for sentence compression, which generally relies on assuming that the
probability of a compressed sentence, the P(s) from Equation 2.11, will simply be its probability as
a sentence in the language. However, this is generally false. In fact, and as stated by the authors,
one would expect that the probability of a compressed sentence should be higher as a member of

the set of all compressed sentences, than it is as a member of all English sentences.

2.3.2 A Symbolic Learning Method

Another approach, proposed by Knight & Marcu (2002), was the decision-based model in which
instead of inferring a statistical sentence reduction model, the learning strategy was directed towards
learning a set of tree sentence transformation rules to simplify sentences. This method is more
ambitious, since it aims at rewriting of sentence structure, through syntactical tree transformation,
instead of simple tree pruning as in the first model. For example the two schematic sentence parse

trees shown below represent a pair of expanded ( {(s) ) and reduced ( f(s;) ) sentences.

In this approach the system learns syntactic tree rewriting rules, defined through four operator types:

A sentence rule here means basically a sentence parse tree.
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s="abcde" —-—=> s,r="abe"
t(s) t(sr)
PN N
H A F D
| o~ |
a C B H K e
T |
b Q R D a b
.
Z d e
\
c

Figure 2.6: Illustration of a transformation for a sentence tree scheme.

Shift, Reduce, Drop, and AssignType. Sequences of these operators are learnt from the training
set. Each sequence defines a complete transformation from an original sentence to the compressed
version. For each learning instance (t(s),t(s;)) the system will generate possible transformation
sequences which codify a rewriting process from £(s) to £(s,). Any of these rewriting processes starts
with an empty stack and an input list with the words subsumed by ¢(s). Each word in the input list
is labeled with all syntactic constituents in #(s). At each step, the rewriting process applies the
appropriate operation that aims at reconstructing the smaller sentence f(s,;). The four operation

types mentioned above may be briefly described as follows:

« Shift - Transfer the first word from the input list to the stack,

« Reduce - Pop the k syntactic trees from the top of the stack, combine them into a new tree

and push it on the top of the stack,
« Drop - Delete sequences of words from the input list that corresponds to syntactic constituents,

« AssignType - Change the POS tag of trees at the top of the stack.

The system uses 109 reduce operations, 63 drops, 37 assign types, one for each POS tag, and naturally
one single shift operator. This sums up to a total of 210 possible operations that may be applied at

each iteration of the reconstructing path from ¢(s) to f(s;).

Afterwards, the system uses the C4.5 (Quinlan, 1993) decision tree induction algorithm to learn a
set of conditional sequencing operator rules such as the ones shown in Figure 2.7. Each sequence
of operators can be compared to a small sentence tree transformation program, consisting of a set

of transformation instructions, taking the original sentence tree to its reduced version. The rules
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Rule 1: IF previous operation was not “Reduce” AND
previous operation was not “Shift” AND
previous operation was not “AssignType” AND
the input list starts with a syntactic constituent of type WHPP
THEN drop from the input list the words subsumed by WHPP.
Rule 2: IF there is only one tree in the stack AND
previous operation was “Reduce” AND
the syntactic label of the tree in the stack is NP-A AND
the input list starts with a syntactic constituent of type WHNP
THEN drop from the input list the words subsumed by WHNP.
Rule 3: IF previous operation was “Drop” AND
the input list starts with a syntactic constituent of type ADJP AND
the input list does not start with a syntactic constituent of type NP
THEN drop from the input list the words subsumed by ADJP.

Figure 2.7: Three learned rules of sentence syntactic tree transformation toward reduction.

in Figure 2.7 are self-explanatory and the symbols used are from the Penn Treebank' tag set. For
instance WHNP and WHPP mean, respectively, "WH noun-phrase” and "WH prepositional” phrase, while
"WH" indicates that the phrase contains a Wh-determiner, as in "which car”, "whose father". The ADJP

tag stands for an adjective phrase like "greatest achievement".

From the same dataset of 1067 related sentence pairs used for the noisy-channel model, the system

generates a set of likely transformation paths, yielding a total of 46383 learning instances. An exam-

Stack Input List Stack Input List
F
PN B
G H kK |Q@ R ¢ DROP B
H A I 1 |z d
B D a b c
4 g o n e SHT STEP 6
ASSIGNTYPE H
z E o
¢ STEPS 1.2 H kl® SHIFT:
H A o ASSIGNTYPE D
| a b STEPS 7-8
C B D .
a SHIFT;
b Q R e F D
7 4 ASSIGNTYPE K AN
H K ¢ REDUCE 2G
c STEPS 3.4 [
a b STEP 9
H K| B s
[
Q R e N
a b|, 4 REDUCE2F /F\ D
[ 5 |
STEP H oK e
| |
a b

Figure 2.8: A sequence of 9 steps showing the operators for transforming £(s) into #(s;).

ple of a sequential tree transformation through several operation steps is shown in Figure 2.8, which

Thttp://www.cis.upenn.edu/ ~treebank/ [October 2010].
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was retrieved from the original paper and is related to the tree pair presented in Figure 2.6.

These last approach of learning transformation rules for reducing syntactical trees seems quite in-
teresting. However, it has at least two major drawbacks. First, the rules were learned from a small
training data set. Second, restricting the transformation operations to just these four operations
seems insufficient. We think that more sophisticated transformation should be integrated to be able
to tackle more complex transformations, like syntactic subtree fusions, needed when we have for

example phrases conveying similar information.

The improvement of this approach could be fruitful, but it is hard to supply a sufficient training set for
inducing a relevant rule set. This tends to be even more critical as new transformational operations
are introduced in the system. We think that instead of using a propositional learner (C4.5), the
learning task could be better reformulated using a relational learning method, like Inductive Logic
Programming approach. This is what we have done in our case (see chapters 5 and 6). We have also
decided to work with features based on a shallow parser, instead of full parser, as it is more simple

and the majority of human languages still do not have electronic versions of full parsers available.

2.3.3 Mixing ML and Predefined Rules

A work which combines the machine learning framework with a set of handcrafted rules was presented
by Vandeghinste & Pan (2004). They described a sentence compression system, built with the purpose
of automatic subtitle generation for the deaf and hard-of-hearing people. The system uses a set of
lexical and syntactical tools, like a part-of-speech tagger, a word abbreviator, a shallow parser and

a subordinate clause detector, to pre-process the input sentence and obtain a shallow parse tree.

Using paired texts obtained from a parallel corpus containing transcripts of television programs and
their correspondent subtitles, the system uses statistically-based approaches to recognize irrelevant
sentence elements, such as words, chunks, or subordinate clauses, which are candidates for elimi-

nation and thereby yielding simplified sentence versions.

Below is a complete list of all language transformation modules used:

Tagger - The TnT part-of-speech tagger (Brants, 2000), trained on the Spoken Dutch Corpus
(CGN),

Abbreviator - Employs a database of common abbreviations, like for example:

(European Union, EU)

« Numbers to Digits - This module converts all numbers expressed through words, either cardinal

or ordinal, to sequences of digits,

SharPa - This module includes a sentence chunker, a subordinate clause detector and generates
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a shallow parse tree for that sentence, thus avoiding full sentence parsing.

To train the model, for each related sentence pair (s, s,) obtained from the parallel corpus, shallow
parse trees are generated and aligned with each other on a chunk basis, yielding a pair of aligned

trees (tree(s), tree(s,)). The learning task consists of estimating the tree node probabilities of three

NP
=0.54
X 0.27
> 0.05
D ET ADJ ADJ N
=0.56 =0.56
=068 X035 X035 =065
X028 N & B 1 } X0.26
de groot- er- bank
ste gische

Figure 2.9: Shallow parse tree, with their branch probabilities estimated.

possible operations: remove ("X" symbol), not remove ("=" symbol) and reduce (">" symbol). This
last operator is only meant to be applied on the tree of non-terminal nodes. For terminal nodes the
probabilities are obtained directly from language corpora. Figure 2.9 shows an example reproduced
from the original paper showing different component estimates, for the sentence: "De grootste

Belgische bank", meaning "The largest Belgian Bank".

Afterwards, this probabilistic model is applied to a new sentence, to suggest reductions, which are
represented in a similar shallow parse tree format. The probabilities of removal and reduction are
calculated. Then for a tree like the one shown in Figure 2.9 all possible removal combinations are
computed, including the possibility of no compression at all. Finally a rank of potential sentence
compressions is generated. In the previous example the probability of no compression would be equal
t0 0.54 % (0.68 % 0.56 x 0.56 x 0.65) = 0.07485 and the probability for sentence reduction (">") through
the "grootste” (largest) word removal would be equal to: 0.05 * (0.68 x 0.35 x 0.56 x 0.65) = 0.00433,
while the removal of "bank" yields a lower value, thus being less likely: 0.05 * (0.68 * 0.56 * 0.56 x
0.26) = 0.00277.

This probabilistic model revealed itself insufficient for ensuring grammatical correctness in most
cases. Therefore, several handcrafted constraints for ensuring that critical sentence elements were
not removed, were supplied to the system. Now, for a given sentence, after obtaining the sentence
reduction versions, from the model, the system uses this rule set to filter out those versions that are

violating these grammatical constraints. Figure 2.10 shows three examples of such rules.

Even with this engineered rule set ensuring grammaticality, supplied to the system, the results re-
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¢ If a node is of type NP, keep ¢ If the node is of type adjectival phrase, keep
— each noun. — the head of the adjectival phrase.
— each nominalised adjectival phrase. — the prenominal numerals.
— each token which is in the list of negative — each word which is in the list of negative
words. words.

— the determiners.
— the numerals.

— the indefinite prenominal pronouns.

¢ If a node is of type PP, keep ¢ If the node is of type OTI, keep
— the preposition. — the verbs.
— the determiners. — the te + infinitives.

— the necessary tokens of the NPs.

Figure 2.10: Examples of handcrafted constraints ensuring grammatical correctness.

ported in Vandeghinste & Pan (2004) still show rather low quality rate, with so called "acceptable

correctness” ranging from 32% up to 51%, depending on the test set.

Having presented the main relevant approaches that we have identified as being closely related to our
work, we finish this chapter by restating the main issues of our system, which is explained in detail
in the following chapters. Unlike any system presented earlier, our system is designed to operate
in a real web/text scenario. From a huge collection of automatically gathered web news stories,
paraphrases are automatically identified and extracted. Then these are automatically aligned and
certain type of learning instances are extracted. Afterwards, a learning process is carried out, which
generates sentence reduction rules. Finally the system can use these new induced rules to simplify
sentences from new unseen documents. This brief description is represented in the pipeline scheme,
shown previously in Figure 1.2. In our system the whole process of sentence reduction is completely
automatic. It exploits a huge amount of on-line text available nowadays, extracting and generating

the sentences to be used in the learning process.

The next chapter starts the description of our system's first main module, concerned with automatic

paraphrase extraction from web news texts.
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Chapter 3

Paraphrase Extraction

"He that will not apply new remedies must expect new evils, for time is the greatest

. "
1nnovator.

Francis Bacon, Essays

', conveying mainly

In general, a paraphrase consists in a pair of text segments, usually sentences
the same information yet possibly each one may be written differently. The term paraphrase derives
from the Latin paraphrasis and from the Greek para phrasein, which means additional manner of
expression. There are a range of paraphrase types, varying from lexical reorganization, as in the
example from Figure 3.1, to more complex ontological or semantic rearrangements, like in Figure

3.2.

Sa: Due to high energy prices, our GDP may continue to fall.
Sy: It is likely that our GDP will continue to fall, as a consequence of high energy

prices.

Figure 3.1: Lexical paraphrase type.

S,: To be or not to be.

Syt Should I kill myself?

Figure 3.2: Semantic paraphrase type.

These previous two paraphrase examples represent two points, each one at an extreme point of the
paraphrase "spectrum”. Our main objective is not to study paraphrases in general, but rather to use
certain types of paraphrases, that are closer to the lexical type (Figure 3.1), as our "raw material"
for the sentence reduction problem. Therefore, our initial work was directed towards the extraction
of paraphrases from a corpus in a complete automatic form. We aimed at creating a relatively large
corpus, containing several hundreds of thousands pairs or even more. As a consequence, we searched
for "suitable" electronic texts and existing methods of paraphrase identification, in order to fit our
needs. A first attempt of using these tools in such setting encountered some difficulties, which led
us to design new functions, more appropriate for our main objective. A discussion of this is detailed

throughout the subsequent sections in this chapter.

"Throughout this work, a paraphrase refers always to a pair of two sentences.
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3.1 Automatic Paraphrase Corpora Construction

Paraphrase corpora represents a golden resource for learning monolingual text-to-text rewritten pat-
terns', satisfying specific constraints, such as length in summarization (Barzilay & Lee, 2003; Jing &
McKeown, 2000; Knight & Marcu, 2002; Nguyen et al., 2004; Shinyama et al., 2002) or style in text
simplification (Marsi & Krahmer, 2005). However, such corpora are very costly to be constructed
manually and will always be an imperfect and biased representation of the language paraphrase phe-
nomena. Therefore reliable and efficient automatic methodologies capable of paraphrase extraction
from text, leading to construction of paraphrase corpora, are crucial. In particular, we are mainly
interested in a special type of paraphrases, named asymmetrical paraphrase, where one sentence
entails the other one, as stated in Definition 2. In terms of information content, we define two types

of paraphrases: symmetrical and asymmetrical.

Definition 1. A symmetrical paraphrase is a pair of sentences (S,,S,), where both sentences contain
the same information, or in terms of entailment, each sentence entails the other one, i.e: S; F

Sy NSy E S,

The asymmetrical case is defined below in Definition 2.

Definition 2. An asymmetrical paraphrase is a pair of sentences where at least one sentence is
more general or contains more information than the other one, that is either S, = S, NSy, ¥ S, or

Sa ¥ Sy NSy E Sa.

An example of an asymmetrical paraphrase is shown next:

Sa: The control panel looks the same but responds more quickly to commands

and menu choices.

Syt The control panel responds more quickly.

Figure 3.3: An asymmetrical parafrase.

In fact, text-to-text generation is a particularly promising research direction, given that there are
naturally occurring examples of comparable texts that convey the same information yet, written
in different styles. Web News Stories are obviously a natural space for searching this type of texts.
There we find a multitude of events, from different subjects, happening every day, like a presidential
election, a space shuttle mission, or a terrorist attack. For each event there are several news
agencies reporting it. Therefore a set of different texts can be created about the same event. So,
given such texts, one can pair sentences that convey the same information, thereby building a training

set of rewriting examples i.e. a paraphrase corpus.

"For example by applying machine learning techniques.
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Algorithm 1 The process of automatic paraphrasic corpus construction.
1: nclusters < readNewsClusters(”WebNewsStories”)

2: paraphcorpus «— @

3: for all clust € nclusters do

4: v« getArrayOfSentences(clust)
5: fori=1tosize(v) —1step 1do

6: for j = i+ 1 to size(v) step 1 do

7: if FuncPsim(v;,v;) > 6 then

8: paraphcorpus « paraphcorpus U {(v;,v;) }
9: end if

10: end for

11:  end for
12: end for

13: save(paraphcorpus)

We have investigated several existing functions for paraphrase identification in corpora. However,
the difficulties and limitations revealed by these led us to propose new functions, as explained later
in this chapter. Before entering in this topic we provide a conceptual view, expressed through an
Algorithm 1, of the process used for extracting paraphrases from corpora. From a given "cluster of
web news stories"!, the set of all sentences are gathered in an array of sentences ("v" in Algorithm 1).
Afterwards paraphrasic sentence pairs are searched sequentially in vs (line 5 to 10) and added to the
corpus (line 8). Note that "FuncPsim(v;, v;)" is the paraphrase detection function, in the algorithm.
The decision is made upon a pre-defined threshold (@ in line 7), which depends from the function

being used and certain practical needs one may have.

In Algorithm 1 we have a computational complexity of O(n?) in the process of paraphrase identifica-
tion from a vector of sentences. Therefore an important concern in choosing "FuncPsim(v;, v;)" was

efficiency. This is further described in Section 3.6.

3.2 Functions for Paraphrase Identification

The issue of identifying paraphrases in monolingual comparable corpora has become increasingly
more relevant, as researchers realize the importance of such resources for many Natural Language
Processing (NLP) areas, such as Information Retrieval, Information Extraction, Automatic Text Sum-
marization, and Automatic Text Generation (Barzilay & Lee, 2003; Carroll et al., 1999; Chandrasekar
& Srinivas, 1997; Grefenstette, 1998; Jing & McKeown, 2000; Knight & Marcu, 2002; Lapata, 2003;
Marsi & Krahmer, 2005; Nguyen et al., 2004; Shinyama et al., 2002). In particular, three differ-

TA set of related news texts covering approximately the same event.
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ent approaches have been proposed for paraphrase detection: unsupervised methodologies based
on lexical similarity (Barzilay & Lee, 2003; Dolan et al., 2004), supervised methodologies based on
context similarity measures (Barzilay & Elhadad, 2003) and methodologies based on linguistic analysis

of comparable corpora (Hatzivassiloglou et al., 1999).

Microsoft researchers (Dolan et al., 2004) carried out a work to find and extract monolingual para-
phrases from massive comparable news stories. They used the Edit Distance' (Levenshtein, 1966)
and compared it with an heuristic derived from Press writing rules, where the initial sentences from
equivalent news stories were considered as paraphrases. The evaluation showed that the data pro-
duced by the Edit Distance is cleaner and more easily aligned than by using the heuristic. However,
when evaluating by using word error alignment rate, a function borrowed from statistical machine

translation (Och & Ney, 2003), shows that both techniques perform similarly.

In Barzilay & Lee (2003) the authors use the simple word n-gram (n = 1,2, 3, 4) overlap function in the
context of paraphrase lattices learning. This string similarity measure is used to generate paraphrase
clusters with hierarchical complete-link clustering algoritm. This function is also often employed for

string comparison in NLP applications (Lita et al., 2005; Sjobergh & Araki, 2006).

More advanced techniques rely on context similarity measures such as the one proposed by Barzilay &
Elhadad (2003), where sentence alignments in comparable corpora are identified by considering the
sentence contexts (local alignment) after semantically aligning equivalent paragraphs. To combine
the lexical similarity? and the proximity feature, local alignments are computed on each paragraph
pairs, through dynamic programming. Although this methodology shows interesting results, it relies
on supervised learning techniques, which requires huge quantities of training data that may be scarce

and difficult to obtain in many situations.

Others, as Hatzivassiloglou et al. (1999), go further by exploring heavy linguistic features combined
with machine learning techniques to propose a new text similarity function. Once again, this is
a supervised approach and also heavily dependent on valuable linguistic resources, which are not
available for the vast majority of languages. We agree on the issue that linguistic resources may
improve accuracy and accordance with human judges. However, this approach limits the application

of such systems to very few languages, for which such resources are available.

Finally, we address the work carried out by Stent et al. (2005), where a set of evaluation metrics are
compared for the task of text-to-text generation. They compare NIST simple string accuracy (SSA),
BLEU, and NIST n-gram co-occurrence metrics, Melamed's F-measure (Turian et al., 2003), and latent
semantic analysis (LSA). The comparison was done with respect to fluency (word order variation) and

adequacy (word choice variation) of generated candidate sentences by comparison with one or more

1Also known as the Levenshtein Distance
2With the cosine similarity measure.
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reference sentences. The authors claim that these automatic evaluation metrics are not adequate
for the task of fluency evaluation, and are barely adequate for evaluating adequacy. So, these results
reinforce our motivation to investigate new sentence similarity functions for paraphrase detection.
We have taken into account in particular the fluency issue, as we were also aiming to focus on shallow
paraphrase identification functions, due to efficiency and portability reasons’. To address adequacy

one would have to introduce deeper linguistic analysis, working at least with a thesaurus.

In the literature (Barzilay & Lee, 2003; Levenshtein, 1966; Papineni et al., 2001), we can find the
Levenshtein Distance (Levenshtein, 1966) and what we call the Word N-Gram Overlap Family (Barzilay
& Lee, 2003; Papineni et al., 2001). Indeed in the latter case, some variations of word n-gram overlap
functions are proposed, but not clearly explained. In this section, we review these existing functions
and also propose a new n-gram overlap function based on the Longest Common Prefix (Yamamoto &

Church, 2001).

3.2.1 The Levenshtein Distance

This function, also known as Edit Distance, was created for string similarity computation. Considering
two strings, the function computes the number of character insertions, deletions and substitutions
that would be needed to transform one string into the other one (Levenshtein, 1966). The function
may be adapted for calculating Sentence Edit Distance by using words instead of characters (Dolan
et al., 2004). Considering two sentences, it calculates the number of word insertions, deletions and

substitutions that would be needed to transform one sentence into the other one.

A problem that we observed, when applying this function for paraphrase detection on text, was that
it fails on certain types of true paraphrases like the ones where there are high lexical alternations or
different syntactical structures. For example, sentences (1) and (2) would probably no be identified
as paraphrases using the Edit Distance similarity function, since a high value is computed, indicating
the existence of a high string dissimilarity between the sentences and leading thus to the unwanted
rejection outcome. This happens despite the fact that both sentences convey exactly the same

information and are true paraphrases of each other.

(1) Due to high energy prices, our GDP may continue to fall, said Prime Minister, early morning.

(2) Early morning, Prime Minister said that our GDP may continue to fall, due to growing energy

prices.

Edit Distance was specially conceived to be used with words, where character reordering will neces-

"Deeper linguistic analysis implies more time spent on identifying paraphrases and a more language dependent system as

well.
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sary imply lexical dissimilarity. However, in sentence proximity calculation our basic symbolic unit
is the word, not the character, and word reordering between paraphrasic sentences is very likely to
happen. For instance, in the previous example we have Edit Distance of 11, which is quite a lot,
considering the sentences word lengths (16 and 17 words, respectively). This value represents a

normalized similarity of only 0.3125 (1 — 1).

3.2.2 The Word N-Gram Family

Throughout the literature there are several text similarity measures based on word n-gram overlap.
Sometimes it is not clear or it is unspecified which word n-gram version was employed in a given
experience and so it remains a bit obscure. Mainly two functions are usually mentioned in the litera-
ture: the Word Simple N-gram Overlap and the BLEU Metric, which is detailed next. The analysis and
experiment with word n-gram overlap functions also led us to consider and propose a new function

from this type, based on the Longest Common Prefix (Yamamoto & Church, 2001).

3.2.2.1 Word Simple N-gram Overlap

This is the simplest function that uses word n-gram overlap count between sentences. For a given
sentence pair, the function counts how many 1-grams, 2-grams, 3-grams, ..., N-grams overlaps exist
between the sentences. Usually N is chosen to be less or equal to 4 (Barzilay & Lee, 2003). Let us
name this counting function as Count,,,.;,(n-gram). For a given N > 1, a normalized metric that
equally weights any matching n-gram and evaluates similarity between sentences S, and Sy, is given

by Equation 3.1:

ﬁ Count yaen (n-gram) (3.1)
Cou .

sittto(Sa, Sp) = nt(n-gram)

where the function Count(n-gram) counts the maximum possible number of n-grams that exist in the

shorter sentence, as it governs the maximum number of overlapping n-grams.

For example, in the sentence pair {(1), (2)) previously shown, we have three 4-gram matches: "our
GDP may continue”, "GDP may continue to", "may continue to fall". Thus we have Count ., (4-gram) =
3. We also have four 3-grams, ten 2-grams, and fifteen 1-grams, in that same sentence pair. Therefore

we have:

) 1 3 4 10 15
simy(Sq, Sp) = 2 (13 + ﬁ i + 16) = 0.5302

3.2.2.2 The BLEU Function

The BLEU (Papineni et al., 2001) metric was introduced as a function to automatically evaluate the
performance achieved by a translation system and was employed in some conference contests to
judge the quality of their competing systems. In such a competition each system has to generate a

translation text from a given source text supplied by the evaluator. Afterwards the evaluator calcu-
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lates the quality of the generated translation, by comparing it with a set of reference translations
from the original source text, usually created by humans. This comparison is executed through the

BLEU function, shown in Equation 3.6. First, the p, value is calculated as follows:

' Y Countj,(n-gram)
__ Ce{Candidates} ngrame C

3.2
" Y. Count(n-gram) (3-2)
Ce{Candidates} ngrame C
and then
N
BLEU = BP xexp ) _ wy log p, (3.3)

n=1

where BP is a brevity penalty factor and w, are weighting factors (w, € [0,1] and ZnNzl w,; = 1.0). In
Equation 3.2 the set { Candidates} is the reference translation set and the function Count ;, (n-gram)
counts the number of n-gram clippings (like matches) between a generated translation and a given
reference translation. This means that this function calculates the n-gram relation strength, among
two texts and, as a consequence, BLEU can be adapted to compute proximity among sentences. This

function adaptation is named here BLEUgapteq-

1 N
BLEU,gqpted = €Xp lN Y logCy (3.4)
n=1
where C,, is computed as follows:
C, = N Count,yapen (n-gram) (3.5)

= Count(n-gram)

For the brevity penalty factor we chose BP = exp(1 — g), where r and s are respectively the shorter
and longer sentence lengths, in terms of word counts. For the weighting factors, we took each one

equal to the same value, w;, = %, and so end up with nearly the geometrical mean of the C, ratios:

N

BLEU,gqpieqd = BP (3.6)

N
[1c
n=1

The Count gy, (n-gram) function counts the number of n-grams co-occurring between the two sen-
tences, and the function Count(n-gram) counts the maximum number of n-grams existing in the
shorter sentence. The maximum number of n-grams (N) was chosen equal to 4 in our experiments,

like in many other cases where BLEU is employed.

Considering the sentence pair ((1), (2)) shown previously, we have BP = 1= 1 and

16) (3 4 10 15
*

1
4
BLEUqguprea = e 17 x { 3% 33 % 35 % w) 0486

3.2.2.3 Exclusive LCP N-gram Overlap

In most NLP works, the longer a string is, the more meaningful should be the function value (Dias

et al., 2000). Based on this principle, we were motivated to investigate an extension of the word
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simple n-gram overlap function. The difference between simple and exclusive n-gram overlap lays in
the fact that the exclusive form counts prefix overlapping' 1-grams, 2-grams, 3-grams, ..., N-grams,
regarding the Longest Common Prefix (LCP) technique proposed by Yamamoto & Church (2001). For
example, if some maximum overlapping 4-gram match is found, then its 3-grams, 2-grams and 1-
grams prefixes will not be counted. Only the 4-gram and its suffixes will be taken into account. This
is based on the idea that the longer the match, the more significant the match is. Therefore smaller

matches are discarded.

In particular, we compute exclusive n-grams co-occurring in a sentence pair by using a suffix-array
algorithm proposed by Yamamoto & Church (2001), to efficiently compute n-grams in a long corpus
and calculate term and document frequencies. So far, we have never come across an implementation
of this n-gram overlap method and so we decided to carry out some experiments with this function
as it is based on a sound hypothesis from Natural Language Processing applications. However, in
Section 7.1 we show that the simple word n-gram overlap function gives overall better results within
this n-gram family. However, this new exclusive n-gram overlap function shows interesting results to

classify false paraphrases.

In order to clarify how the word LCP is calculated, the following example is presented, with sentences

(3) and (4), having some n-grams in common:

(3) The President ordered the final strike over terrorists camp.

(4) President ordered the assault.

Between these two sentences we have the LCP n-gram overlap given by: "President ordered the"
which is a 3-gram. So the complete set of overlapping n-grams, besides the 3-gram, is: "ordered
the" (2-gram) and "the" (1-gram), i.e all its suffixes. To normalize the n-gram overlap, a particular
difficulty rises, due to the LCP n-gram considerations, i.e. the maximum number of overlapping
n-grams depends on the number of (n+1)-gram overlaps that exist. For example, in the previous
case and for 1-grams, we only have one overlapping 1-gram ("the") between the two sentences and
not 3 as it could be computed with the word simple n-gram overlap metric, i.e. "the", "President”
and "ordered". Thus, with this process of considering exclusive n-grams, it is unlikely to compute

similarity based on a weighted sum like in formula 3.1 and another method is defined in Equation 3.7

(3.7)

j Count ]
Sitexo(Sa, Sp) = mr?x{ 0unt yyq4c, (n-gram) }

Count(n-gram)
where S, and S, are two sentences and the functions Count,, ., (n-gram) and Count(n-gram) are the
same as above with this new matching strategy. We first calculate simey,(Ss, Sp) for 4-grams and

then for the remaining 3-grams and so on and so forth, and after that the maximum ratio is chosen.

"This concept is exemplified later in this subsection.
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Continuing with the example of the sentence pair {(1), (2)) shown earlier in this subsection, we obtain

Sithexo(Sa, Sp) = max {133, %, %, 12} = 0.9375

A few metrics have been applied to automatic paraphrase identification and extraction (Barzilay &
Lee, 2003; Dolan et al., 2004). However, these unsupervised methodologies show a major drawback
by extracting quasi-exact or even exact match pairs of sentences as they rely on classical string
similarity measures such as the Edit Distance in the case of Dolan et al. (2004) and Word N-gram
Overlap in Barzilay & Lee (2003). For these functions, the more similar two strings are the more likely
classified as paraphrases will be. In the limit the "best” pair will be precisely two exactly equal strings.
This is clearly naive and we may state that the more similar two strings are, the poorer is the quality
of the paraphrases generated. This kind of paraphrasing is usually what a naive plagiarist does! It
is desirable to identify paraphrases which share some dissimilarities among their sentences, because
this will open or widen the field for semantic relation discovery, according to the Distributional
Hypothesis (Harris, 1968). This principle suggests that counting the contexts that two words share
improves the chance for correct guessing whether they express the same meaning or not. One of our

later work confirmed this claim (Dias et al., 2010), where paraphrases, automatically extracted with

the functions proposed in Section 3.3, were used to discover semantic relations between words.

3.3 New Functions for Paraphrase Identification

To overcome the difficulties of the existing functions reported in the previous section, we have in-
vestigated new paraphrase identification functions (Cordeiro et al., 2007d). Contrary to the classical
functions, these new ones share the common characteristic of having an "hill shape curve”, with zero
or near zero values near the domain boundaries and a maximum value reached in between, as il-
lustrated in Figure 3.4 where some of these functions are drawn. The domain for these functions is
usually’ the [0,1] interval. These new functions have two main objectives. On one hand, to avoid
paraphrases where both sentences are equal or almost equal, and on the other hand also to reject
pairs of sentences which do not share any lexical unit, i.e completely different sentences. A certain
degree of sentence asymmetry in the paraphrase is desired, but only until a certain level, and beyond
that level the sentence pair will become progressively less relevant for our objectives. We will call
these new functions as asymmetrical paraphrase identification functions or simply as AP-functions,
while the classical paraphrase identification functions will be referred from here on as SP-functions,

where the "S" stands for "symmetrical”, i.e symmetrical paraphrase identification functions. In our

"1t is straightforward to rescale the domain in order to adjust this to some specific feature combinations with value outside

the [0, 1] interval.
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research work five AP-functions were experimented with, and these are show below.

yi(x) = 1—2[x— 1 (triangular) (3.8)
ya(x) = 4x — 4x? (parabolic) (3.9)
y3(x) = sin(mx) (trignometric) (3.10)
ya(x) = ae (xzzg)z (gaussian) (3.11)
ys(x) = —xlogs(x) — (1 —x)loga(1 —x) (entropic) (3.12)

Each function curve is shown in the graph from Figure 3.4, identified by its name yq,...,y5. It is

1

y

Figure 3.4: Hill shape functions for paraphrase identification.

important to remark that the gaussian function (y4) is in fact a family of functions, depending on the
a, b, and ¢ parameters, which in our tests were chosenasa = 1, b = 0.5, and ¢ = 0.3. For a gaussian
function, the a parameter defines the function maximum value, the b parameter sets the x value,
where the function reaches its maximum, and the ¢ quantity shapes the curve x, where greater ¢

values means more stretched bell curves.

In the paraphrase detection functions presented earlier (e.g. y1(x)), the x represents certain fea-
tures, computed for the paraphrase sentences, like for example the number of word n-gram overlaps'
or the number of matching sinsets or any other combination of features one may decide to consider
in order to calculate this sentence connectivity/relatedness. A wide range of more or less complex
possibilities may be considered here. However, in our work (Cordeiro et al., 2007d) we simply count

the exclusive lexical links between two sentences. For a given sentence pair, an exclusive lexical

"More often used.
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Solana presented the offer to tehran during a visgit to iran june 6.
\ | \ e

L=\

\

on Juﬁéﬂéjisolana handed the proposals to iran during his visit to the islamic republic.
Figure 3.5: Exclusive lexical links between a sentence pair.

link is a connection between two equal words, from each sentence. When such a link holds then
each word becomes bounded and cannot be linked to any other word. This is illustrated in Figure
3.5, where, for example, the word "the" in the first sentence has only one link to the first word "the"

in the second sentence and the second word "the" in that sentence remains unconnected.

The number of exclusive links bounding two sentences, is represented by A, and we may now take
X = % and x = %, where m is the number of words in the longer sentence, and n the number from
the shorter one. Each fraction represents a participation rate for a "relationship” connecting these
two sentences. We may even take a combination of these two proportions, like for example the

geometric mean: /4 x

2>

The main relevant issue with this type of hill-shaped functions is not the exact form of how x is
calculated but the general shape of the curve. These curves convey a common meaning, since the
maximum value is reached strictly inside the ]0,1[ interval, in some cases near the 0.5 value, which
means, on one hand, that a certain degree of dissimilarity between the paraphrase sentences is
"desirable” while, on the other hand, that both the excessive dissimilarity and similarity, tends to be
penalized as we when lim,_,g fy;;;(x) = 0 and lim,_.1 fy;;;(x) = 0. The main difference from the
classical paraphrase detection functions, is that the latter maintain their monotonicity and reach the
maximum when x = 1, i.e. f(xmax) = 1. An example of a paraphrase that would have a high value

with classical functions and lower value for f;,;;; functions, is shown in Figure 3.6.

1. The stock has gained 9.6 percent this year.

2. The stock has gained 9.6% this year.

Figure 3.6: An example of a too similar paraphrase.

From the textual entailment standpoint, this example is obviously of very low utility. Hence, the
main advantage of a hill-shaped curve is that it allows a degree of "controlled" variability between
the sentences forming the paraphrase pair, thereby useful for the construction of an asymmetrical

paraphrase corpus, which is explored for sentence compression.

The experimental results achieved provided evidence that these AP-functions perform better than

the classical SP-functions. Better paraphrases are extracted from web news corpora, that are asym-
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metrical and satisfy the Distributional Hypothesis. Results also showed that even when using a corpus
containing only symmetrical type paraphrase, like for example the Microsoft Paraphrase Corpus, the

frin (or AP-functions) still achieve better results than the SP-functions.

3.3.1 The Sumo Function

In Cordeiro et al. (2007d) another function - Sumo - containing the same main characteristics as the
frnin functions, was investigated and the results showed that it preforms even better (though only
slightly better in some cases) than any other f;;;; function, when tested in the majority of corpora.

This may be verified by looking at the results presented in Subsection 7.1.5.

Indeed, the Sumo metric was proposed for paraphrase identification even before we have conceptu-
alized the f;;; mathematical functions. Our aim was to obtain better results than with the traditional
functions. Besides, we required that our function would be computed efficiently, while processing

the huge amount of text, from web news stories.

The Sumo metric was inspired by the Entropy function that is used to compute the Information Gain
of a particular attribute in a propositional learning problem. Viewing asymmetrical paraphrasing as
a one way entailment, as defined previously, we may see the entailed sentence as a compressed
output obtained from a given input sentence through a noisy channel model transmission, similarly
to what is presented by Knight & Marcu (2002). Hence, a question arises regards what the information
gain value of the compressed sentence is in relation to the input expanded one. This thought has
led us to define a kind of entropic function, calculated on the basis of the relative exclusive links'
connecting two sentences. Let A be the number of exclusive lexical links connecting two sentences,
m the number of words in the larger sentence, and n the number of words in the shorter one. Then

we consider the fractions % and %, and combine them trough the function:

A

S(m,n,A) = —alogy(2 %) (3.13)

a) — Blog,(
where a, 8 € [0,1], such that « + B = 1. Note that if « = B = 0.5, then 25("}) is equal to the
geometric mean of the two proportions: m These are weighting parameters, giving more or
less importance to one or another proportion. In our experiments? we used & = B = 0.5, equally

weighting both proportions.

Since this function is undefined for A = 0, we naturally defined it to be equal to zero in that case,
because no lexical connection exists between the two sentences. Of course, we are aware that there
are paraphrases where their sentences do not have any lexical match at all. However, these type of
paraphrase analysis requires more advanced linguistic tools, like thesaurus and ontologies, which we

decided not to use, at least for now, maintaining our method as efficient as possible. Besides, these

'See the explanation, near Figure 3.5.
2The results are reported in Subsection 7.1.5.
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tools are not available for many languages, as we have mentioned earlier. The reader may observe

that:

lim S(m,n,A) = +oo (3.14)

u—0

which conceptually looks a bit strange. The simple fact that S(m,n,A) > 1.0 is not problematic. To
overcome the previous functional singularity and to rescale its range to a more conventional [0,1]
interval, we have redefined the sentence similarity function by introducing a new condition (branch),

named the penalization branch. So, we define our Sumo as shown in Equation 3.15.
S(m,n,A) if S(m,n,A) <1.0

Sumo(S,, Sp) = 0 if A=0 (3.15)

e kxS(mnA)  otherwise

kS(mnA) recomputes the Sumo output to the [0,1] interval and, as the

The penalization branch e~
name indicates, it penalizes the too dissimilar sentence pairs. The k parameter is the penalization
magnification parameter. The greater its value, the more likely it is that dissimilar sentences will be
rejected as paraphrases. We have decided to fix k = 3, after several initial experiments, revealing

better results with this value.

For the the sentence pairs ((1), (2)) and {(3), (4)) previously shown we have:
Si) (a1 (17,16,15) = —0.5 - 1og, (-2) — 0.5 - log, (22) = 01368
(),@)\17r 16, 10) = =00+ 108y (77) = U0+ 1082 75) = U-

and

3 3
5(3),4))(9,4,3) = —=05- logz(g) —05- 10g2(1) —10

Note that the first pair gets a relative low value, smaller than any one obtained with the other
functions, including the word edit distance, while in the second case the maximum value is achieved.
This is so because the ((3), (4)) pair fits perfectly in the kind of asymmetrical paraphrases we are
searching for, serving as learning examples for sentence reduction. On the contrary, the ((1), (2)) pair
is much less interesting for learning reduction rules, as one sentence is almost a reordered version

of the other one.

The Sumo function may raise some mathematical and practical questions to the reader, hence in

order to clarify some possibly obscure issues, more details are presented throughout the rest of this
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subsection. Let us start by looking at which conditions we still obtain S(m,n,A) < 1.0:

S(m,n,A) <10 <& —a*logz(%) —‘B*logz(%) <10

ALK AP
& logz(a) +log2(;) > —1.0

ALY AP
<~ (%) *(E) >§
o A>%m"‘nﬁ (3.16)

Condition 3.16 states that the number of lexical links is bounded by the sentences number of words,
and if that number is low, with A < % m® nP then S(m,n,\) > 1.0 and consequently the Sumo value
should start to decrease. In this case the output value is calculated through the penalization branch,
in which we have:

li S S4,5,) =0 3.17
S(m,n,l)\r;’LJroo MTHO( “ h) ( )

In our experiments' we took & = B = 0.5, which implies that the connection constraint is A >
% v/m n, and the following table illustrates numerically several situations with different input values

and their effects on this constraint and the final Sumo output values.

Table 3.1: Sumo-Metric output examples.

m|n | A|LYymn| SmnA)| Sumo(Ss,Sy)
1020]18 17| 9.49 0.158 0.15846
2020(18 11| 9.49 0.786 0.78649
302018 3| 9.49 2.661 0.00034
42109 | 7.07 0.652 0.65200
5020 10| 6 | 7.07 1.237 0.02446
62| 10|2| 707 2.822 0.00021
72|55 500 1.000 0.04979
82|53 | 500 1.737 0.00546
92|51 5.00 3.322 0.00005

In this example the size of the larger sentence is maintained at 20 words for all cases, and only
the smaller one varies from 18 down to 5, simulating an increasing asymmetric pair size. There are
three examples with length 18, three with 10 and the last three with 5 words, representing shorter
sentences. Within any of these three subsets, we have a variation in the number of connecting lexical
links: A. This example shows how far the sentence asymmetry is allowed to vary before entering the
penalization region (A < % v/m n) and what the effects are of the respective function's penalization
branch. Note that only cases 1, 2 and 4 fall within the "normal” region. Case 2 has a greater output

value than case 1, despite the fact that in this last case almost all words from the smaller sentence

See Subsection 7.1.5.
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are connected (17). This shows how Sumo prefers some degree of dissimilarity between sentences,
which is important from the point of view of the linguistic Distributional Hypothesis. It helps to
obtain pairs of sentences with high lexical matches and high lexical differences as well, and at the
same time, which may be helpful to induce sentence transformation rules (i.e. sentence reduction

rules) the main objective of this work.

In order to have a graphical representation of Sumo, one may consider x = % andy = %, which trans-
forms S(m, n, A) in a two-dimensional function: S(x,y) = —a *logy(x) — B * logz(y), illustrated in

Figure 3.7, fora = f = 0.5.

Figure 3.7: A graphical representation for z = S(x,y), with « = f = 0.5, represented through four different

views.

For the sake of simplification and to have a clear view of the function, we also consider projections
in the two-dimensional subspace, with y = S(x,1), y = S(x,3), and y = S(x, 1). These functions

are represented in Figure 3.8 respectively with colors black, blue and green.

—3x%S5(x,1)

The red line represents the penalization branch, in this case e , which was rotated and trans-
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0 0,25 0,5 0,75 1 1,25 5 1,75 2\2,2\5

Figure 3.8: A graphical representation for y = S(x,k), witha = = 0.5, and k € {3, 3,1}.

lated in order to match the S(x,1) function at point (1,1). Looking just at the conjunction of the
black and red graphs, we can see a complete graphical example of the Sumo function, which is a
projection among many possible ones, evidencing that this function has an hill-shape curce with the

properties described at the beginning of this section.

3.4 Paraphrase Clustering - An Investigated Possibility

In an early phase of our research, also motivated by some other's work (Barzilay & Lee, 2003), we
have decided to investigate the application of clustering algorithms to extract paraphrase clusters
from text sentences. A paraphrase cluster is a set of sentences where each pair constitutes a para-
phrase. In the work of Barzilay & Lee (2003) it is claimed that clusters of paraphrases could lead to
better learning of text-to-text rewriting rules compared to simple paraphrasic examples. However,
as Barzilay & Lee (2003) did not propose which clustering algorithm should be used, we carried out
a study with a set of clustering algorithms and present the comparative results. Contrarily to what

was expected clustering did not bring any benefit.

Clustering is based on a similarity or (distance) matrix A,x,, where each element g;; is the simi-

larity (distance) between sentences s; and s;. We have conducted experiments with four clustering
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algorithms on a corpus of web news stories and then three human judges manually cross-classified a
random sample of the generated clusters. They were asked to classify a cluster as a "wrong cluster”
if it contains at least two sentences without any relation between them. Results are shown in Table

3.2. The "BASE" column represents the baseline, where the Sumo function was applied rather than

Table 3.2: Precision of clustering algorithms

BASE | S-HAC | C-HAC QT EM

0.618 | 0.577 | 0.569 | 0.640 | 0.489

clustering. Columns "S-HAC" and "C-HAC" express the results for Single-link and Complete-link Hier-
archical Agglomerative Clustering (Jain et al., 1999). The "QT" column shows the Quality Threshold
algorithm (Heyer et al., 1999) and in the last column "EM" stands for the Expectation Maximization

clustering algorithm (Hogg et al., 2005).

The main conclusion we can draw from Table 3.2 is that clustering tends to achieve worse results than
the paraphrase pair extraction. Only the QT achieves a somewhat better results. Moreover, these
results with the QT algorithm were applied with a very restrictive value for cluster attribution with

an average of 2.32 sentences per cluster (see Table 3.3). In fact, Table 3.3 shows that most of the

Table 3.3: Figures about clustering algorithms

Algorithm [ # Sentences/# Clusters
S-HAC 6.23
C-HAC 2.17
QT 2.32
EM 4.16

clusters have less than 6 sentences, which forces us to question the results presented by Barzilay &
Lee (2003) who only keep the clusters that contain more than 10 sentences. So, not only the number
of generated clusters is very low, but more importantly, all clusters with more than 10 sentences

appeared to be of very bad quality.

Given this, we have abandoned the idea of extracting clusters of paraphrases and decided to follow
the extraction of just sentence pairs. Nevertheless, we think that more directed algorithms might
be investigated in the future for special paraphrasic cluster extraction, instead of using conventional
clustering algorithms. For example, it could use two steps. After the extraction of a paraphrasic
sentence pair, one may search in the text for other reduced versions of the shorter sentence and add
them to the initial pair. This could generate a paraphrasic cluster with one relatively longer sentence

and several related reduced versions.
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3.5 Extraction Time Complexity

At the beginning of this chapter we have presented the algorithm for automatic paraphrase corpus
construction (Algorithm 1). There we mentioned that the process of extracting paraphrases from
arrays of sentences, obtained from news clusters, is of a complexity of O(nz). This led us to search
for efficient paraphrase identification functions. Our new proposed functions are more efficient,
as they rely on the number of exclusive lexical links. For example counting word n-gram overlaps,
which is the basis of several existing functions' is computationally more costly. Assuming that we
are computing the similarity of two sentences with m and » words (m > r), Sumo a complexity
of O(m *r), in terms of word comparisons and in the worst case scenario. However, if any n-gram
based function is used, the complexity rises approximately to O(m * 1« N), where N is the maximum
number of n-grams used. This is the case for Sim,, Sim,.y,, and Bleu. These differences have been

observed in some experiments as shown in the following table. Only three AP-functions are shown,

Table 3.4: Paraphrase extraction times for six different functions.

I Sumo Gaussian | Entropy N-Gram Bleu Edit

time|00:31:48 00:30:12 | 00:32:45 || 01:30:27 | 01:45:58 | 01:31:19

as the others are also based on exclusive lexical links and so also spend nearly the same time, about
30 minutes. The SP-functions spent nearly 3 times more. This is also verified for the Edit function,
which has to compute a (m + 1) x (r + 1) matrix and carried out several operations on it, in order
to obtain the sentence edit distance. Time for Sim,,, are not shown, but it is even worse than the

time taken by Sim,.

These times were measured on a dataset obtained from seven days of newsZ, totaling to about 37MB
of text, containing a total of 238 news clusters (34 per day), 11 548 news stories, and a total of
293 642 sentences. This gives an average of 48.52 related news per cluster and 25.43 sentences by
each news story. We can see that the array of sentences from which paraphrases are searched for
and extracted has an average size of 25.43 x 48.52 = 1233.86 sentences. So, the spatial complexity
in terms of number of clusters processing (p) is linear: O(p). This is because each news cluster is
processed independently for the paraphrase search. For example, the computation time spent for 4
weeks (nearly one month) of news data would be approximately 2 hours for the AP functions and 6

hours for the SP-type functions.

These computations were measured on a machine with an Intel Core 2 Duo processor, working at

1.83Ghz, having 2GB of RAM, and running a POSIX? operating system.

'For example Word N-gram Overlap, BLEU, and Exclusive LCP N-gram Overlap
2Each day was stored in a separate xml file.
3In our case the Mac OS X.
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3.6 Final Remarks

This chapter was dedicated to the topic of functions for paraphrase detection in text corpora. Several
existing functions were described (SP-type), as well as their limitations for asymmetrical paraphrase
identification. A set of new functions, AP-type, was also investigated and these are proposed as a
better type for asymmetrical paraphrase identification. Comparative results are presented in Section
7.1. These also revealed that the AP functions are at least as good as the SP type, even in corpus

containing almost symmetrical paraphrases.

In future, improvements could be investigated in order to enhance the results, despite the already
high quality achieved (Subsection 7.1). We suggest to investigate the inclusion term relevancy, like
for example tf.idf (Salton & Buckley, 1988), and Part of Speech Tagging, as input features for the
paraphrase identification functions. We believe that word links between sentences should have
distinct weights according to such characteristics, since it seems obvious that words do not have
the same information or relevancy. It is less important to have a match between determiners than
between names and verbs, which convey information about entities and actions. One may also
integrate the notion of content n-grams that can be extracted from monolingual corpora as in Dias

et al. (2000).

The next chapter presents the natural follow-up of work undertaken by discussing the issue of word
alignment between paraphrasic sentences. We end this chapter by referring the main scientific
contributions achieved in this subject. The work of paraphrase extraction enabled us to produce
three publication (Cordeiro et al., 2007a,b,c). These are more detailedly listed and described in

Section 1.4.
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Chapter 4

Paraphrase Alignment

"He that will not apply new remedies must expect new evils, for time is the greatest

. "
1nnovator.

Francis Bacon, Essays

In Chapter 3 we presented our paraphrase gathering method, which is able to automatically identify
paraphrases from text. The next natural step in our research was to investigate different paraphrase
alignment techniques. By "paraphrase alighment” we mean the alignment of words inside the pair of
sentences forming a paraphrase. Identical or even similar’ word pairs, one from each paraphrasic
sentence pair, are aligned and dissimilar words aligned with empty gaps. For example, consider the

following paraphrase, which was automatically extracted from the news:

Sq: Tropical Storm Gilbert formed in the eastern Caribean and strengthened into a hur-

ricane Saturday night.

Syt Tropical Storm Gilbert strengthened into an eastern Caribean hurricane on Saturday

night.

One possible alignment is shown in Figure 4.1. A closer analysis shows that in general there may

Tropical Storm Gilbert formed in  the eastern Caribean ...

Tropical Storm Gilbert strengthened into an eastern Caribean ...

. and strengthened into a hurricane __ Saturday night.

_ hurricane on Saturday night.

Figure 4.1: A possible alignment for two paraphrase sentences.

be more than one possible alignment generated by different algorithms. For instance, the previous

example could have been realigned as shown in Figure 4.2.

By analysing qualitatively these two alignments, the latter appears less satisfactory than the former.

We note that the latter contains more word gaps. Hence, we have devoted some research effort

"We specify later in this chapter what type of similar words we use.
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4. PARAPHRASE ALIGNMENT

Tropical Storm Gilbert formed in the eastern Caribbean ...
Tropical Storm Gilbert strengthened __ ___ _______ _________
. and strengthened into a hurricane __ Saturday night.

into an eastern Caribbean hurricane on Saturday night.

Figure 4.2: Another possible alignment for the same paraphrase.

to discover and employ the algorithms which produce alignments as "good" as possible. We have
investigated methods for global and local alignments and proposed a dynamic strategy for choosing
the best one at run time. We also propose a new function to model word alignment in paraphrasic
sentences. It also allows the alignhment of non-identical yet lexically similar words, which mimics the

mutation matrices in DNA sequence alignments.

In Subsection 4.3.1 we define a function to calculate the lexical quality of an alignment (Equation
4.9). Using this function for the previous two alignment examples we obtain algval (Figure 4.1) =

0.728 and algval (Figure 4.2) = 0.679, which confirms our initial perception.

4.1 Biology-Based Sequence Alighment

Sequence alignment aims at pairing, as best as possible, the symbols contained in at least! two
sequences. This is done by satisfying a set of alighment constraints, usually defined as a mutation
matrix in biology. It has been extensively explored in bioinformatics for a long time, where one of the
most notable early achievement is the Needleman-Wunsch global alignment algorithm (Needleman &
Wunsch, 1970). More recently, after the beginning of the Human Genome Project in 1990, and boosted
by the gradually increasing computation power, a wide and fruitful research was pursued with the
aim to perform near optimal and efficient DNA sequence alignment. A draft of the human genome
was finished in 2000 and was announced jointly by then US president Bill Clinton and the British Prime
Minister Tony Blair on June 26, 2000. Subsequent sequencing efforts led to the announcement of the
essentially complete genome in April 2003. In May 2006, another milestone was achieved on the way
to the completion of the project, when the sequence of the last chromosome (chromosome one) was

published in the scientific journal Nature (Gregory et al., 2006).

In bioinformatics, sequence alighment is a process of arranging the sequences of DNA, RNA, or a
protein to identify regions of similarity that may be a consequence of functional, structural, or
evolutionary relationships between the sequences. Aligned sequences of nucleotide or amino-acid
residues are typically represented as rows within a matrix. Gaps are inserted between the residues

so that identical or similar characters are aligned in successive columns, as shown in Figure 4.3.

"There are also Multi-Sequence-Alignment methods.
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GAATTCAG

(I
GGA-TC-G

GAATTCAG

I
GCAT-C-G

Figure 4.3: DNA sequence alignment.

The alignment construction is essentially algorithmic, like dynamic programming, which in turn is
guided by a mutation matrix codifying the likelihood for gene mutation. These mutation matrix

values have a direct implication on the quality of the created alignments.

In Natural Language Processing, sequence alighment has already been employed in some sub-domains
like Text Generation (Barzilay & Lee, 2002). However, as far as we know word alignment within
sentences has not been explored. Therefore, in our work we have investigated alignhment methods
for aligning words between two sentences that form a given paraphrase. In our problem the sentences

represent the sequences and the words are the base blocks, the symbols, in those sequences.

Computational sequence alignment usually falls into two main categories: global and local align-
ments. In the first one, the algorithm tries to completely align all the symbols in both sequences,
while in the second one the objective is to find at least one relevant sub-alighment. The appropri-
ateness of each category depends on particular characteristics. Usually, global alignment is more
useful when the sequences in the query set are similar and with near equal size, while local align-
ments are more appropriate when we have highly asymmetrical sequence sizes containing similar

subsequences.

4.1.1 Global Alignment

The Needleman & Wunsch (1970) algorithm was the first method for determining sequence homology
(Waterman, 1984). It uses dynamic programming to find the best possible alighment between two
sequences, with respect to the scoring system used, which includes a substitution matrix and a gap-
scoring scheme. The former defines the cost of aligning two symbols in the sequence, either equal or
different. The latter, also known as the gap penalty, specifies the alignment cost between a symbol

and a gap, which is a void space. This algorithm computes the optimal' global sequence alignment

"The term "optimal" here means that the best alignment match is generated, depending on the symbol-to-symbol alignment

function.
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between the two sequences, in which different symbols may be pairwise-aligned, or else a symbol
may be aligned with an empty space (a gap). To illustrate how this alignment algorithm works, we
present here a small example. Suppose the aim is to align the following two DNA sequences, where
each letter represents a gene:

SEQUENCE (x) :

CACTA
SEQUENCE (y) : ACACA
Let us assume that the scoring function governing the alignment of two symbols is defined as shown
in Equation 4.1, where x; and y; represents the i-th and j-th symbols in the x and y sequences,

respectively:

1 if X;i = y]
W(xi,yj) = -1 ifx; # Yj 4.1)

”

~1 ifx="_" or yi="_

This function assigns value 1 for a match, that is, aligning two equal symbols, —1 for a mismatch
and for gap penalty, that is, aligning different symbols, including voids, will have a unit cost of —1.
The algorithm starts by iteratively (line by line or row by row) filling in a similarity matrix, usually
designated as F, where the alignment path is dynamically computed and F(i,j) holds the global
alignment score for the subsequences x|y ; and y; . The exception will is top row and the leftmost
column which are initialized with multiples of the gap penalty value, —1 in this case, representing
the scores of aligning prefixes of x or y to sequences of gaps. The m and n values in 4.2 and 4.3

represent the lengths of the x and y sequences.

F(i,0)=(-1)*i 0<i<m 4.2)
F0,j)=(-1)%j 0<j<nm (4.3)

0
F(i,j) = maximum F(i=1,j) +wx, ) (4.4)

E(i,j—1) +w(_y))
F(l — 1,j — 1) + ZU(Xi,yj)

As we can see from the function definition 4.4, each matrix value F(i, j) is calculated by taking into
account three recursive values and the respective cost for establishing the (xi,yj) alignment. They

are exactly the immediate upper, left, and diagonal matrix values and we may call them as the
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previous neighbors. Hence the F matrix for our two x and y sequences will be:

_ A G C A C A C A
o -1 -2 -3 4 -5 -6 -7 -8

A -1 1 0 -1 -2 -3 -4 -5 -6
c -2 0 0 1 0 -1 -2 -3 —4
|4 31102 1 0 -1 2 “s5)
C 4 -2 -2 0 1 3 2 1 0
A -5 -3 -3 -1 1 2 3 2
C 6 4 -4 -2 0 2 3 5 4
T -7 -5 -5 -3 -1 1 2 4 4
A -8 6 -6 -4 -2 0 2 3 5

In this matrix, the first line and first column are used just for labeling, containing exactly each

sequence symbol, the fist column for the x sequence and the first line for the y sequence.

The matrix values starts at the second line and second column, which have indexes equal to zero,
i.e. the indexes in matrix F vary from zero to m for lines, and to n for columns. Thus we have

", which

—_—

one line and one column more than the sequence sizes to account for the gap symbol "
is positioned at the beginning. For example, the square signaled value in F(5,6) has as previous
neighbours ¥(4,6) = 2, F(4,5) = 3 and F(5,5) = 2. The reward of aligning the 5-th element from
the x sequence with the 6-th element from the y sequence is given by w(xs,ys) = w(A,A) =1,
given the defined scoring set. Therefore the matrix value for matrix position (5,6) is computed as

F(5,6) = max{0, 2+ (-1), 341, 2+ (-1)} = 4.

After this construction we are ready to finally make the alignment by following a backward path,
starting at the matrix lower rightmost position and successively jumping back to one of the three
previous neighbours. That is, we have three possible directions to follow let us name them: north
(Fij — Fi_1;), north-west (F;; — F; 1; 1) and west (F;; — F;; 1). The direction is decided
according to the function inherent to the dynamic matrix construction made in the first step, which
resembles a kind of remembrance process. In each F;; position one needs to determine whether
this value was obtained from F(i — 1,j) + w(x;, ), or from F(i,j — 1) + w(__,y;), or from F(i —
1,j—-1)+ w(x,»,y]»), to determine whether the jumping-back direction is north, west, or north-west,

respectively.

The effect of jumping back one step forces at least one symbol, either from sequence x or y, to be
aligned, with another symbol or an empty space ("_"). If F;; is the actual position, then a north-
west jump will align symbols x; and y;, while a north jump will align x; with a void space and a west
jump aligns y; with void space too. When a tie exists and there are more than one likely direction to
jump back, one is randomly chosen. This process stops when the F; 1 position is reached, providing a

full alignment for both sequences. The jumping-back path in our previous example is marked in the
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4. PARAPHRASE ALIGNMENT

matrix shown using a bold face, and the obtained alignment in this case is:

SEQUENCE (x) : G

AGCACAC _A
SEQUENCE(y): A _CACACTA

This alignment algorithm reveals space and time inefficiency when sequence lengths increase sub-

stantially, due to the fact that an m * n'

matrix must be processed and held in memory during the
computation. This is not problematic for relatively small sequences. However, in the general case of
DNA sequence alignments usually many thousands of nucleotides have to be aligned. This complexity
bottleneck lead to further research effort in order to discover more efficient algorithms. In particu-
lar, several new algorithms are now able to overcome the complexity barriers of many problems and
produce useful practical results, as for example the BLAST family (Altschul et al., 1997) and FASTA

(Orengo et al., 1992) algorithms.

In our alignment task we do not have these complexity obstacles, because in web news stories the
average length of a sentence is equal to 20.9 words, which is quite insignificant when compared
to DNA sequences which are at least, three or four orders of magnitude longer. Therefore, we
could afford to implement an adapted version of the Needleman-Wunsch algorithm for making global

alignments between paraphrase sentences.

To the horror of their television fans , Miss Ball and Arnaz were divorced in 1960.

Ball and Arnaz divorced in 1960.

Figure 4.4: A global alignment for two paraphrase sentences.

Figure 4.4 exemplifies another global word alignment for a new paraphrase. The Needleman-Wunsch
algorithm depends directly on the mutation matrix used, which is a substitution matrix that reflects
the probabilities of a given symbol-to-symbol (word-to-word, in our case) substitution. Therefore
if a given mutation matrix does not model correctly what occurs in the problem domain, then low-
quality, or even unsatisfactory alighments may be generated. This is the reason behind the differ-
ences between the examples contained in figures 4.1 and 4.2, which show that from the same original
paraphrase sentences we can obtain different alignments. The issue of having a mutation matrix to

model word substitutions is discussed in Subsection 4.3.

4.1.2 Local Alignment

The Smith-Waterman algorithm is similar, in many aspects, to its predecessor for global sequence
alignment - the Needleman-Wunsch algorithm, described in the previous subsection. Proposed nearly
ten years later (1981), the Smith-Waterman algorithm was specially conceived to extract at least one

sub-alignment from a given sequence pair. According to the literature (Smith & Waterman, 1981) this

"Where m and 1 are the sequence lengths.
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algorithm is more adequate than the global alignment for heterogeneous sequences, either having
asymmetrical lengths or a great proportion of symbol dissimilarity among sequences, or even both,
though in this last situation we tend to have a more unrelated sequence pair and any alignment
attempt would be unworthy. For highly similar sequences there is not much difference between
applying the global or local alighment procedures, and even if local alighment is used we may have
a global alignment as a result. Table 4.1 presents three local alignments, obtained from their re-
spective main sequences and it is evident that a high degree of dissimilarity exists between each
main sequence pair is unlikely to produce a global alignment with any real quality. For the sake of

representation simplicity and without loosing any generality, we use here character sequences.

Table 4.1: Example of local alignments.

N Char. Sequences Alignments
ABBAXYTRVRVTTRVTR XYTRYV

1 FWHWWHGWGFXYTVWGF XYT_V
ABCDXYDRQZR AB_CDX

2 GADQZZSTABZCDX ABZCDX
ABCD AB__CD

3 DQZZSTABZYCDUQRTVUAA | ABZ YCD

The complexity difficulties remain the same as for the global alignment, due to the same reasons,
which are related to the maintenance and processing of the m x n matrix, where m and n are the
sequence lengths. For the same reasons as for the global alignment algorithm, several more efficient
algorithms have been investigated during the last 20 years, in order to extract aligned subsequences
from long DNA sequences. For our specific word alignment problem this matrix size is relatively small
and we can afford to employ the Smith-Waterman algorithm, which produces the best alighment

match, depending on the word-to-word alignment function.

The original algorithm extracts only the sub-alignment with maximum score . However, other relevant
sub-alignments can exist, besides the best one. For example, by looking carefully at the second

example in Table 4.1 we note another possible sub-alignment of length 4:

D_Q2Z

DRQ Z
This shows that the algorithm could be adapted to generate not only the maximum sub-alignment, but
a set of sub-alignments that satisfy some criterium, for example having an alighment value greater
than some minimum threshold. In fact, this is relevant for our sentence word alignment problem,
since sentences may be rewritten by rearranging their parts in a different order. Furthermore,

this motivated us to implement a dynamic alignment method, described in the next section (4.2).

Having a method of extracting not just the best, but several relevant sub-alignments, from one para-
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phrase, has the effect that a richer aligned paraphrase corpus will be constructed, with different
and more detailed phrase alignments. Hence, we implemented a modified version of the original

Smith-Waterman algorithm, where several sub-alignhments are likely to be generated.

Similarly to what was done for the Needleman-Wunsch algorithm described in the previous subsection,
an illustration of the Smith-Waterman algorithm is presented here, and in particular our adaptation
involving the extraction of multiple sub-alignments. The sequences used for this illustration are those
contained in the second example, in Table 4.1, hence we have:

SEQUENCE(x): A B C D DRQZR
SEQUENCE(y): GADQZZSTABZCDX
Here we assume that the scoring function returns 2 for a symbol match and -1 either for a mismatch

and for gap penalty alignment:

2 if X;i = y]
W(xi,y)) =4 —1 ifx; #y;

~1 ifx;="_" or yj="_

”

Another difference is the filling values for the initialization rows, the line zero and column zero are

initialized with zero values:

The recursive dynamic filling function, for the rest of the matrix elements is exactly the same as in

the global alignment, though w(x;,y;) weights differently.

0
"y . F(i —1,j) + @(xi, )
F(i,j) = maximum ¢~ }
E(ij—1) +@(_y))
F(i -1,j—-1)+ zb(xl,y])
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and in this case our F matrix will be:

_ G ADQZZST A B Z C D X
0 00 0O0O0O0DO0O0TG 0O 0O 0 0 0 0
A0 021000001 1 0 0 0 0
B 0 01 100000 1 [4[3 2 1 o0
C 000UO0TO0O0O0O0O0O0 3 3 [5] 4 3
D 0O OO0 2 100000 2 2 4 [7 6

F=[ x o 001100000 1 1 3 6 [9]
Y 0000 O0O0OO0O0OOT O 0 0 2 5 8
D 0O OO 2100000 0 0 1 4 7
R 0001100000 0 0 0 3 6
Q 0000321000 0 0 0 2 5
Z 0 00 0 25 432 1 0 2 1 1 4
R 000 01 4 432 1 0 1 1 0 3

Whereas in global alignment the jumping-back alignment path starts at the lower rightmost position,
here the construction starts at the position holding the maximum value, in this case F(5,14) = 9.
The jumping-back direction, is computed easily, since we only need to pick the maximum value
from the prior neighbors and jump to that position, while in the previous algorithm more arithmetic
calculations are involved. For example, we can see the justification for the jump Fz,n — Fz’m,
because F(2,10) = max{0, ¥(2,10), ¥(1,10), F(1,11)} = max{0,4,1,0} = 4. The complete
jumping-back path is marked with boxes and the sub-alignment output is:
AB _CDX
ABZCDX

To seek for another possible sub-alignment, one must look at the values outside the optimal path,
assigned to lines and columns. These are positions where their line and column indexes do not
intercept lines and columns of the optimal path elements - a new starting point in a disjoint region.
In our example, we have to scan F(i, ]) positions such that i € {6,7,..,11} and j € {1,2,...,8}. If
the maximum scanned value is greater than a minimum threshold J then a starting point for another
sub-alignment can be found. Admitting that § = 4 was predefined, then F(10,5) = 5 is our new
alignment starting point. Afterwards, the jumping-back walk works exactly the same as for the global
alignment. Our second sub-alignment is marked in the matrix by using an underlined bold font. The
search for sub-alignments in disjoint regions continues while unassigned lines and columns exist and
as long as max {F(i,j) : free(ij)} > &, where free(i,j) represents an unassigned position. The
application of this adapted version of the Smith-Waterman algoritm to our example would generate

two sub-alignments:
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ALIGNMENT 1 ALIGNMENT 2
AB _CDX DRQ Z
ABZCDX D _Q2Z

We conclude this section by showing some examples of aligned word sub-sequences obtained from
our paraphrase corpus. The reader may check the appropriateness of this algorithm in this particular
kind of sentence pairs, usually sharing some length dissimilarity, i.e. asymmetrical paraphrases (see
definition 2 in Section 3.1). Let us see a case with three paraphrases in which local alignment is
more appropriate. The “algval(Ajx,)" function, defined in Subsection 4.3.1, is used to provide
quantitative comparisons. First we show what would be the bad effect of global alignment applied

to these three paraphrases:

(1) The McMartin Pre-school molestation case was the longest criminal trial in

The longest , costliest , criminal trial in

________ U.S . history _ _
American _ _ history , the McMartin Pre-School molestation case , ended Thursday .

[algval(1): 0.500]

(2) After the 45-minute service , the families attended a private

Moosally attended the service _

reception with Moosally .

[algval(2): 0.388]

(3) The storm , ___ _ ____ packing winds of up

21 , hitting Charleston ___ _____ , S.C . head-on at midnight with winds __ up

to 135 mph , raged into Charleston Thursday night .
to 135 mph _

[algval(3): 0.358]

Now, for each one, we show the sub-alignments obtained through the application of the local (Smith-

Waterman) alignment algorithm:

1)
a) longest _ _________ _ criminal trial in ________ U.S . history [algval(la): 0.815]
longest , costliest , criminal trial in American ___ _ history
b) McMartin Pre-school molestation case [algval(ib): 1.000]
McMartin Pre-school molestation case
(2)
a) the 45-minute service [algval(2a): 0.840]
the _________ service
(3)
a) winds of up to 135 mph [algval(3a): 0.927]
winds __ up to 135 mph
b)) , raged into Charleston [algval(3b): 0.657]

, hitting Charleston

It appears that these obtained sub-alignments are much more useful and make more sense for our
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main objective of the identification of sentence reduction rules, than the corresponding global align-
ments. Thus in some situations local alignment is preferable to global alignment. In the next section

we present a new method for determining which alignment algorithm should be applied at run time.

4.2 Dynamic Alignment

In the last section we presented two classically alignment algorithms for symbol sequences, the
Needleman-Wunsch for global and the Smith-Waterman for locally alignment. In particular, we pro-
posed an adaptation of this last one in order to be able to generate more than one sub-alignment
from the same sequence pair. This last new method revealed to be more adequate to align our data,
in many cases due to the high presence of asymmetrical paraphrases in our corpus. However, in many
other cases a global alignment will comply better with the alignment task needed. So, a natural and

relevant question raises:
Which alignment algorithm should be employed in our sentence word alignment problem?

Initially, we were inclined to use only the global alignment algorithm, since a full word alignment for
each sentence is generated. However, we noticed that the global strategy was not appropriate for
many paraphrase sentence pairs, in particular when there are syntactically valid variants, like the

pair shown in the next example:

During his magnificent speech, the president remarkably praised IBM research.

The president praised IBM research, during his speech.

Figure 4.5: A paraphrase sentence pair which include interchange of paraphrases.

This type of phrase interchange may occur with some frequency in a paraphrase corpus, and global
alignments in such cases may aligh many unrelated sentence portions to word gaps, and as a result this
may lead to a poor quality alignment. This has negative consequences for the induction of sentence
transformation and reduction rules. The global alighment for the paraphrase example from Figure
4.5 is represented below.

during his magnificent speech the president remarkably praise ibm research
the president

praise ibm research during his speech

[algval: 0.644]

This is clearly a situation where our adapted local alignment algorithm (see Subsection 4.1.2) would
perform better than the global one, since the local method would generate the following two sub-

alignments:

(1) the president remarkably praised ibm research [algval: 0.927]

the president __________ praised ibm research

(2) during his magnificent speech [algval: 0.886]
during his speech
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There are other situations, even without such syntactical alternations, where the local alignment
procedure seems more adequate. For example, when one of the paraphrase sentences is considerably

longer than the other one, like in the following example in Figure 4.6, a local alignment would

Sayako has taken driving lessons and practiced shopping at supermarkets, the couple

has studied catalogs to choose furniture and appliances for their new home.

Sayako took driving lessons and practiced shopping at supermarkets.

Figure 4.6: A paraphrase sentence pair with relevant asymmetrical lengths.

produce a more specific alignment, which would be better suited for learning more restricted and

simple sentence transformations:

Sayako ____
Sayako took

has taken driving lessons and practiced shopping at super
driving lessons and practiced shopping at super

[algval: 0.874]

However, this kind of asymmetrical length examples may be useful to infer regularities specifying
the condition in which the long sentence portions can be eliminated, which is one of our main goals.
Hence, the best of "two worlds" is desirable, and ideally both global and local alignment algorithms

are worth to be applied, each one in its particular cases.

The previous situations motivated and led us to search for a strategy for run-time-choice of an ap-
propriate alignment algorithm, between the global and local methods mentioned. For that purpose,
we use the concept of exclusive link discussed in Section 3.3. Considering a connecting line set be-
tween two sentences, we noticed that when we have high syntactic alternations, the number of line
intersections is high, whereas the absence of any alternations is reflected by no line intersections.
Based on this notion, we have formalized our method for algorithm selection. We refer to these
intersection points as crossings. An illustration is given in the Figure 4.7, where 15 crossings are

identified using small squares.

During his magnificent speech, the president remarkably praised IBM research.

The president praised IBM research, during his speech.

Figure 4.7: Crossings between a sentence pair.

The maximum number of crossings, between two sequences with n exclusive links is equal to 6 =

% 1 x (n — 1), which is the case when the words in the second sentence appear in reverse order
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when compared with the first sentence.

the president remarkably praised IBM research

research IBM praised president the

Figure 4.8: Maximum number of crossings in a complete word inversion case.

This is an extreme situation and almost never happens, because the order of words in a sentence
is subject to various linguistic constraints such as the syntactical structures. The result would be a
bunch of unrelated words. However, this value is a relevant upper limit for our algorithm, allowing
us to calculate a kind of "reversion proportion” and take decisions at run time. Such an extreme
inversion situation is illustrated in Figure 4.8, where each line has an intersection point with all the

others, and so we obtain the total of 6 = % * 5 x4 = 10 crossings.

In order to count the total number of intersections, which in the general case may include n lines, we
start by removing a given line and count the number of intersections vanished through this operation.
For the first line, n — 1 crossings will disappear. We continue this process until no lines are left.
Hence, in the second removal n — 2 crossings disappear, in the third one n — 3 and so on. When only
two lines are left and one is removed, exactly one intersection is removed. The removal of the last

line implies obviously the removal of zero crossings. Therefore, it clear that:

9 ~ 1)+ (n=2)+..42+1+40

= (]’l
1
= - -1
5 ¥M* (n—1)
With this upper bound of the number of crossings 6, we can count the number of crossings in a
given case, lets say x. This enables us to decide whether x is greater than a certain pre-defined
proportion of 6 (for example whether x > 0.5 %0 ) and opt for global alignment if this condition is

not guaranteed. This is synthesis below in Algorithm 2.

Given two sentences, the method to calculate a crossing point takes into account the word index
in the sentence, that is the position in which a word occurs within the sentence, which starts with
one. For instance, in our previous example from Figure 4.7, the word "president” occurs in the sixth
position, whereas in the second sentence it occurs in the second position. This connecting line is
represented through a tuple (w, i, j), where the first component is the word being connected, and

the second and third components are respectively the indexes of that word in the first and second
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Algorithm 2 Runtime decision to chose between local and global alignment.
1: n < NumExclusiveLinks(S1,S,)

20— Jxnx(n—1)

3: k < NumCrossings(S1,Sz)
4: if x > 0.5x 6 then

5:  Local Alignment(Sy, S7)
6: else

7:  Global Alignment(Sy, Sy)

8: end if

sentence. So the connecting line would be represented as (president, 6,2), whereas the connection
line relative to the word "during” would be represented as (during,1,6). With this representation it
is fairly straightforward to verify whether any two connecting lines have an intersection point. If we

have connections (w, iy, j») and (v, iy, j»), a crossing point exists if and only if:
(iw —iv) * (jw — jo) <O (4.6)

For instance, the previous example that involves (president,6,2) and (during,1,6) is covered by this
condition, because we have (6 — 1) x (2 — 6) < 0, revealing that a crossing point exists for these two
connections. The total number of crossings found between two sentences Si and S;, corresponds
to the NumCrossings(S1,Sy) function in Algorithm 2. As shown, this value is used for deciding the
alignment algorithm that should be applied in a given case. The decision threshold of 0.5 in line 4
is a value that should be tuned according to the input data type being processed and also the final
alignments one would prefer. In our case this value seems reasonable, however other values may

also be considered.

4.3 Modeling a Similarity Matrix for Word Alignment

In bioinformatics, the DNA sequence alignment algorithms are usually guided by a scoring function,
defining the probability of gene mutation. Such scoring functions are defined using matrices that
relate the mutation likelihood among amino-acid characters. Two well-known and widely used ma-
trices are the PAM' (Dayhoff et al., 1978) and the BLOSUM? (Henikoff & Henikoff, 1992), which encode
evolutionary approximations regarding the rates and probabilities of amino-acid mutations. The PAM
family were designed to be used for a more global distant or global gene alignment investigation,
whereas the BLOSUM family is more directed towards local alignment searching between evolution-
arily divergent protein sequences. Similarly as for PAM matrices, several sets of BLOSUM exist, using

different alignhment databases, identified by numbers. BLOSUM matrices labeled with high numbers

"Point Accepted Mutation.
2BLOcks of Amino Acid SUbstitution Matrix.
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are designed to compare closely related sequences, while BLOSUM matrices with low numbers are in-
tended for comparing less related sequences. An example of a BLOSUM matrix is presented in Figure
4.9,

Ala 4

Arg -1 5

Asn -2 0

Asp -2 -2 1 6

Cys 0 -3 3 -3 9

Gln -1 1 0 0 -3 5

Glu 1 0 0 2 -4 2 5

Gly 0o -2 0 -3 -2 -2 6

His -2 0 1 -3 0 0 -2 8

lle -1 -3 -3 3 -1 -3 -3 -4 -3 4

Leu -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4

Lys -1 2 o -1 -3 1 1 -2 -1 -3 -2 5

Met -1 -1 -2 -3 -1 o -2 -3 -2 1 2 -1 5

Phe -2 -3 -3 3 -2 -3 -3 -3 -1 0 o -3 0 6

Pro -1 -2 -2 -3 -1 -1 -2 -2 -3 -3 -1 2 -4 7

Ser 1 -1 1 0 -1 0 0 o -1 -2 -2 0 1 -2 -1 4

Thr 0o -1 0 T -1 -1 -1 -2 -2 -1 -1 - -1 -2 1 1 5

Trp -3 -3 4 -4 -2 -2 -3 -2 2 -3 -2 -3 1 1 -4 -3 -2

Tyr -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 1 3 -3 -2 -2 2 7
Val 0 3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 1 -2 -2 0 3 -1 4

Ala Arg Asn Asp Cys GIn Glu Gly His lle Leu Lys Met Phe Pro Ser Thr Trp Tyr Val

Figure 4.9: The BLOSUM62 substitution matrix.

Any similarity matrix models a set of concepts accepted in a particular domain, as probable evo-
lutionary gene mutations. Hence different matrices will generate different alignments, since such

matrices provide direct and fundamental guidance for the alignment.

Subsequently, this inspired us to develop a model that governs the likeliness of "word mutation”.
Such a model could then be used to guide the word alignments between our paraphrase sentences
and could produce more relevant material for the learning phase. We note that different authors
employ synonyms or even more simpler lexical similarities, like plurals, or different verb modes in
their formulations. A word mutation model could combine different types of linguistic features:
lexical, syntactical or even semantic. In our work, limit our proposal to a simple model which is
based exclusively in lexical features. However, in the future more complex combinations could be

experimented with.

Our main concern was to define a simple lexical mutation function that would reward naturally re-
lated word transformations, whereas unlikely word transformations would be significantly penalized.
For example, it seems more likely to admit a lexical mutation between the words spirit and spiritual
than between the words spiritual and hamburger, which would not occur much in a paraphrase word

alignment.

The first idea we had to introduce a word mutation function was to consider the well-known Edit

71



4. PARAPHRASE ALIGNMENT

Distance (Levenshtein, 1966) and adapt it for word alignment by introducing a negative reward. The
reason for taking a negative value is to comply with the content type of a mutation matrix, since
it represents costs, not rewards, for allowing gene alignments. So when using the negative Edit-
distance for a word pair (w;, wj>, the lower the negative Edit-distance value, the more unlikely the

word w; would be aligned with word w;.

However, despite many good alignments generated in some early experiments with this negative-edit-
distance function, we found that it was not appropriate in many situations, as it lead to alignments

between very different words, like for example: (total, israel), (fire, made), (troops, members).

The main reason why this happens is because the edit-distance returns relatively small values, inca-
pable of sufficiently penalizing morphological differences, like those listed before, in order to inhibit
their alignment. In terms of bioinformatics concept, this means that our model is still giving rela-
tively high mutation probability scores for such pairs. Another problem with this function is related
to the fact that it does not make any distinction between long and small word sizes, for instance the
pairs (in, by) and (governor, governed) have exactly the same Edit-distance equal to 2, despite the

huge differences between the pairs.

After some further research, we have defined a more adequate function to model lexical word mu-
tations, avoiding the previous difficulties - the costAlign(w;, wj) function. Thus, we proposed a
new word alignment scoring function in Equation 4.7) which is an adaptation of the Edit-distance
function, by dividing it by a normalization factor, the maxseq(w;, w]-) function, which discriminates

among word lengths.
edist(w;, wj)

cost Align(w;, w;) = (4.7)

e+ maxseq(wj, wj)
The edist(w;, w;) is the string edit distance, and the maxseq(w;, w;) function calculates a normalized
maximum common sequence value between two words. That is, it represents the length of the longest
common subsequence of the two words divided by the maximum length value. For example, the
longest common subsequence for the pair (reinterpretation, interpreted) is “interpret”, with length

equal to 9, thus:

maxseq(reinterpretation, interpreted) = max{?611} = 0.5625

On the other hand the pair (hamburger, spiritual) has a maximum common sequence equal to 1 (just

one letter: "a" or "u" or "r") and so we would obtain:

maxseq(hamburger, spiritual) = =0.1111

1
max{9,9}

In Equation 4.7 the ¢ represents a small value' near zero, acting like a "safety hook" against divisions

by zero whenever maxseq(w;, w]-) = 0. This happens when we have completely different words

"We took & = 0.01 in our experiments.
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that do not share any character in common. We named our function as "costAlign", instead of, for
example, "scoreAlign", since it looks more like a cost function, with values always less than zero. In
fact its maximum value is zero, when we have two identical words, however in such cases a positive
value should be assigned, rewarding the occurring match. This is exactly what we make, according

to the function w(x;, y;) (4.8), explained later.

Table 4.2: Comparing two word mutation functions.

word 1 word 2 -edist | costAlign
rule ruler -1 -1.235
governor governed 2 -2.632
pay paying 3 -5.882
reinterpretation | interpreted -7 -12.227
hamburger spiritual 9 -74.312
in by 2 -200.000

In Table 4.2 we present several cases, comparing the simply negative edit-distance and the defined
costAlign(wi,wj) function for word alignment. These examples demonstrates the advantages of
the costAlign(w;, wj) over negative edit-distance, specially in the case of small word lengths. For
instance, we note that although the pairs (in, by) and (governor, governed) have exactly the same
negative edit-distance value, their cost Align values are hugely different, giving no alignment chance
in this case. With our costAlign function the word mutations are more admissible for longer words,

whereas much restricted for the short ones.

The cost Align(w;, w;) function defines our word mutation matrix for different words, in which lex-
ically similar words are admitted to be aligned. We finalize this chapter by showing a paraphrase
alignment example where costAlign(w;, wj) is employed, yielding the alignment of the paraphrase
words. In our case, considering the type of values possibly returned by the costAlign(w;, w]») func-
tion, and after some experiments, we decided to assign a reward of 10 for a match. Therefore in our

case the w(x;,y;) function was defined as follows:

10 if x; =y;
w(x;,yj) = -3 ifxj="_" or yj="_" (4.8)
costAlign(x;,y;) if x; #y;
As it can be seen by looking at the second brach, the gap penalty used was equal to —3. With this

parameterization suppose one want to align the paraphrase sentences shown in Figure 4.10 then the

Sq : Gilbert was the most intense storm on record in the west.

S, : Gilbert was the most intense hurricane ever recorded in western hemisphere.

Figure 4.10: A paraphrase sentence pair with relevant asymmetrical lengths.

alignment matrix dynamically constructed was equal to:
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Gilbert  was the most  intense  storm on  record in the west

_ 0.0 -30 —-60 -90 -120 -150 -180 —21.0 —240 —-270 —-30.0 —33.0
Gilbert -3.0 10.0 7.0 4.0 1.0 —-2.0 -5.0 -80 -11.0 -140 -170 —-20.0
was —6.0 70  20.0 17.0 14.0 11.0 8.0 5.0 2.0 -1.0 —4.0 -7.0

the -9.0 4.0 17.0  30.0 27.0 24.0 21.0 18.0 15.0 12.0 9.0 6.0
most  —12.0 1.0 140 270 40.0 37.0 34.0 31.0 28.0 25.0 22.0 19.0
intense  —15.0 —-20 11.0 240 37.0 50.0 47.0 44.0 41.0 38.0 35.0 32.0
hurricane  —18.0 -5.0 8.0 21.0 34.0 47.0 44.0 41.0 38.0 35.0 32.0 29.0
ever —21.0 —-8.0 5.0 18.0 31.0 44.0 41.0 38.0 35.0 32.0 29.0 26.0
recorded  —24.0 —11.0 2.0 15.0 28.0 41.0 38.0 35.0 35.4 324 29.4 26.4
in —27.0 —-140 -1.0 12.0 25.0 38.0 35.0 36.0 33.0 45.4 42.4 394
western  —30.0 -170 —4.0 9.0 22.0 35.0 32.0 33.0 30.0 424 394 37.2

hemisphere ~ —33.0 —200 -7.0 6.0 19.0 32.0 29.0 30.0 27.0 39.4 36.4 34.2

and the jumping back path followed after constructing the alignment matrix is marked in bold face,
which determines the sequence alignment. The resulting alignment for the two paraphrase sentences

was:

Gilbert was the most intense storm on record in the west

Gilbert was the most intense hurricane ever recorded in western hemisphere

We note that in this example we got heterogeneous word pairs aligned, as for example (recorded, record)
and (western, west). These two cases show that the costAlign(w;, w;) function play it's role in
the construction of the alignment matrix. In the first case we have cost Align(recorded, record) =
—2.632 ~ —2.6 and we have a north-west jumping back, as 35.4 = F(8,8) = 38.0 + (—2.6). The

same occurs at F(10,11), where cost Align(western, west) = —5.16.

4.3.1 The Quantitative Value of an Alignment

Several times, when we are discussing about paraphrase alignments we subjectively compare dif-
ferent alignments, stating that a given one looks better that another one. In order to have a more
objective criteria to compare alignments, at least at a surface level!, we define here a function for

that, based on the word aligning function have used on the alighment construction - Equation 4.8.

To define this function let us consider an alignment as an 2 x n matrix of tokens, where each line

contains the words of each sentence. For example:

Maxwell ©plans __ raising ______ $448 million

Apxy =
Maxwell planed to raise around $448 million

Then our lexical alignment evaluation function algval (A, ) is defined as shown below in equation

4.9. ,
1 Y1 0(Aqj, Ay)

2V 0 (m +m) (4.9)

lZlgU(Zl(A2><n) =

The % and 3 values are normalization factors in order to have as a result 0 < algval (Azx,) <

1
10-(n1+ny
1, where 11 and n, are respectively the number of non-empty tokens in sentences A; and A,. The

0nly lexical relations are considered.
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token match function - o(w, w5) - is based on the previously defined w(x;, y;) function from Equation

4.8 and calculates the similarity value between two tokens. Thus we have:

10 ifx=y
o(x,y) = -3 ifx="_" or y="_" (4.10)

10 :
—costAlign(x,y) if x 7 Yy

The value 10 in the third branch of this function is related with the positive reward giving to a match,

as well as the 10 appearing in the denominator of the algval function.

4.4 System Execution

Before giving final remarks and finishing this chapter, we present here some implementation and
execution details of our system, until the alignment phase, which comprehends steps one and two".

Further details about subsequent system steps are given in Chapter 6.

Excepting the Aleph execution module, all the other modules shown in Figure 1.2 were implemented
using the Java programming language. The conceptual presentations of paraphrase extraction and
alignment were already done. Here we show system execution examples involving the extraction and
alignment of paraphrases from web news stories. More deeply implementation details about some

relevant issues/algorithms are presented in Appendix B.

4.4.1 Extraction of Web News Stories

According to the scheme in Figure 1.2, the first step consists in automatically gather a collection of
web news stories, organized in clusters of events. Each cluster contains several news about a single
event, for example: "The presidential speech in the state of the union". Each news document comes
from a different electronic source. A quite handy place, on the Web, to look for such data is naturally

the "Google News" web siteZ.

From a given news event, a set of related news stories links are followed. The launch of the web
news extractor is made through the execution of the "GoogleNewsSpider" class, which is included
in the GNewsSpider. jar package. By default the Google's English version is crawled. Other Google
News language versions can be indicated in a configuration file (with name ".gnews_spider"), in
the user's home directory, as well as other configuration parameters for news extraction can also be
included in this file. The user may even supply this configuration file directly in the command line,
through the "-conf" parameter. The syntax and parameters of the GoogleNewsSpider program is

listed below.

'See the system scheme in Figure 1.2.
2URL: http://news.google.com [November 2010]
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G()L )gle news ('search News 1 Search the Web ) Advanced news.

h - o * Preferances
fus. ) Top Stories

Obama Returning to Familiar Themes in State of the

World Union, With Goals Unmet

I .5, FOXNews - 44 minutes ago
) President Obama is expected to wrap his first official State of the Union
Business address around the theme of jobs creation and econcmic recovery,
ScifTech calling for advances in education, health care reform, clean energy

investment and deficit reduction along the ...
I Entertainment [# Video: State of the Union Preview @5 CBS
What Obama Will Say (and Won't Say) in the State of the Union Atlantic Online

Sports RS x an Science Monitor - BusinessWeek - NPR
I Health all 5,661 news articles »
o

Cluster of web news stories,

for a given event.

Figure 4.11: A link pointing to a cluster of web news stories related to a given event.

$ java GoogleNewsSpider

HELP:
java <P> [help] [-test] [-clustptxt <string>] [-serverurl <string>] [-conf <file>]
help:........... Print this help.
clustptxt:...... The string pattern to access the web news cluster.
conf:........... To supply the configuration file.
serverurl:...... The server url starting point, usualy: http://news.google.com
test:........... Run in test mode, with more output details.

The whole set of news data used in this research was collected with this program, scheduled to
automatically run once a day in a server', collecting news data (320 files) between the dates from
2005/11/05 until 2008/12/31. It extracted a total of 1.4 GB of text data, storing these in XML files,
one file for each execution. Figure 4.12, in the next Subsection gives an idea about the structure of

one such data file.

4.4.2 Paraphrase Extraction and Alignment

The second step of our system scheme (Figure 1.2) consists in the extraction of paraphrastic sentences
and their subsequent word alignment, from the set of web news stories data files, collected in the
previous step. This operation is executed through the "java GenAlignParaphCorpus” command,
which corresponds to a Java class contained in the "Factory. jar" package. A simple execution of
this command, without supplying any parameter, will reveal a small command help, showing the set

of parameter possibilities.

1A machine running a POSIX operating system, with access to the World Wide Web.
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<?xml version="1.0"7>
<news-clusters>

<cluster i="1" url="http://news.google.com/?ncl=1285686762&hl=en&topic=h">

<new i="0" url="http://www.youtube.com/results?sa=N&tab=n1">

</new>

<new i="1" wurl="http://www.washingtonpost.com/wp-dyn/content/article/2008/12/30 ...">
President-elect spent yesterday afternoon in Honolulu, going to the zoo with
his daughters and visiting his high school campus. And yet, he couldn't escape the
political melodrama unfolding more than 4,000 miles away. While Obama vacationed,
some of the main characters from his political past took turns starring in a
bizarre Chicago news conference. First to the lectern was embattled Illinois

</new>

<new i="75" url="http://firstread.msnbc.msn.com/archive/2008/12/30/1727681.aspx">
First Read is an analysis of the day's political news, from the NBC News political
unit. First Read is updated throughout the day, so check back often. But can the
Senate do that? There's reason to think not, and here's why. In January 1967, Adam
Clayton Powell of New York was re-elected by the Harlem district he represented
since 1942, despite allegations that he had misused official travel funds and made

improper payments to his wife.?The House, invoking a provision of ...

</new>
</cluster>

<cluster ... >
</cluster>

</news-clusters>

Figure 4.12: Illustration selected from an xml web news file, produced by the "GoogleNewsSpider" program.

$ java GenAlignParaphCorpus

SYNTAX:
java <P> -dir <folder> [-out <fout>] [-m <metric>] [-aln <type>] [-thres <value>]
dir ----- > the directory of xml web news stories files
fout ----> the xml output file, example: pac.xml
metric --> the paraphrase detection metric:
{sumo, ngram, xgram,
bleu, entropy, gauss}
aln -—-——- > the alignment method: {nwunsch, swaterman, dynamic}

thres----> the decision threshold, example: 0.5, 0.75, etc.

This command was designed to process a directory containing a set of XML files with web news stories,
similar to the one illustrated in Figure 4.12. The "<P>" tag represents the class name, and the set of
parameters is briefly described. The "dir" and "fout” parameters indicate respectively the input and
output pointers. The output is also an XML file, containing the set of all paraphrases extracted and
their corresponding generated alignments. The "metric” parameter let the user specify the sentence
similarity function to be applied, and the "thres" parameter is closely related with this last one, as
it establishes the boundary value for paraphrase extraction decision. The "algn" parameter sets the
method that will be applied on sentence alignment, which according to sections 4.1 and 4.2 can be:
Needleman-Wunsch (nwunsch), Smith-Waterman (swaterman), or dynamic (dynamic). An excerpt

from a generated file with aligned paraphrases is listed in Figure 4.13.
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<?xml version="1.0" encoding="UTF-8"7>
<root>
<group>

<paraph id="850" alg="NW">
<nx>(4, 28, 0.864793)</nx>
<sl>sales were down 34.5 percent at the ford motor company, 32.8 percent at ...
<s2>sales were down 24 percent at honda motor co 1ltd, 32 percent at toyota ...

<sal>sales were down __ 34.5 percent at _____ the ford motor __ company ...
<sa2>sales were down 24 ____ percent at honda ___ ____ motor co _______
</paraph>

<paraph id="1063" alg="NW">
<nx>(12, 35, 0.903677)</nx>
<s1>this woman is a serious politician.</s1>
<s2>she is a politician not a leader.</s2>

<sal>___ this woman is a serious politician ___ _ ______ .</sal>
<sa2>she ____ is a politician not a leader .</sa2>
</paraph>

<paraph id="26160" alg="NW">
<nx>(41, 57, 0.913970)</nx>
<sl>obama would require that all employers either offer health benefits to their ...
<s2>obama's plan would require large employers to either offer insurance or ...
that all employers __ either offer ...
employers to either offer ...

<sal>obama ____ would require

<sa2>obama's plan would require large
</paraph>

</group>
<group>
</group>
</root>

Figure 4.13: An xml file of aligned paraphrases, showing the initial part of three examples.

Looking at the excerpt in Figure 4.13, we can see that paraphrases extracted from a cluster of re-
lated web news stories are stored within the same "<group>" tag. Each paraphrase is delimited by
a "<paraph>" tag, which has two parameters, one is a sequential identifier (id) and the other one
("alg") contains the alignhment algorithm applied, "NW" for Needleman-Wunsch and "SW" for Smith-
Waterman. The "<nx>" tag contains a 3-ary tuple, where the first two arguments hold the sentence
identifiers from where the sentences were extracted, and the third argument is the calculated sen-
tence similarity for that sentence pair. The "<s1>" and "<s2>" tags contains naturally the paraphrasic

sentences, and "<sa1>" and "<sa2>" their corresponding alighments.

To give an idea about the amount of data produced by this system's module, from a set of just
three files of web news stories, collected from three different days, near 64 000 paraphrases were

extracted and aligned. This represents 53.4 MB of textual data.

4.4.3 Class Hierarchy Diagram

We finish this subsection by showing in Figure 4.14 a class diagram containing the key classes involved
in our data representation.  This diagram is expressed using UML notation (OMG, 2010), where

rectangles represent classes and the connecting arrows represent the relationships among them. For
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Ward P U Chunk
‘:’;’c;d_ ;nSttnng words : Word[]
Chunk(cs : ChunkedSentence,cm : ChunkedMark) : void
Word() : void ) size() @ int
Word(w : String) : void get(index : int) : Word
charAt(i : void) : char getToken(index : int) : String
setlexCodicod : int) : void getTag() : String
setPosCodicod : int) : void
setChkCodicod : int) : void é7
getLexCod() : int
getPosCod() : int ChunkMark
getChkCod() : int 2 int
set(w : String) : void b-' int
editDistance(other : Word) : int 0'5 - char
costAligni{other : Word) : double pas :
ChunkMark(a : int,b : int,spos : String) : void
1 set(a: int,b : int,spos : String) : void
0 al) : int
X J b0 : int
LinkedList<Word> POSQ : String
1
T ‘4
Sentence ChunkedSentence
cod : label k] MAIN CHUMNK TYPES : int[]
metric : int NP : int
WP @ int
Sentence() : void PP : int
Sentence(s : String) : void PRT - int
getWord(index : int) : Word ADVP :int
getTag(index : int) : String vchmarks : ChunkMark[]
similaritv(other_: Semence]_: double ChunkedSentence() - void
dsNgramiather : Sentence) : dauble ChunkedSentence(s : String,model : OpenNLPKit) : void
dsLevensteln(f}ther. Sent_ence] : double ChunkedSentence(s : String,model : MontyLinguaKit) : void
dsBLEU(other : _Semence] '_dOUbIE chunk(model : OpenNLPKit) : void
dsgauss{ather : Sentence) : double chunk(model : MontyLinguakit) : void
dsumo(other : Sentence) : double getNumChunks() : int
getChunkiindex : int) : Chunk
getChunkMark(index : int) : ChunkMark
1. lemmatize() : void
LinkedList<Sentence> [~ Text CorpusDict

sdict : TreeMap<String, Integer>

dictionary : CorpusDict idict : TreeMap<Integer, String>

Text() : void

Text(txt : String) : void

codify(dict : CorpusDict) : void
getSentence(index : int) : Sentence
getWord(i : int,j : int) : Word
removeDuplicates() : void

print() : void

CorpusDict() : void

add(s : String) : void

getikey : int) : String

get{token : String) : int

freg(token : String) : int
readCorpus(filename : 5tring) : boolean

i’h.l LJ}

Figure 4.14: A Selection of the main classes designed for text data representation.

any rectangle we have three main blocks. The first line contains the class name and in the second

block we have the class attributes. The third block contains the class methods.

There are only two types of connecting lines in this diagram. The line with a hollow triangle shape
() represents the generalization/specialization relationship, with the class directly connect to the
triangle extremity being a generalization (super class) of the other one (derived class). The other

line type, with a solid diamond shape at one of its extremities, represents a composition (“includes
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a") relationship between the two classes involved. The class next to the diamond is a container of the
other one (contained). The labels "1", "0..1" (zero or one), "0. .*" (zero or many), and "1..*" (one
or many), indicate the cardinality participation in the relationships. For example in the relationship

between "LinkedList<Word>" and "Word" classes, the former contains one or more ("1..x*") instances

of the latter.

It can be seen that "Word" is our basic class, representing naturally a textual word, which can be any
sequence of alphanumeric characters (a Java String), excluding obviously the space character. This
class is a kind of superclass for the "Sentence” which in turn is also a kind of superclass for the "Text"

class.

As it can be seen there is not a direct class derivation among these three classes, since "Sentence”
is derived from a linked list of words, and "Text" is derived from a linked list of sentences. The class
"CorpusDict” is a dictionary, generated from corpora, mapping word tokens into integer codes, for

the sake of computation efficiency.

The "ChunkedSentence" is a specialization from the "Sentence" class to handle chunked sentences
and it uses an array of "ChunkMark" instances, which is a class that stores the initial (a) and final (b)
chunk word positions, in a sentence, and the chunk type, for example: noun-phrase (NP), and verb-
phrase (VP). Sentence chunking and part-of-speech tagging may be processed by using one of the two
well-known tools, from the "OpenNLP"' or "MontyLingua" (Liu, 2004) packages, as it can be seen in
the diagram, by looking at the "ChunkedSentence"” class constructors. In this work, the "OpenNLP"
was exclusively employed, as it seemed a bit more accurate?, though both packages perform close

with almost the same labeling output.

4.5 Final Remarks

In this chapter we described that the goal for automatically generate learning instances for sentence
reduction rule induction led us to investigate techniques for aligned paraphrasic corpora construction,
without direct human intervention and as efficient and effective as possible. After automatic para-
phrase identification and extraction from web news corpora, techniques for paraphrasic sentence
alignment were investigated. Algorithms from the field of Bioinformatics, used for DNA sequences
alignment, were conveniently adapted for word alighment between paraphrasic sentences. In partic-
ular the Needleman-Wunsh (NW) and Smith-Waterman (SW) algorithms were respectively employed,
for global and local sentence alignment.Two new issues were introduced. First a function enabling
the alignment of lexical similar, words was established, and secondly a new method for choosing

between NW and SW during run-time.

Thttp://opennlp.sourceforge.net [October 2010]
2Qualitative comparisons of several examples led us to that conclusion.
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4.5 Final Remarks

Equivalently to the "mutation matrices” used in Bioinformatics for DNA sequences alignment, we have
defined a function establishing the likelihood of lexically similar word alignment - the cost Align(w;, wj),
presented in Subsection 4.3. It resembles a kind of "word mutation” occurring between the paraphra-
sic sentences, where "mutations” are more likely to occur between longer words. Our word mutation
function is based exclusively in lexical features, however in the future more linguistically complex

characteristics may be considered, as fore example synonymy.

We observed that for some paraphrases the local alignment (SW) would be much more appropriate
than a full alignment. So, we introduced an efficient method to choose along run-time the right
alignment algorithm. This method is based on a pre-analysis of the exclusive lexical links existing

between the paraphrase sentences.

The work presented here and in the last chapter allows us to automatically collect paraphrases from
web news stories and align their words, thereby generating corpora of aligned paraphrase pairs.
These data is used to learn sentence reduction rules in our subsequent step. So, the next chap-
ter introduces a number of fundamental theoretical aspects related to the learning system used -
an Inductive Logic Programming system named Aleph. Afterwards in Chapter 6 we described our

implementation of the sentence reduction rules learner, based on Aleph.

Regards our alignment work we have achieved a scientific contribution published in the ACL 2007

conference proceedings and presented at the RTE Workshop (Cordeiro et al., 2007d).
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Chapter 5

Inductive Logic Programming

"Give me a place to stand and a lever long enough and I will move the world. "

Archimedes, 250 BC

During the last two decades, remarkable achievements have been reached in the field of Machine
Learning research, from applications of Case Base Reasoning, Neural Networks to Decision Trees and
Inductive Logic Programming. In this chapter we introduce the basic knowledge of Inductive Logic

Programming that we have used in our architecture that involves induction of reduction rules.

Induction can be seen as a process, starting from observations and generating general patterns that
underly these observations. Humans are accustomed to construct theories about the surrounding
world. We tend to formulate generalizations very easily, from a very few examples, which sometimes
leads to erroneous conclusions. But we also tend to specialize or even correct previously induced
theories if contrary examples from the real world are seen. Hence, induction is a kind of bottom-up
reasoning flowing from the specific towards the general, where successive orders of generalization

may be incrementally constructed, as one sees the world passing events.

5.1 Machine Learning

In Machine Learning, a theory or an hypothesis is the result obtained from an inductive process by
observing a set of examples from a given phenomenon. There are two main learning categories:
supervised and unsupervised. In the first one the learner is supplied with a set of labeled examples

called training instances. Such instances are usually represented in the form of an ordered pair as:

— — —
(X, h(X)) where X = (xq,x2,..., Xp)
—
Vector X is the feature vector which contains the values of a given set of n attributes characterizing
the concept to be learned in that particular case. The h function represents the hypothesis being
—
learned. In some cases /(X ) consists in a class value from a discrete set, and we say that we have
—
a classification problem. Whenever i( X ) is a real value we have a regression problem. A classical

illustrative example of classification learning is the "Play tennis" problem from Quinlan (1986): In this
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5. INDUCTIVE LOGIC PROGRAMMING

Table 5.1: Quinlan's "Play Tennis" learning example.

X1 X2 X3 X4 h( ?)
Day | Outlook | Temperature | Humidity | Windy | Class

1 | sunny hot high weak | no

2 § sunny hot high strong | no

3 || overcast | hot high weak | yes

4 | rainy mild high weak | yes

5 [ rainy cool normal weak | yes

6 | rainy cool normal strong | no

7 || overcast | cool normal strong | yes

8 [ sunny mild high weak | no

9 | sunny cool normal weak | yes
10 | rainy mild normal weak | yes
11 ] sunny mild normal strong | yes
12 | overcast | mild high strong | yes
13 | overcast | hot normal weak | yes
14 | rainy mild high strong | no

case we have four attributes and 14 learning instances. Several machine learning algorithms may be
applied to induce the hypothesizes covering the observed dataset. One originally applied was the

ID3" which produces the hypothesis in the form of a decision tree as shown below:

Outlook
Sunny Overcast Rain
Humidity Yes Wind
High Normal Strong Weak
No Yes No Yes

Figure 5.1: A learned decision tree for the play tennis problem.

"Which stands for "Induction of Decision Tree".
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Such a tree may be converted in a set of if-then rules by considering each path from the root to the
leafs. In this case we would have the following five rules, which represents a theory to explain which

are the weather conditions for playing tennis:

If outlook = overcast Then play = yes

If outlook = sunny And humidity = high Then play = no

If outlook = sunny And humidity = normal Then play = yes
If outlook = rain And wind = strong Then play = no

If outlook = rain And wind = weak Then play = yes

In supervised learning the training instances are usually labeled by humans, implying necessarily
considerable amounts of manual work with all its inherent limitations and imperfections. On the
other hand, in unsupervised learning there are no labeled training instances. This learning method
organizes the "observed" dataset into several main categories being these also discovered throughout

the learning process. One concrete example such learning type is clustering.

There are also semi-supervised learning (Zhu, 2005), where labeled and unlabeled data are combined
in the learning process. The approach which we have followed resembles more this learning method.
In our system the learning instances are automatically cerated (and labeled) by the system. Thus,

we use supervised-like instances without manual intervention.

Exhaustive machine learning paradigms and algorithms may be found in wide a set of bibliographic
material, from which we highlight here Mitchell (1997) and Witten & Frank (2005). We are now going
to motivate and introduce here a more powerful learning paradigm, employed in this work - Inductive

Logic Programming (ILP).

A great number of machine learning tasks are based on what is known as propositional learning, the
application of the ID3 algorithm to the "playing tennis" problem, previously shown, is just example.
In such a learning paradigm, the learning instances are characterized by a set of features, also named
as attributes, and the learned theory can be described as a set of specific rules from propositional
logic (Appendix A.1). In this context a rule is a propositional logic formula formed by two main
components: the antecedent and the consequent. The former is usually formed by the conjunction
or disjunction of other several subparts (conditions), while the latter gives the classification. The
two parts are connected through the (=>) connective in the form of "antecedent => consequent”,
which naturally also represents an "If antecedent Then consequent” rule, similar to the examples

given for the "playing tennis problem".

However, a different learning paradigm, known as relational learning, can be used, in which we have

multiple relations representing several entities and the concept being learned is also represented
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with a relation. Relations are expressed trough n-ary tupples, similar to n-ary predicates in First
Order Logic (FOL) (Appendix A.2). For example, continuing to use the "playing tennis" domain we

may consider the relations player and game as follows:

player(id, name, weight, height)
player (101, john, 85, 173) player (102, mary, 71, 171)
player (103, anne, 57, 155)

game (num, idl, id2, result)
game(345, 101, 102, 6:7) ga.me(347, 101, 103, 7:1)
game (346, 102, 103, 7:2)

The climatic features used in the propositional formulation will also become relations, for example:

wind (345, weak) outlook(345, sunny) temp (345, hot)
wind (346, strong) outlook(346, overcast) temp (346, normal)
wind (347, normal) outlook(347, overcast) temp (347, mild)

The learning concept can be play(X,Y,G), that is, in which conditions two players X, and Y, accept

to play a game G. A possible learned rule is:

play(X,Y,G) <=
wind(G, strong) AND
player (X, Xname, Xweight, Xheight) AND
player(Y, Yname, Yweight, Yheight) AND
|Xheight - Yheight| < 20

which can be read as "two players accept to play in a windy day if their height differences is less

than 20 cm".

The type of concept learning in the relational formulation has a much greater expressive power and
normally it is very hard, if not impossible in some situations, to reformulate it in propositional learning
(Kramer, 2000). In terms of expressive power and knowledge representation, the main difference
between these two learning paradigms is the same as the one that exists between propositional logic
and first order logic, briefly presented in appendixes A.1 and A.2, respectively. Thus, in this work we
have decided to use a relational learning based approach, known as Inductive Logic Programming, to

learn sentence reduction rules.

Inductive Logic Programming (ILP) is a mathematical formalization characterizing the inductive rea-
soning, which is applicable in almost any learning case, from simple every day life situations to
complex scientific problems. Our system's third step (fourth module in Figure 1.2) is mainly based on
ILP, in particular a computational implementation of it (the Aleph system, presented in Subsection
5.4). Since it is a very important step in our work, we have decided to dedicate this chapter to cover
some basic ILP aspects. ILP is based on Logic Programming which in turn is based on and uses many
aspects from Mathematical Logic. Thus, we have also decided to include a small set of notes from
this discipline in the appendixes, just for the reader who wants quickly remind some concepts men-
tioned in the text. Among other important things, Logic defines rigorously the notion o deduction,

which can be seen as the induction's inverse mechanism. In Section 5.3 we describe the main ILP
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concepts and in Section 5.4 we present the Aleph system. But first we have to present the subject

of Logic Programming (Section 5.2), which is the basic language for ILP.

5.2 Logic Programming

Logic Programming (LP) is a Computer Science discipline directly based on First Order Logic (FOL)
and a great deal of aspects and terminology in LP comes from it. LP is even presented as an important
FOL subset (Lavrac, 2001). A general FOL description, touching the main relevant aspects of LP, is
given in Appendix A.2 for the interested reader. In this section we present basic LP concepts and

terminology that are employed in ILP, which is presented in the next section.

ILP produces knowledge in the form of logic programs, which are formed by a special type of FOL rules
named as clauses. Let us consider the syntactical valid FOL formulas, called well formed formulas
(wffs - Definition 9), then a clause is a wff formed by the disjunction of a set of literals. A literal
is an atomic formula or its negation, such as: L; = p(Xp,a), L, = —p(Xo,a), where a negated
literal is also called a negative literal, and a non negated one a positive literal. For example,
assuming that we have a set of literals {Ly,..., L, }, either positive or negative, having k variables,

being universally quantified, say Xq, ..., Xy, then the following expression is a clause:

VX, Vx, L1 V.V Ly (5.1)

k

For the sake of simplicity, the universal quantifiers are usually omitted, and so in a clause variables
are interpreted as being universally quantified. Since clauses are in fact FOL rules, an implication
connective is normally employed in a right-left direction, making a separation between the clause
head, at the left hand side, and the clause body in the right hand side. For example, assuming that
we have m positive literals Hy, ..., H;, and n negative literals =By, ..., —B;, then our clause can be
written as follows:

HyVv..VH, < Bi{A..ABy (5.2)

Variables occurring in the clause head are still universally quantified whether those occurring exclu-

sively in the clause body are existentially quantified, due to the negation operation, since we have:

HyV..VHy < BiAw.ABy = HjV..VHyV—BiV..V—By, (5.3)

A clause having at most one positive literal is called a Horn clause and a Horn clause with exactly

one positive literal is called a definite clause or a rule, and is normally expressed as:
H < BiA...ABy (5.4)

where H is obviously the formula's unique positive literal. A program clause is a more general rule

where negated literals are also admissible in the rule's body. More precisely, a program clause is
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a clause of the form of 5.4, where any B; may be a positive or negative literal. If a given B; is a

negative literal then it is written in the form of "not B;", where B; is a positive literal.

Program clauses are the "building blocks” for any logic program. A definite clause without a body
is called a fact, which are meant to be always true, since it is formally represented as H < true.

Usually it is written just as "H".

A predicate definition is a set of clauses having the same head, and a set of clauses is called a
clausal theory, representing the conjunction of their clauses. A set of program clauses is called
a logic program. For example, in Figure 5.2 it is shown a simple logic program, with only one
predicate and two clauses, defining the list membership, that is, what it means for a given element

to be member of a list of elements.

member (X, [X | Taill).
member (X, [Y | Taill) <= member(X, Tail).

Figure 5.2: The "member” predicate, with two clauses and being defined recursively.

The expression "X | Tail" represents a list decomposition into its first element, X, and the rest
of the list represented by the variable Tail. In this case the predicate member (X,L) assumes a
particular semantic, meaning that X belongs to the list "L". This is a recursive definition, stating that
else if X is an element belonging to the list tail. Note that in the previous example we are almost
using the Prolog notation, in which every clause ends with a stop mark. The only difference here is

the "<=" symbol, which in Prolog would be ":-".

Another important concept from FOL which is largely employed in ILP is substitution, which assigns
terms to variables, and may be used to obtain a specific instance of a given formula. This concept is

formalized in the following definition:

Definition 3 (Substitution). Given a wff ¢ with n variables Xy, ..., X;;, a substitution
0 = {X1/t1,..., Xu/t,} defines a variable replacement function, where each variable X, is substi-

tuted by a corresponding term t in ¢.

Given a literal P, the result of applying a substitution 6 to P is written as Pf. A substitution 6 unifies
two literals P and Q if we have P9 = Q6. For example the substitution 6 = {X/a, Tail/[b,c]}
unifies the literals member (X, [X|Taill) and member(a, [al [b,c]]1)"'. The member term is a also

predicate, as explained next, presented as an example in Figure 5.2.

'As in Prolog the simplified list representation is indeed a binary term, and for example "[b, c]" represent a term like:

term (b, trem(c,@)), with the term name being equal to the full stop (".") character.
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5.2.1 Inference Rules

In Mathematical Logic there are two main concerns related to well formed formulae (wff): semantic
and syntax. In model theory we are interested to assign meaning (semantic) to a formula, i.e. to
know when it is true or false. We explain this more formally in Appendix A.2, through definitions
10 and 11. Informally, an interpretation is a function that maps any wff ¢ into a given domain
determined by the ground facts in which ¢ is true. We say that an interpretation Z is a model to ¢ if
it assigns the true value to ¢. A formula is said to be satisfiable if it has a model, and unsatisfiable
otherwise. We say that a formula ¢ is logically implied by another wff i, i.e. i |= ¢ if every model

for ¢ is a model for ¢. In that case we also say that ¢ semantically entails ¢.

In proof theory the focus is syntax - what kind of formula operation maintains its syntactical correct-
ness? One want to know how to correctly generate new formulae (conclusions) from other formulae
(premises). This has to do with inference rules or deductive reasoning. We say that a formula ¢ is
deductible from a set of formulae S, expressed as S |- ¢, if there exist a proof of ¢ from S. A proof
is a sequence of formula consequences obtained through an inference rule (see Definition 13 from

Appendix A.2). if we have S |- ¢ we also say that S syntactically entails ¢.

We say that an inference rule is sound if whenever we have S I~ ¢ we also have S = ¢. We say that
the inference rule is complete if the previous implication holds to in the opposite direction, that is
if S |= ¢ then S I ¢@. When a set of inference rules is both sound and complete, the two concepts
are equivalent and we are sure that deduced formulae from valid formulae are still valid. One such

inference rule is deduction modus ponens, simply mentioned as deduction .

Deduction is one of the Logic Programming corner stones, specially Prolog, and the other one is
unification (Robinson, 1965). To illustrate deduction suppose that we have a common sense rule
stating that every man having at least one million dollars and a big house is considered a rich man.
Then if a particular person, let's say john, fulfills these conditions, we naturally conclude (deduce)

that john is a rich man. Schematically we have:

MillionDollar(X) A BigHouse(X) = IsRich(X)

MillionDollar(john) A BigHouse(john)

.. IsRich(john)

Note that variable "X" was unified' with constant "john". This mechanism contains a trivial case of

syntactic entailment, expressed as:

{a=pa} - B (5.5)

where formulae « = 8 and « are respectively the first and second premises and f is the conclusion.

"From the unification algorithm (Robinson, 1965).
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Furthermore, modus ponens it is a special case of a more general inference rule, which is resolution,
defined by Robinson (1965). The resolution rule is a valid inference rule that produces a new clause
from two clauses having complementary literals. The two original clauses should be in a normal dis-
junctive form, i.e a sequence of literals connected with the disjunction operator. Two literals p; and
g; are complimentary if one is the negation of the other one, for example p; = —g;. Schematically,

the resolution rule may be drawn as shown in Figure 5.3. The resulting formula is a clause with a

p1VpaV..VpiV..Vpy
ql\/qz\/...\/q]'\/...\/qm

prVpa2V..VpiaVpiraV..Vpn V @1V@V. Vg1V V..Van

Figure 5.3: The general resolution scheme.

disjunction of their premisses, excepting the complimentary literals p; and g;.

5.3 ILP Generals

Although only in 1991 the term Inductive Logic Programming (ILP) was defined in (Muggleton, 1991),
some concepts and key ideas of this discipline have its roots way back in the 1960s, from the fields of
Psychology and Artificial Intelligence (Sammut, 1993). It is a formal scheme of an inductive process
through computational logic and can be defined as the intersection between Inductive Learning and

Logic Programming.
ILP = Inductive Learning ﬂ Logic Programming

As a learning mechanism it provides several advantages over other learning schemes, which are
usually based on propositional logic, like for example decision tree induction, where the hypothesis
is constructed from a set of learning instances represented in a n-dimensional space where for each

instance we have n — 1 feature values and the remainder value is the class or target value.

The task of an ILP system may be defined as the knowledge production from a set of observed learning
examples (£), according to the knowledge one already has about some problem domain, named as
the background knowledge (BK). The knowledge created is codified through a set of rules which
form utterly the best theory or hypothesis which explains the observations and still be coherent with
the BIC. This theory is also known as the hypothesis (k). Being "F" the logic entailment operator, we
say that a set of first order logic formulae S entails a given formula g (S - g) if it can be obtained

from S through natural deduction’, as defined in propositions A.13 and A.14, in Section A.2.

"There are other deduction operators that may be used.
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The objective of ILP can be stated in a more formal way as the search for the best hypothesis & from

an hypothesis space H such that:

BKAKh F ET (5.6)
BK AR ¥ E (5.7)

where BK is the background knowledge and £ and £~ are the sets of positive and negative examples

respectively.

In order to have a simple and illustrative example, suppose that one wants a system to learn the
human concept of being in love, through ILP techniques. Of course, this aims only to identify the
most elementary conditions for such a human complex relationship, which states that for two humans
to be in love they must love each other. In terms of predicate representation we want to induce rules
where the head is the inLove(X,Y), meaning that X and Y are in love. The system will be supplied
with a small population of 16 humans, 8 male and 8 female, and their affective relationships, which

are represented in Figure 5.4.

--->| Kevin |---» Anne |
{

[ Arnold |, [ Pavid |

~§
. ,

\ . L .
Rose ‘ ‘ﬁ Hilda \

| lovise | | James | [ John |
i ) [}

| Brad |

===

\ \ J
| Paul }--» Viki | | Mary |

Figure 5.4: "Humans in love!"

The one side dash arrow means that some one loves the other one, however the reverse does not
hold. For example, Monica loves Kevin but Kevin does not love her. Naturally the full two side arrows
represent love feelings in both directions. This information is represented through FOL predicates

and shown in Table 5.3.

With only this information, an ILP system may be able to make a generalization about the inLove(X,Y)

concept, and in this case the constructed hypothesis (h) would have only one clause shown in 5.8.
inLove(X,Y) < love(X,Y) Alove(Y,X) (5.8)

meaning that X and Y are in love if X loves Y and Y loves X. Note that both conditions 5.6 and 5.7 are
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Table 5.2: Relations expressed in FOL.

BK Et E~
human(X) < male(X) inLove(brad, jolie) | inLove(kevin,anne)
human(X) < female(X) inLove(mary, john) | inLove(jolie, louise)

inLove(rose, bill) inLove(anne, david)
love(jolie, brad) male(paul) inLove(james, viki) | inLove(wiki, john)
love(brad, jolie) male(james) inLove(hilda, arnold)
love(anne, david) inLove(bill, anne)
love(monica, kevin) female(mary) inLove(rose, arnold)
love(arnold, rose) female(viki) inLove(paul, bill)

satisfied therefore the Formula 5.8 represents a complete and consistent hypothesis.
1
1\
3
2
1 E 3
4
2
1
2
5 3
=,
5
4

2
o
o

h
k

Figure 5.5: Example: "Why are they different?"

Despite the simplicity of the previous example, usually an ILP system is employed to learn more

complex and hidden relations, as for example mining relations in relational data bases (Lavrac, 2001).
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In the example of Figure 5.5 it is not so obvious to see what is the difference between two graph
types, identified as "+" and "—". The answer will be given in Section 5.4, where the ILP Aleph system

(Srinivasan, 2000) is described.

5.3.1 The Structured Hypothesis Search Space

The majority of learning tasks may be seen as the searching process for the best possible hypothesis
h from an hypothesis space H (Mitchell, 1982) that can be, and usually is, extremely large if not
infinite. Fortunately, methods were devised in machine learning to overcome these difficulties by
exploiting strategies to carry out an intelligent and systematic search through the hypothesis space.
One of these techniques employs the 6-subsumption operator, based on term variable substitution,

as presented in Definition 3.

Definition 4 (6-subsumption). Given two clauses c1 and c;, we say that ¢, 0-subsumes c;, represented

as c1 D¢ ¢p, if and only if there exists a substitution 0 such that c10 C c,0.

For example, if we have:
c1 = inLove(X,Y) < love(Y, X)

¢y = inLove(brad, jolie) < love(jolie, brad) A female(jolie)

then we have ¢ Iy cp, with 0 = {X/brad, Y /jolie}, because if we regard clauses as sets of con-
junctions of literals, we have ¢10 = {inLove(brad, jolie), —love(jolie, brad)}, which is a subset of

c20 = {inLove(brad, jolie), —love(jolie, brad), female(jolie)}.
20 = { (brad, jolie) (j ), female(jolie) }

The 6-subsumption operator ensures the important relation of logical implication in the H space, as

formalized in the next proposition:

Proposition 1. For any two clauses c1 and ca, if ¢1 I>¢ ¢ then ¢ = cs.

In general, the contrary does not hold. For example, in the next case succ(X) is a function which
returns the successor of a natural number (ex: succ(1) = 2) and natural(X) a predicate expressing

that its argument is a natural number. Continuing with our example, we have:

c1 = natural (sucessor(X)) < natural (X)

¢y = natural (sucessor(successor(Y))) < natural(Y)

It is clear that ¢1 = ¢;, however there is no substitution 6 that allows c; to 0-subsume clause c;.

From the Godel theorem (Theorem 6, in Appendix A) and the previous proposition, we may also
conclude that if ¢ >y cp then ¢, is deducible from cq, i.e ¢c; F c;. This means that clause c; is

more general than clause ¢y, and that we have a relation among clauses which gives us the ability to
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organize/order the H space in a way that will facilitate searching through the hypothesis space. To

have a clearer view of this we first need to introduce the mathematical notion of a partial order.

For a given set A, a partial order is a binary ordering operator (C) with the properties of reflexivity,

antisymmetry and transitivity. That is, for any elementsa € A, b € A, and ¢ € A we have:

aCa (reflexive) (5.9)
aCbAbCa=a=0b (antisymmetric) (5.10)
aCbAbC c=alc (transitive) (5.11)

Definition 5 (lattice). A structure (A,V,A,C) is a lattice if C is a partial order over the set A, and
any pair of elements in A has a supreme and an infimum, denoted respectively as a vV b and a A b,

wherea € Aandb € A.

For example, the structure (P(A),U,N, C), where P(A) is the power set' of A is a lattice. For

instance, if A = {x,y,z} we would have:

P(A) ={@{x} Ay} {zh {o vt {x 2h v 2 {xy, 2}

and the lattice may be represented with an Hasse diagram as in Figure 5.6

%

Figure 5.6: A lattice Hasse diagram for P({x,y,z}).

Proposition 2. Being H the space of admissible hypotheses which can explain a set of examples &,

based on a set of background knowledge clauses BIC, then the structure (H,V, A, >g) is a lattice.

The previous proposition asserts that VV and A exists in H, i.e. any two clauses ¢; € H and ¢, € 'H
always have a supreme and an infimum clause, which are respectively more general and more specific

than c1 and c;.

"The power set is the set of all subsets of a given set.
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The notion of clause pair generalization was initially investigated by Plotkin (1970) as the least gen-
eral generalization (lgg). It assumes that if two clauses are true then it is very likely that their (gg
will also be true. The [gg of two terms compares the components in the same predicate position and
if they are equal the value will remain in the resulting generalization. If they are not equal, then

that position is replaced by a variable. A few examples are shown in Table 5.3.1. Hence the supreme

Table 5.3: Examples of least general generalizations.

T, Ty 188(Ta, Ty)
love(brad, jolie) | love(brad, jolie) love(brad, jolie)
love(brad, jolie) | love(brad,anne) love(brad,Y)
love(brad, jolie) | love(john, jolie) love(X, jolie)
love(john, jolie) | love(brad, mary) love(X,Y)
love(brad, jolie) | dream(brad, jolie) zZ

operator, which gives the minimum of the majorants, for two clauses c¢1 and ¢; in (H,V, A, >g) may

be defined as the 1gg(c1,¢c2), i.e ¢1 Vo =1gg(c1,c2).

Since the (gg generalization operator does not consider the background knowledge, a relative least
general generalization (rlgg) operator was proposed later by Plotkin (1971), where for two positive

examples e; € £ and e, € £T we have:

rlgg(e1,e2) = lgg(er < BK, ey < BK) (5.12)

and here the background knowledge is already taking into account, in the generalization process. This
is more realistic and coherent with the human mental generalization process, which always works

with the whole knowledge in a given problem (the background knowledge or world knowledge).

The lgg and rlgg enable a bottom-up theory construction through successive, though non-deterministic

generalizations following the paths in the (H, V, A, >¢) lattice.

The opposite direction (top-down) is also possible since for any two hypotheses there exist an infi-
mum, which will be a more specific hypothesis. Specialization operators were also investigated and
employed in many ILP systems like FOIL (Quinlan, 1990). One of these is based on #-subsumption and
a refinement graph, which is a directed acyclic graph, where the nodes are clauses and the arcs are
possible refinement operations that may be followed, representing the replacement of a variable with
a term, or an insertion of a new literal in the clause body. The search starts with the most general
clause, which becomes more specific after each search step, until certain conditions like coverage or
entropy are satisfied. Part of a refinement graph from an example used by Lavrac & Dzeroski (1994)
is shown in Figure 5.7. The objective there is to learn the concept of "daughter(X,Y)", where the BK

set contains facts about being "male”, "female”, "father”, "mother” and a predicate which defines the
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concept “progenitor”. The search starts with the most general clause "daughter(X,Y) <", stating

daughter(X,Y) «

daughter(X,Y) « daughter(X,Y) « daughter(X,Y) «
X=Y parent(Y, X) parent(X, Z)

daughter(X,Y) +

female(X)
daughter(X,Y) « daughter(X,Y) «
female(X) female(X)
female(Y') parent(Y, X)

Figure 5.7: Part of the refinement graph, for learning the concept "daughter” (Lavrac & Dzeroski 1994)

that every X is a daughter of Y, which is, of course, too general and heavily inconsistent. There-
fore, a search of successive specialization (refinement) steps is undertaken, following a given search

method, like hill-climbing or the A* best-first.

5.3.2 Inverse Resolution

Another generalization method is the inverse resolution, introduced by (Muggleton & Butine 1998),
consisting of the process of inverting the deductive inference resolution rule (see Figure 5.3). Resolu-
tion identifies a pair of literals, one in clause ¢ and the other in ¢, where one is the negation of the
other one and then derive a new formula, the resolvent res(cq,cp) = ¢, where these two opposites

were eliminated and the remaining literals maintained, i.e c = (c1 \ {a} U (c2 \ {—a})".

c1= —aVvb =a=Db
cp= =bVc =b=c
res(ci,c2) = —aVe =a=c

In terms of propositional logic it is easy to devise an inverse resolution operator, also named as
inverse entailment, by considering one of the initial clauses, let's say c; and the resolvent res(cy, cz).

It should enable the inference of the other clause, c; in this case, through the following two steps:

"In this context the "\" and "U" operators still represent set difference and union, respectively. The sets are formed by

the clause literals.

96



5.3 ILP Generals

1. Find a literal A that occurs in ¢q, but not in clause ¢

2. Then construct clause ¢, with the literals of: (c\ (c1 \ {a})) U {—a}

For example if we have:

c1 = a
o= M7
c =res(cy, ) = b

then following strictly the operator, we get ¢ = (¢ \ (c1 \ {a})) U {—a}, and c;\{a} =@,
¢\ (c1\ {a}), and finally c¢; = bV —a , or equivalently: ¢, = a = b, and so a rule has been

induced.

For the case of FOL formulae the inverse entailment operator is based in the same principle, however
it contains an extra complexity due to the possible existence of quantified variables. In this situation
the resolution works together with unification (Robinson, 1965) through an unifying substitution. An

illustration with our previous "inLove(X,Y)" domain is:

0= inLove(X,Y) < love(X,Y) Alove(Y,X)
0= love(brad, jolie) A love(jolie, brad)
c= inLove(brad, jolie)

and the unifying substitution would be 8 = {X/brad,Y/jolie}. The resolution rule in FOL is an
extension from its propositional counterpart, incorporating the substitution function. Given two FOL
clauses ¢ and ¢y, with aq a literal occurring in ¢ and a; a literal from a,, and let 8 be the unifying
substitution among the two clauses, such that a10 = —a,0, then a new clause ¢ will be deduced as
in proposition 5.13.

c=(er\{m})0 |J (c2\{a2})0 (5.13)
Now it is possible to derive the inverse resolution for FOL clauses by algebraic manipulation of propo-
sition 5.13. From Mitchell (1997), the 6 unifier can be uniquely factored in 6; and 6,, such that
0 = 616, and 0, contains all substitutions involving variables from c; and 6, substitutions involving

those from c,. Hence, Proposition 5.13 is equivalent to Proposition 5.14.

c\(a\{m})r = (c2\{a2})02 (5.14)

On the other hand, as we have a; € c¢; and —a, € ¢y, then a10; = —ay60, or equivalently a;, =

ﬁa1919£1 and finally the inverse resolution equation for FOL clauses is shown in proposition 5.15.

2=\ (e \{m})ene;! | {-m6:65"} (5.15)
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The 6! operator is simply the inverse of a variable/term substitution operator, mapping concrete
entities, i.e. terms, into generalized variables. The inverse entailment operation is not deterministic
and different choices for literal a; yield to different clause inductions (c;). To give a simple illus-
tration about this mechanism, we will take our previous inLove(X,Y) example and their BIC, ET,
&~ components, where the target is to induce conditions such that inLove(X,Y). Taking the first
positive example, from table in Table 5.3, inLove(brad, jolie), and choosing from B/C a convenient

c1 clause, love(brad, jolie), we would have what is schematized in Figure 5.8.

¢ = inLove(brad, jolie)

0 =0
0, = {X/brad}

c1 = love(brad, jolie)

cp = inLove(X, jolie) V —love(X, jolie)

Figure 5.8: An inverse resolution first step application for the "In Love" example.

From Equation 5.15 ¢c; = a1 and 6; without any necessary substitution, hence we get (c1 \ {a1})6; =

@, and

o =y {J {-m6"}
= inLove(brad, jolie) 651\ —love(brad, jolie) 6,

= (inLove(brad, jolie) V' —love(brad, jolie)) 65"

and it is only necessary to choose a 6, substitution, which in this case one may think of 8, =
{X/brad,Y /jolie}, however it would not generate the least general generalization and the search
space would not be systematically traversed (see Subsection 5.3.1), thus only one variable substitu-

tion was chosen, as shown in Figure 5.8.

Looking at the generalization achieved so far, it is clear that the fix point is not yet reached, since
only one positive example is covered. It only states that someone (X) is in love with Jolie if he loves
her, but from the background knowledge we know that David loves Jolie too yet they are not in love.
Thus another inverse resolution, step similar to the previous one, will solve the problem and lead
the process to the final generalization state. And as result the final rule will be induced, stating that

two humans are in love if they love each other (see Figure 5.9).
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¢ = inLove(X, jolie) V' —love(X, jolie)

61 = {brad/ X}
6, = {Y/jolie}

c1 = love(jolie, brad)

cp = inLove(X,Y) V —love(X,Y) V —love(Y, X)
= inLove(X,Y) <= love(X,Y) A love(Y,X)

Figure 5.9: An inverse resolution second step applied for the "In Love" example (see also Figure 5.8).

The inverse resolution is a mechanism implemented in the kernel of several ILP implementations, as
the Aleph system. The non-determinism inherent to this logic mechanism requires that some search
strategies as well as convenient stop criteria must be set before the induction process starts and
each ILP system implements its own criteria. In the next subsection, we present the ILP system we
used for sentence reduction rule induction, as well as some particularities and system settings we

decided to follow.

5.4 The Aleph System

The Aleph' system (Srinivasan, 2000) is an empirical ILP system, written in Prolog, initially designed
to be a prototype for exploring ILP ideas and originally named as P-Progol. It has become a quite
mature ILP system, used in many research projects, ranging from Biology to NLP areas. In fact, Aleph
is the successor of several and "more primitive” ILP systems, like: Progol (Muggleton, 1999), FOIL
(Quinlan, 1990), and Indlog (Camacho, 1994), among others, and may be appropriately customized

to emulate any of those older systems.

The relationship to Prolog, inherent in the Aleph system, gave it the capacity to use a conventional
and powerful language to represent world knowledge and consequently exploit this in the induction
of new relational knowledge. The Aleph system contains a set of options providing the user with
a vast amount of possible configurations. One may easily and incrementally insert more domain
knowledge, choose the direction for rule generation (bottom-up or top-down), define the evaluation
function (Precision, Entropy, Laplace, among others) and the search method (Hill-Climbing, Branch-
and-Bound, Best-First, among others). One interesting feature in Aleph is the possibility to learn

exclusively from positive instances, contrary to what is required by most learning systems. More-

TAleph - A Learning Engine for Proposing Hypothesis
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over, there is theoretical research work (Muggleton, 1996) demonstrating that the increase in the
learning error tends to be negligible with the absence of negative examples, as the number of learn-
ing instances increases. This is a relevant issue in many learning domains, and especially ours, where

negative examples are not available, as we will see in the next chapter.

In Aleph any knowledge, including the Background Knowledge (5K) is represented using relations,
codified through Prolog predicates. In the previous subsection, particularly conditions 5.6 and 5.7,
we stated that the main objective of induction is to find the best possible hypothesis (), which in
conjunction with BIC, entails the maximum number of positive examples £, ideally all, and none or
the minimum number of negative cases £ . In such a system, BKC, £t and £~ are input sets, while 1
is the output generated, representing the learned theory that explains the observed data (£ = £T U
£7), with respect to the background knowledge (BK). In Aleph these three input data/knowledge
sets, that is BIC, £1, and £, are represented through three files, having respectively ".b", ".p", ".n"

extensions.

In the rest of this subsection we give a general overview of the Aleph system modus operandi and
describe some particular features. Some of them were employed in our work in order to satisfy the
specific characteristics related to our problem of the induction of sentence reduction rules. The
Aleph default induction algorithm includes four main steps listed below, which are repeated until no

more uncovered positive example is left.

1. Selection - Selects a positive example from the training set to be generalized. The algorithm

stops if no example is available.

2. Saturation - Constructs the non-ground most specific clause that implies the positive exam-
ple selected in the previous step. This is made through successive application of the inverse

resolution’

operator, on the selected example, until all ground terms have been generalized
to variables. These substituted variables are reused in the clause body until only the selected
positive ground example is covered. This minimum generalized clause is called the bottom

clause.

3. Reduction - The system searches for a "good” clause amongst the variety ranging from the
maximally general clause, the empty clause, and the maximally specific clause, named as the
bottom clause?. This clause space is a lattice (according do proposition 2), having a partial
ordered defined through the 6-subsumption relation (as defined in Definition 4), which ensures
a systematically search for a good clause, a least general one covering as far as possible the
examples. During this searching process a defined evaluation function is used to measure the

quality of the clause. More about this evaluation function is explained later.

'As presented in Subsection 5.3.2.
2In the previous listing, it is the clause shown in lines 7 to 10.

100



5.4 The Aleph System

4. Cover Removal - Adds the best clause found in step 3 to the induced theory and removes all

their covered positive examples from the training set.

More detailed and exhaustive descriptions about all possible Aleph configurations, may be obtained

from technical documentation in Srinivasan (2000).

To exemplify Aleph's potential to induce useful theories we will use the graphs example, presented
previously in Figure 5.5. It is not obvious at first sight what the differences are between the two
graph classes: "+" and "-". We have 12 graphs labeled with lower case letters (a, b, ..., ), and in
each graph the vertices are sequentially marked with numbers: 1,2, ..., n. Predicate goodgraph/1 is
used to represent the whole set using six positive and six negative cases. Hence we will have two
files holding each type, for "+" graphs, stored in file graphs.p, in which we have the following six
positive examples:

goodgraph(a).  goodgraph(c).  goodgraph(e).
goodgraph(g).  goodgraph(i).  goodgraph(k).

and for bad graphs, file graphs.n which will contain the other six negative cases.

goodgraph(b).  goodgraph(d).  goodgraph(f).

goodgraph(h).  goodgraph(j). goodgraph(l).
The background information BKC is inserted in a file with the same base name, having a ".b" extension,
graphs.bin this case. This file contains a set of Prolog predicates, related to the problem in question
and with the purpose to guide the induction process. Besides, there are two main directives that
can be defined, which establishes the predicates that can be combined by Aleph in the induction
process. Two mode directives, modeh/2 and modeb/2, can be used. The first one defines what is
the concept to be learned. The second one determines which predicates can be tried out during the
rule (predicate body) construction process. In our graph set example, we would have the following

predicates:

:— modeh(1, goodgraph(+gname)).

:- modeb(1, numvertex(+gname, -int)).
:- modeb(1, numedges(+gname, -int)).
:— modeb(1, maxdegree(+gname, -int)).
:- modeb(*, diff(+int, +int, #int)).
:— modeb(*, odd(+int)).

:— modeb(*, even(+int)).

:- modeb(*, prime(+int)).

Thus the mode directive (:- modeh(1, goodgraph(+gname)) defines that the aim is to generate
a predicate definition of goodgraph(...). The first argument indicates the maximum number of
times the predicate, indicated in the second argument position, can occur in the rule body, which
can be an integer: 1,2,..., or "*", meaning one or more times. Each predicate that can be used in the
induced clauses can have arguments represented by symbolic names representing a certain data type.

In our example gname and int respectively stand for "graph name" and an integer value. Each data
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type name is preceded by one of the three symbols for input/output mode: the "+" meaning an input
parameter, "-" an output parameter, and "#" for a constant. The plus and minus symbols are normally
used to bind variables in the induced rules. A general scheme for each ruleisH :- B1, B2, ..., Bn,
with header H and the body literals B1, ..., Bn which may include variables. An input variable (+)
in a given Bj must be either an output variable (=) in H or an output variable in some Bi, where i<j.

An argument preceded by the constant symbol (#) can only be replaced by a ground atom.

For our graph example and with the previous mode declarations, we are informing Aleph that the rule
head must be goodgraph/1 and for the rule body several graph properties could be explored in order
to find a rule that will characterize well the training set, ideally covering all positive examples and
no negative ones. Therefore the number of graph vertices, edges and graph maximum degree’ are
considered through, respectively, the "numvertex/2", "numedges/2" and "maxdegree/2" predicates.
For each one of these, we have the graph name as input parameter and an integer as an output
parameter, which in turn is considered for numeric relation discovery through the other predicates:
"diff/3", "odd/1", "even/1" and "prime/1", in this case. The last three verify whether a given
integer is odd, even, and prime number respectively, as suggested by the name. The predicate
"diff (+int,+int,#int)" is used to discover numeric differences between two feature values. Here
we are assuming that the underlying law characterizing the positive graphs may rely on the difference
between vertices and edges, like vertices minus edges being always equal to 3. Then this phenomenon

could be expressed using the following rule:
goodgraph(G) :- numvertex(G,V), numedges(G,E), diff(V,E,3).
meaning that a graph G is a poisitive graph ("+") if it has V vertices, E edges and V-E=3.

Immediately after the mode declarations, should come the determination/2 directives, which in-
dicate which are the predicates allowed to be used in the construction of each rule body. In our

example we have the following ones:

:— determination(goodgraph/1, numvertex/2).
:- determination(goodgraph/1, numedges/2).
:— determination(goodgraph/1, maxdegree/2).
:- determination(goodgraph/1, diff/3).

:- determination(goodgraph/1, odd/1).

:— determination(goodgraph/1, even/1).

:- determination(goodgraph/1, prime/1).

Afterwards comes a section including all facts and all the predicate definitions directly or indirectly

involved in the rule induction. For example, in our case facts attributing names for graphs are:
gname(a). gname(b). gname(c). gname(d).
gname(e). gname(f). gname(g). gname(h).

gname(i). gname(j). gname(k). gname(l).

Each graph is defined through a 2-ary predicate graph/2, with the first argument containing the

"The maximum number of connections (edges) among the graph's vertices.
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graph name and the second argument a list of all graph edges. Each edge is represented by a term
connecting two graph nodes, in the form of "A-B", where "A" and "B" represent vertex connections.

Thus the twelve graphs shown in Figure 5.5 are represented as:

graph(a, [1-2, 2-3, 3-1]) +)
graph(b, [1-3, 1-4, 4-3, 3-2, 3-5, 5-6, 2-6]). )
graph(c, [1-2, 1-3, 1-4, 1-5, 4-5, 5-3, 3-2]). +
graph(d, [1-3, 3-2, 2-4, 4-1]). )
graph(e, [1-2, 1-7, 1-6, 1-5, 7-6, 4-5, 4-2, 2-3]). +
graph(f, [1-5, 1-6, 1-2, 1-3, 4-5]). -
graph(g, [1-2, 2-3, 1-5, 5-4]). +
graph(h, [1-2, 2-4, 4-3, 4-7, 4-5, 4-6, 5-8, 5-9]). )
graph(i, [1-4, 1-5, 5-4, 4-2, 4-3, 2-3]). +
graph(j, [1-2, 1-3, 1-4, 3-5, 4-5]). )
graph(k, [1-2, 3-2, 1-9, 1-8, 1-6, 6-7, 1-5, 1-4]). +
graph(1, [1-2, 2-3, 3-5, 4-1, 4-5, 4-6, 6-5, 6-7, 7-11). (=)

The remainder of the file contains the definitions for the predicates declared in the mod and de-
termination directives and any other auxiliar predicates used by them. The complete goodgraph.b
file may be consulted in Listing C.1, in Appendix C. This completes the Aleph background knowledge
definitions for our illustrative "good graph” example. Starting Aleph and running the default inducer
"induce", after loading the problem files (goodgraph. *), through the "read_all (goodgraph)" com-

mand, only one exact rule will be induced, which covers all positive examples and no negatives.

[Rule 1] [Pos cover = 6 Neg cover = 0]
goodgraph(A) :-
numvertex(A,B), odd(B), maxdegree(A,C), even(C).

Thus, according to this, a "good graph” has an odd number of vertices and a maximum degree which
is an even number. The execution will also print some statistical informations. First it shows the

confusion matrix and afterwards more details concerning how the theory was generated.

Actual
+ -
+ 6 6
Pred
-0 6 6
6 6 12

Accuracy = 1.0

[Training set summary] [[6,0,0,6]]
[time taken] [0.011]

[total clauses constructed] [43]

An Aleph induction execution produces a trace, listing clause search along with their number of
positive and negative examples covered. An excerpt from this listing is shown below accompanied

by our commentary. The process starts with:

1 ?- induce.

»  [select example] [1]
3 [sat] [1]

4 [goodgraph(a)]

Then it shows the following bottom clause that was generated:
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5 [bottom clause]

¢ goodgraph(A) :-

7 numvertex(A,B), numedges(A,B), maxdegree(A,C), diff(C,C,0),
8 diff(Cc,B,1), diff(B,C,-1), diff(B,B,0), odd(B),

9 even(C), prime(C), prime(B).

10 [literals] [12]
1 [saturation time] [0.002]

The search for the right clause is initiated.

12 goodgraph(A).

s [6/6]

14 goodgraph(A) :-

15 numvertex(A,B).

1 [6/6]

17 goodgraph(A) :-

18 numedges (A,B) .

v [6/6]

0 goodgraph(A) :-

2 maxdegree(A,B).

2z [6/6]

23 goodgraph(A) :-

24 numvertex(A,B), diff(B,B,0).
s [6/6]

2% goodgraph(A) :-

27 numvertex(A,B), odd(B).

w  [6/3]

The last clause shown includes a subset of literals of the final clause shown earlier. The information
indicates that it covers all six positive examples and three negative ones. As it still covers some

negative examples, this serves as input for further specialization by adding more literals.

The default Aleph execution mode, described earlier, can be changed, adapted and configured for
many specific needs, for a wide range of learning problems, varying from decision trees to abductive
reasoning. These system settings are made through the set/2 Aleph built-in predicate, which can
be inserted in front of the mode declarations (modeh/2 and all modeb/2), as many times as needed,
one for each parameter to be configured. For our good graph example two system parameters were
set:

:— set(depth, 100).

:- set(clauselength, 10).
The first one specifies the upper bound on the proof depth in the process of the theorem-proving,
while the second setting specifies the maximum clause length in terms of literals admissible for the

induced rules.

One setting permits to determine the search strategy to be followed by Aleph in the clause-by-clause

search. The default is to prefer shorter clauses and this may be explicitly defined as:
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:- set(search, S).

with S variable set to "bf". Other search strategies are supported, like for example a heuristic best-
first (heuristic), or an iterative beam search (ibs), among others which may be consulted in Aleph

technical report (Srinivasan, 2000).

Another setting defines the evaluation function for evaluating the quality of the theory that is
being induced. This is similar to, for example what happens with the ID3 algorithm for decision
tree learning, where entropy and information gain is used to guide the step-by-step tree construc-
tion. In Aleph any evaluation function takes into account the number of positive (P) and negative
(N) examples covered at a given moment in the induction process. The default evaluation func-
tion is coverage, calculated as P — N. The setting of an evaluation function is made through:
:- set(evalfn, EvFunc) where
EvFunc may be accuracy as PJ%N, compressionas P — N — L+ 1, where L represents the number of
literals in the clause, coverage as P — N, entropyas p - log(p) +q-1log(q) whereq =1—pandp =
P> gini as 2p(1— p) and p = T, laplace as p = py, posonly (learning exlusively from
positive examples), user, among others (Srinivasan, 2000). This last one (i.e. user) is user driven,
meaning that the evaluation function is specified by the user through the Aleph's built-in cost/3 pred-
icate, which has the following syntax: cost(Clause, ClauseLabel, Cost) :- Body
where ClauseLabel is an input three element list [P,N,L] specifying the number of positive and
negative examples covered by the Clause and L represents the clause length. The Cost parame-
ter is the output cost value for that clause. The cost/3 predicate gives the user the possibility to
specify his own evaluation function to be used during the induction process. In the next chapter (see
in particular Subsection 6.2 and Figure 6.10) we present our defined cost function for the induction

process.

5.5 Final Remarks

In this chapter we have addressed a number of fundamental aspects involved in Inductive Logic
Programming. We started with a brief introduction on Machine Learning (Section 5.1), mentioning
propositional and relational learning, and remarking the knowledge representation power of the
latter. Then, in Section 5.2, we introduce the field of Logic Programming as the basic language
for ILP, mentioning the inference mechanisms as well. In Section 5.3 we have presented several
ILP key aspects, including a general description, the search in an ILP hypothesis space, and inverse
resolution. Afterwards, in Section 5.4, we present Aleph, the ILP implementation which we have
worked with. A number of times, throughout this chapter, we can find references to Mathematical

Logic concepts. These have been included in the Appendix A.

In the next chapter we focus on the application of this ILP paradigm on our problem of learning
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sentence reduction rules. One can find the particular engineerings we have implemented, using
Aleph and working with the data gathered from the previous steps - a corpus of aligned paraphrases,

automatically extracted from web news stories.
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Chapter 6

Induction of Sentence Reduction Rules

”If[ have seenfurther it is by standing on the shoulders qf(qiants. "

Sir Isaac Newton, 1676

In the previous chapter we have given a brief overview of Inductive Logic Programming and the Aleph
system. This system has been used in our approach to the problem of sentence reduction. In this

chapter we describe the specifications and main settings used for this task.

In chapters 3 and 4, we have described the method for constructing a corpus of word-aligned para-
phrases, using a complete automatic procedure. First, paraphrase sentence pairs were collected
from comparable news stories corpora and afterwards an alighment process was carried out to align
the words of each paraphrase pair, following a dynamic strategy that chooses between global or local

alignment.

By examining aligned paraphrase corpus we perceived that there are different sentence, or phrase,
transformation patterns. For example, we can get common aligned sentence segments', but certain
sentence portions get transformed into different sequences, or may even be omitted in the other sen-
tence. Therefore the subsequent natural idea was to investigate certain "regions” from these aligned
paraphrases, with the aim of providing learning instances for the induction of sentence reduction
rules. In our case, we have decided to use the Aleph system as it revealed more powerful than other
existing tools from the area of propositional learning. Aleph enables the induction of relational rules
(clauses), which is one of its main advantages. Hence our objective at this stage was to decide which
kind of aligned sentence portions we should select and conveniently transform them into learning

instances. This task is detailed in the following subsection.

6.1 Bubble Extraction

We note that the corpus of aligned paraphrases, contained several aligned sentence portions, worth

to be explored. These could serve in investigating of the existence of certain sentence transformation

"Both segments with exactly the same words.
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6. INDUCTION OF SENTENCE REDUCTION RULES

regularities or patterns. Therefore, we have decided to focus our attention on one of such type of
aligned portions of a sentence pair, that we named as bubbles. To give a more precise comprehension
of what a bubble is, we introduce some definitions and provide some schematic representations of

these entities.

Definition 1 (Pair-sub-segment). A pair-sub-segment is constituted of two alighed word sequences,

extracted from an aligned sentence pair.

GABRATAT_P.

AB -
A _ ABAGACRBT __VP.

SGT
SGT

Figure 6.1: Two word-aligned sentences. Each word is represented with a letter.

For example, the aligned sequence pair in Figure 6.1 gives rise to many examples of pair-sub-
segments, from which we show just seven possibilities in Figure 6.3. A special type of pair-sub-

segments is when both word sequences are exactly the same, as specified by this definition:

Definition 2 (EQsegment). An EQsegment is a pair-sub-segment having exactly the same words in

each sequence, written in the exact same order.

For example, in the alignment from Figure 6.1 there are six EQsegments, which are:

1) A (2) SGT (3 GA
A SGT G A

(4) R (B T (6) P
R T P

Figure 6.2: The only six EQsegments from the alignment of Figure 6.1.

Now we are able to define a bubble as a special kind of a pair-sub-segment, as in Definition 3.

Definition 3 (Bubble). A Bubble is a pair-sub-segment from a word aligned sentence pair, where
two heterogeneous word sequences are aligned, and are delimited by a left and right contexts of

EQsegments, with at least one equal and aligned word in each context.

(1) ABSGT 2  _ _ _ 3 P
A _SGT ABA P
4) T___G (6) TAT_P (6) ATA
TABAG T__VP BT
(7) SGT_ _ _GA

SGTABAGA

Figure 6.3: Seven examples of pair-sub-segments containing four bubbles.
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6.1 Bubble Extraction

From the previous definition, one may look at a bubble as a transformation of a sentence segment,
taking place within a given context. Therefore one may divide a bubble into three main components:
left context (L), right context (R), and the segment transformation or kernel, which may be repre-
sented by X. The next figure shows these three components, for the four bubbles present in Figure

6.3.

L | X | R L | X | R
----- |- === R Rl e
(1) A | BS | GT (5) T | AT_ | P
Al _T | GT T | __V | P
--------------- |-——- | | -
@ T | ___ 1 G (7 sGT | ___ | Ga&
T | ABA | G SGT | ABA | GaA

Figure 6.4: The Bubble main components: L, X, and R.

As it can easily be seen, each kernel alignment forms an instance of a transformation of a sentence
portion, within a given context, determined by the left and right segments. Hence bubble (1)
provides evidence for the equivalence between sequence [B,S] and sequence [T], when the left
context is [A] and the right one [G,T]. Whenever the X sequences have different lengths, we use
the term transformation instead of equivalence, i.e. we interpret it as a transformation from the
longer sequence to the shorter one. The longer sequence is still labeled with the X letter and for the
shorter one we use letter Y. So in the previous example, we have a transformation from X = [B,S]
into Y = [T], within the mentioned contexts. Therefore, one may represent a bubble as 3-tuple (a

3-ary relation), as shown below:

bubble = bub(L, X ™ v, R) 6.1)
The bubble shown above respects a general pattern which can be specialized by substituting its
variables by terms. So, for the three bubbles shown in Figure 6.4 we obtain the following specialized

term representations:

transf

bubble(yy = bub([A], [B,S] — [T, [G,T])

transf

bubble sy = bub([T], [A,B,A] ™Y [], [G])

transf

bubble(s, = bub([T), [4,T] ™ [v], [P])

Figure 6.5: The bubble term representation.

Having the main objective of learning sentence reduction rules, we focus our attention on this struc-
ture - the bubbles - selected from the corpus of aligned sentences. We noticed that there exist other
pair-sub-segment types worth to be explored, however, due to the complexity revealed of those

structures, we decided to first concentrate our efforts towards this structure. In fact during this
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6. INDUCTION OF SENTENCE REDUCTION RULES

research we decided to work only with specific types of bubbles - those where the middle region of
t

one pair aligned sub-sequence is aligned with a void segment (X mﬂf @). In the future, more gen-

eral transformations could be investigated, including transformations of the form X tmﬁf Y, where

Y # @ and | X| > |Y|, with | e | being the segment size in terms of the number of words contained.

In the following Figure 6.6, we show some examples of bubbles extracted from real data - the corpus

of aligned paraphrases, created from web news stories:

(1) the situation here in chicago with the workers
the situation in chicago with the workers

(2) obama talks exclusively with tom brokaw on meet
obama talks with tom brokaw on meet

(3) Ball and Arnaz were divorced in 1960
Ball and Arnaz ____ divorced in 1960

(4) america is in the exact same seat as sweigert and
america is in same seat as sweigert and

(5) after a while at the regents park gym , the president
after a while at gym , the president

Figure 6.6: Examples of extracted bubbles

To extract a bubble, from a word aligned paraphrase, left and right contexts of equally aligned words
are required, according to Definition 3, and the probability of such extraction depends on these
contexts sizes as well as the size of the middle region aligned with the empty sequence. We noticed
that not all bubbles lead to useful rules and that performance improved when we further restricted
our attention to bubbles where the surrounding context is sufficiently large when compared with the
middle segment. Therefore, to decide whether a pair-sub-segment is a bubble the system computes
the segment sizes, according to the condition in Equation 6.2. If this condition is verified then a

bubble is extracted, giving rise to a new learning instance.
ILI+IR| = [X] (6.2)

For example, in the first example from Figure 6.6, we would have: 2+ 5 > 1. In the last example
we have 4 +4 > 3. So on both cases this justifies the extraction of those bubbles. This condition
prevents the extraction of the bubbles shown in Figure 6.7. We note that in both cases the size of

the contexts is not large enough.

(6) To the horror of their fans , Miss Ball and Arnaz ...
Ball and Arnaz ...

(7) ... vote friday .
. vote on the amended bill as early as friday .

Figure 6.7: Examples of two rejected bubbles
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With condition 6.2 we can define a normalized metric to calculate the value of a bubble, in order to

quantitatively compare different bubbles. Thus we define val,g(bubble) as follows:

valg(bubble) = valg (b“bbrlrsmf ) =1- Ll (6.3)
(L, X ™5, R) IL| + |R| + 3

where |X|, |L|, and |R| are respectively the middle, left, and right segment sizes, in terms of the
number of words contained. This function has values in the [0, 1] interval as long as the condition 6.2
is preserved. If it is violated then we will have valz(bubble) < 0, which is the case for the examples
in Figure 6.7 where valg(bubg) = 1 — W ~ —1.286 and valg(buby) =1 — ﬁ ~ —1.799.

Table 6.1 shows the bubble values for those shown previously in Figure 6.6.

Table 6.1: Bubble values for the previous five examples.

bub:I Wl @l @] @l e
Ualﬁ(bub):|0.867 0.867 | 0.846 | 0.765 | 0.647

Following this methodology, we obtained a huge set of instances in which relevant sentence trans-
formations occur. To give an idea about the amount of data involved, from a set of 30 days web news
stories, which corresponds to approximately 133.5 MB of raw text collected, the system identified
596 678 paraphrases that were selected and subsequently aligned, and from this set 143761 bubbles
were extracted. These bubbles are then conveniently adapted to serve as learning instances for the
Aleph system, which will then "discover” sentence segment transformation patterns and codify them

as rules (clauses) that can be be applied in future for sentence simplifications.

6.2 System Execution

We will now detail a little bit the implementation and execution of the third module from the sys-
tem’'s scheme in Figure 1.2, comprehending the automatic generation of learning instances and the
execution of the induction process. First we present the main conceptual steps in this module, with
algorithms 3 and 4. From the set of alighed paraphrases, stored in an XML file (line 1), the next
execution towards the rule induction process consists in the extraction of bubbles and their trans-
formation in Aleph learning instances (line 6). This gives rise to the Aleph’s "x.f" file of positive

examples (being generated in line 7).

6.2.1 Data Preparation

In terms of implementation, the bubble extraction process from a paraphrase list is executed through

the java class "ExtractBubbles”, contained in the Factory. jar package, as follows:

111
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Algorithm 3 Bubble extraction.

1: apraphlist «— Load AlignedParaphrases(xml file)
2: bublist — @

3: for aparaph € apraphlist do

4. bubbles «— extractBubbles(aparaph)

5:  for bub € bubbles do

6: instance «— learningInstance(bub)

7: savelnAlephFfile(instance)

8: bublist < bublist U {bub}

9: end for

10: end for

11: savelnFile(filename, bublist)

Algorithm 4 Running the induction process.
1: bublist «— loadFile( filename) \/ loadLists(directory)

2: template — read AlephTemplate()
3: generateAlephFiles(template, bublists)
4: startInduction()

5: saveRules()

java -Xms32m -Xmx1024m ExtractBubbles -inp pac.xml -fdata lbub.dat

In particular, the -inp parameter specifies the input file containing the aligned paraphrases', which
here is pac.xml and the -fdata parameter indicates the name of the output binary file in which the
list of extracted bubbles will be stored: 1bub.dat, in this case?. This file will hold a binary instance
of an ListXBubble object, which contains a list of bubbles (XBubble class), that were populated
during the bubble extraction procedure, previously mentioned (Algorithm 3). Afterwards the Aleph
instances and all its associated files® necessary to start an induction execution can be generated by

running the following command:
java hultig.sumo.ListXBubble -aleph dir

This will be done by executing a special mode (defined through the -aleph parameter) of the
ListXBubble class, which is also used to store a list of bubbles. In the previous execution com-
mand we are requesting to search the current directory for *.dat files containing binary lists of
bubbles, previously extracted from aligned paraphrases. It corresponds to take the "bublist «+

loadLists(directory)" branch in line 1, from Algorithm 4. A single directory may contain several bub-

'Related to algorithm's line 1.
ZRelated to algorithm's line 11.
3In our case files "*.f" and "*.b".
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ble lists, obtained from different bubble extraction execution moments. In this case all the existing

bubble lists will be gathered into a single list, before generating the Aleph’s learning files.

For every bubble a learning instance is inserted in the *.b file, which is simply a Prolog term, similar to
the 3-ary term shown previously in formula 6.1 and Figure 6.5. For example, the list of bubbles from
Figure 6.6, is transformed in the five learning instances shown in Figure 6.8, listed in the same order.
Indeed, each bubble is represented by a 5-ary term (bub/5) where the first argument is a sequential

bub(1, t(1,0),
[situation/nn/np, the/dt/np],
[here/rb/advp] ---> [1,
[in/in/pp, chicago/nn/np, with/in/pp]
).

bub(2, t(1,0),
[talks/nns/np, obama/nn/np],
[exclusively/rb/advp] ---> [],
[with/in/pp, tom/nn/np, brokaw/nn/np]
).

bub(3, t(1,0),
[arnaz/nnp/np, andcc/np, ball/nnp/np],
[were/vbd/vp]l ---> [1,
[divorced/vbn/vp, in/in/pp, 1960/cd/np]
).

bub(4, t(2,0),
[in/in/pp, is/vbz/vp, america/nn/np],
[the/dt/np, exact/jj/np]l ---> [I,
[same/jj/np, seat/nn/np, as/in/ppl

).

bub(5, t(3,0),
[at/in/pp, while/nn/np, a/dt/np]l,
[the/dt/np, regents/nns/np, park/nn/np] ---> [],
[gym/nn/np, ','/punct/punct, the/dt/np]

Figure 6.8: Bubbles converted in Aleph positive learning instances.

index. The second argument is a 2-ary term (t/2) indicating the kernel size transformation. For
instance the term t (2,0) means that two words were in effect dropped (substituted by zero words).
This second argument is related to the fourth one which represents such transformation through a
2-ary term, in the "X ---> Y" format, where X and Y are the lists of tagged words from the kernel
transformation. Term t(m,n) requires that m = lenght(X) and n = lenght(Y). Finally the third
and fifth bub/5 arguments are respectively the left and right contexts, which are also represented
using lists of tagged words. For the sake of convenience of algorithmic processing, the left context
list (third argument) is represented in a reversed order. These are the raw data to be used by the
learning system. Afterwards, the execution of the last shown command will also generate the rest
of the necessary Aleph configurations and preparations for starting an induction execution. Besides

the bubble instances included in the *.b file, we also need the header set configurations and all the
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auxiliary predicates necessary to the induction execution. This complementary material is generated

from a pre-defined template file, since it is common to any inductive run.

The first part in the header section (see Figure 6.9) includes all the modes, determinations and types

involved, according to the description and examples given in Section 5.4.

- . . o

% AUTOMATICALLY GENERATED BY:... "$PROG_NAME"
% INPUT FILE:......oviuinennnn. "$INPUT_FILE"
S MOMENT: .ot vt ieeeeeeenenn $MOMENT

%

% ALEPH PARAMETERS

:— set(minpos, 5).

:— set(verbosity, 1).
:- set(evalfn, user).

:- modeh(1, rule(+bub)).

:— modeb(1, transfdim(+bub, n(#nat,#nat))).
:— modeb(3, chunk(+bub, #side, #chk)).
:— modeb(*, inx(+bub, #side, #k, #tword)).

:- determination(rule/1, transfdim/2).
:— determination(rule/1, chunk/3).
:— determination(rule/1, inx/4).

%___ ———————— ———————— e

% TYPE DEFINITIONS

%___ _—— —_ —_ —_

side(left). side(right).
side(center:x). side(center:y).

k(1. k(2). k(3).

chk(np) . chk (undefined) . chk (np) . chk(vp) .
chk (pp) . chk(prt) . chk(advp). chk(multi).

nat(X) :- entre(X,0,20).

Figure 6.9: The *.b Aleph template header.

Predicate rule/1 is our goal head predicate and transfdim/2, chunk/3, and inx/4 the names of
the predicates that can be used in the rule body construction. The first one, transfdim/2, tries to
generalize over the dimension transformation, related with the t/2 term included inside the bubble
terms, as shown previously. The predicate chunk/2 seeks regularities over the chunk types and
inx/4 scans for lexical and syntactical (POS tags) regularities. The "Type Definitions" block clarifies
the domains of the predicate arguments just mentioned, which are briefly described in the following

list:
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e nat - defined as a natural number between 0 and 20.

» side - the segment type, among the four possibilities: 1eft and right contexts and the bub-

ble's center X and Y components.

« k - a numeric value restricted just to the {1,2,3} set, which are the allowed segment positions

for scanning lexical and syntactical regularities.
« bub - the bubble's sequential index, also used as the rule/1 index connector.

* tword - represents either a word or a part-of-speech tag.

An example of an induced rule, expressed in the Aleph's Prolog language, is shown below:
rule(d) :- inx(A,left,1,the), chunk(A,center:x,np), inx(A,right,1,pos(nn)).

Note that this rule almost corresponds to the fifth rule presented in Figure 1.5. The only difference
is that there the rule explicitly states that the central X segment must have size equal to 2. As it
can be seen here, the first "inx" conditions states that the word "the" must occur in the first position
of the left context, while the second "inx" condition says that the first position of the right context
must contain a noun. The rule second condition imposes that the central X segment must be a noun

phrase chunk.

cost(_, [P,_,L], Cost) :-
value_num_literals(L, Valuel),
Cost is P/$DATA_SIZE * ValuelL

2100 %
.26). % 1.0

value_num_literals(1l, O |
value_num_literals(2, O -
value_num_literals(3, 0.50). % |
value_num_literals(4, 1.00). % |
value_num_literals(5, 0.60). % |
value_num_literals(6, 0.40). % |
value_num_literals(7, 0.20). %  ———————————————————— >
value_num_literals(_, 0.00). % 1 2 3 4 5 6 7

Figure 6.10: Our rule evaluation function, defined in the *.b template file.

In the file general settings the minimum positive coverage defined is equal to five "set (minpos,5)",
which means that any induced rule must have at least five learning instances supporting it. The
"set (verbosity,0))" setting defines the verbosity level, which in this case is switched to minimum
verbosity, meaning that the output screen printings during the induction process should be minimalist.
The third template general setting, "set (evalfn,user)”, establishes that rule evaluation is made
through a specially defined function ("user defined"), instead of using Aleph's predefined evaluation.

Usually this function is defined through the cost/3 predicate, which in our case is shown Figure 6.10.
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After several experiences related to our learning task, we have decided to implement our own rule
evaluation function, which combines positive coverage with rule length, defined in terms of the
number of body literals involved. The symbols P and L are input variables representing respectively
the number of positive examples covered and the number of rule literals. The variable Cost rep-
resents the output value of the rule that is being evaluated. The number of literals (L) is defined
with the value_num_literals predicate and as can be seen in Figure 6.10 we have decided to give
higher preference (i.e. higher L value) to rules having three to five literals, since we find this well
suited for our problem, where we aim at rules with at least one condition for each context segment,
plus one for the center X segment. To even ensure this last statement, for any inducted rule, we

have also defined Aleph constraints as shown in Figure 6.11. The first constraint rejects any learned

false :-
hypothesis(rule(_), Body, _),
num_literais(Body, N),
N <2

false :-
hypothesis(rule(_), Body, _),
count_restr_zones(Body, NL, NX, NY, NR),
not_valid(NL, NX, NY, NR)

not_valid( 0, 0O, O, O0). %----> any zone without constraints.
not_valid( _, O, _, _ %—-—--> only in surrounding contexts.
not_valid( 0, _, _, _). %--—--> left context is free.
not_valid( _, _, _, 0). %--—--> right context is free.

Figure 6.11: Special Aleph constraints included in our *.b template file.

rule with less than two literals in the body, and the second one ensures that any induced rule will
have at least one literal ruling over each relevant bubble segment: left, right and center X. The
"count_restr_zones/5" predicate, takes as input the body of a rule being evaluated, and outputs
the number of literals found for each segment. Afterwards the "not_valid/4" imposes the desired
restrictions. The complete Aleph background knowledge file template (*.b), with all its components

may be consulted in Appendix C, in listings C.2, C.3, and C.4.

Both the rule evaluation function and the defined constraints, help to guide the induction process
toward obtaining more relevant rules with better characteristics. Here it remains to mention that
the ListXBubble command execution, shown previously, also generates the Aleph file of positive
examples "x.£", which will just contain a list of rule/1 terms, where their numeric argument is

exactly the bubble index value, defined in the bub/5 term.
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6.2.2 Exemplifying the Process of Induction

We include here tracing excerpts showing how the system proceeds in inducing sentence reduction
rules, accompanied by some comments in order to complement the description in the previous sub-

section.

The induction process is started on the command line by first invoking the Aleph program, which is a
program written in Prolog. In our case we have been working with its Yap (Santos Costa et al., 2002)
implementation ("yaleph").

1 [john@JPCMacBook#0 2010-11-08 15:13:03] /a/news@google/test3days/m
2§ yaleph

3 % Restoring file /usr/local/lib/Yap/startup

4  YAP version Yap-5.1.2

5 % reconsulting /Users/john/bin/aleph.yap...

6

7

8

9

ALEPH
Version 5
Last modified: Sun Jun 4 10:51:31 UTC 2006

11 Manual: http://www.comlab.ox.ac.uk/oucl/groups/machlearn/Aleph/index.html

13 % reconsulted /Users/john/bin/aleph.yap in module user, 102 msec 1127808 bytes
14 7=

After launching Aleph we have to load the learning input files (x.b and *.f) through the command
"read_all (+BaseFileName)". In our case two additional files will be consulted (*.1gt, and *.yap),
containing several auxiliary Prolog predicates. It is convenient to start Aleph with a folder containing

these files.

1 ?- read_all(lxbub).

2 % reconsulting /a/news@google/test3days/m/lxbub.b...

3 % reconsulting /a/news@google/test3days/m/lxbub.yap...

4 % reconsulting /lib/prolog/utils.lgt...

5 % reconsulted /lib/prolog/utils.lgt in module user, 2 msec 10176 bytes

6 % reconsulting /lib/prolog/penpostags.lgt...

7 % reconsulted /lib/prolog/penpostags.lgt in module user, 1 msec 4400 bytes

8 % reconsulted /a/news@google/test3days/m/lxbub.yap in module user, 5 msec 35136 bytes
9 % reconsulting /a/news@google/test3days/m/lxbub.lgt...

10 % reconsulted /a/news@google/test3days/m/lxbub.lgt in module user, 992 msec 9804104 bytes
1 % reconsulting /usr/local/share/Yap/system.yap...

12 % reconsulting /usr/local/share/Yap/lists.yap...

13 % reconsulted /usr/local/share/Yap/lists.yap in module lists, 3 msec 22768 bytes

14 % reconsulted /usr/local/share/Yap/system.yap in module system, 10 msec 82912 bytes

77 DATA SET SIZE: 13140

18 % reconsulted /a/news@google/test3days/m/lxbub.b in module user, 1011 msec 9940192 bytes

19 [consulting pos examples] [lxbub.f]

20 [cannot open] [lxbub.n]

21 yes

2 ?-
Note that in the previous listing, in line 20, we have been informed that the system could not find
the corresponding file with negative examples. This is naturally in agreement with our previous
statement. At least for now we use just positive learning instances. Afterwards we start the induction
process by invoking the Aleph's "induce" command, which starts a greedy cover removal search

(Srinivasan, 2000), meaning that for any best clause found the covered examples are removed.
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?- induce.
[select example] [1]
[sat] [1]

[rule(0)]

[bottom clause]

rule(A) :-
transfdim(A,n(39,0)), chunk(A,left,np), chunk(A,right,vp), chunk(A,center:x,multi),
inx(A,left,1,he), inx(A,left,1,pos(prp)), inx(A,right,1,has), inx(A,right,1,pos(vbz)),

10 inx(A,right,2,heard), inx(A,right,2,pos(vbn)), inx(A,right,3,so0), inx(A,right,3,pos(zb)),
1 inx(A,center:x,1,proved), inx(A,center:x,1,pos(vbd)), inx(A,center:x,2,that),
12 inx(A,center:x,2,pos(dt)), inx(A,center:x,3,age), inx(A,center:x,3,pos(nn)).

13 [literals] [19]

14 [saturation time] [0.00800000000000001]
15 [reducel]

16 [best label so far] [[1,0,2,-inf]/0]

17 rule(A).

18 [constraint violated]

19 [13140/0]

20 rule(A) :-

21 transfdim(A,n(39,0)).

22 [constraint violated]

In this listing we can identify the initial bottom clause constructed (lines 6 to 12). The induc-
tion starts, by searching for generalizations (least general generalization) which entails this bottom
clause. It tries to cover the training data as much as possible, without violating the predefined con-
straints. For example, in lines 18 and 22 we can see that the system indicated constraint violation

for the two initial rules proposed, one in line 18, and the other one in lines 20 and 21.

The search for a good rule set will last a while, depending on the size of the training data. These
times are of the order of tens of minutes. The time complexity analysis is reported in Section 6.4.
During this search the system continues to output several items of information, including for example

good clauses found, as shown in the following excerpt:

[good clause]
rule(d) :-
chunk(A,left,np), chunk(A,right,vp), inx(A,center:x,1,pos(nn)).
[user defined cost] [0.0240487062404871]
[clause label] [[316,0,4,-0.0240487062404871]]
[clauses constructed] [317]

N o U oawoN

A good clause is any clause with utility above a certain predefined minimum score (Srinivasan, 2000).
It must also satisfying other parameters as well, like for example the minimum examples covered,
which in our case was set to 5 (:-set(minpos, 5).). A best clause is a good clause having an higher
score. For the final theory, clauses are chosen from the set of best clauses found. The [clause label]
information, in line 6, reports the value of 4 parameters for that clause, in the form of [[P,N,L,Vall],
where P and N are respectively the number of positive and negative examples covered, L is the number

o literals in the clause, and Val is the clause value.

In the end, the set of rules forming the theory is listed and saved in a file. The next excerpt shows

an induction process ending:
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[theory]

2
3
4 [Rule 1] [Pos cover = 5 Neg cover = 0]
5  rule(A) :-

6 chunk(A,left,np), inx(A,right,1,pos(vbz)), inx(A,center:x,3,pos(nn)).
8 [Rule 2426] [Pos cover = 520 Neg cover = 0]

9 rule(d) :-

10 chunk(A,left,pp), chunk(A,right,np), inx(A,center:x,1,pos(dt)).

12 [Rule 2436] [Pos cover = 7 Neg cover = 0]
13 rule(d) :-
14 chunk(A,right,np), inx(A,left,2,pos(nns)), inx(A,center:x,1,but).

16 [Rule 2441] [Pos cover = 5 Neg cover = 0]
17 rule(d) :-
18 chunk(A,left,punct), inx(A,right,1,police), inx(A,center:x,1,and).

20 [Training set performancel

21 Actual

2 + -

23 + 12873 0 12873
24 Pred

25 - 267 0 267
26

27 13140 0 13140

29  Accuracy = 0.979680365296804
30  [Training set summary] [[12873,0,267,0]]

For any learned theory's rule, the positive and negative coverage are printed. In our case, the latter is
naturally always zero. Just for ilustration, the rule 2426 (lines 8 to 10) covers 520 examples and states
that if we have an propositional phrase (pp), followed by some segment starting with a determiner
(pos(dt)), and this one is followed by a noun phrase (np), then there is strong evidence that the

middle segment can be eliminated. One of the examples used for learning this rule is shown below:

bub (3883, t(3,0),
[between/in/ppl,
[the/dt/np, start/nn/np, of/in/ppl ---> [1,
[november/nn/np, '2006'/cd/np, and/cc/undefined]
).

The induction listing finishes by showing the confusion matrix for the generated rule set. We can see

that the theory covers 12873 examples, letting out 267 cases.

In this section we have presented some implementation issues, avoiding many rather specific details,
some of them can be consulted in appendixes B, C, and D. The next section presents some of the

learned rules and reflect on their quality.

6.3 Learned Rules and their Applications

The final output of our system is a set of sentence reduction rules, or more precisely, rules that
can be used to drop some sentence portions, normally having low information value. It is desirable
that our learned rules do not cut out relevant sentence portions and that our obtained sentence still
maintain its principal meaning as well as a syntactically acceptable structure. Initially, in Section

1.3 we have provided a small set of such induced rules as an illustrative example. However, the
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6. INDUCTION OF SENTENCE REDUCTION RULES

whole set is obviously much larger and it is important to stress out how can we apply such rule set

for practical purposes and subsequently make evaluations.

The work endeavored throughout this research project is far from being at a complete, final and
perfect stage, and by the contrary we look at it more as being the beginning of something very
promising and worth following, where these were just the first steps. As the research become more
and more developed and in order to avoid being lost inside many complex decision spaces, we found
ourselves in a position where we had to maintain simplicity at most, or at least decide to confine our
research aims to a more takable horizon. Therefore, after having decided to work only with bubbles,
another complexity confinement was made by deciding to work only with those having middle size
equal to one (| X| = 1), two (| X| = 2) or three (] X| = 3). One reason for that, was that the majority
of the extracted bubbles (83.46%) have their middle sizes within this range, as can be seen in Figure
6.12. We have also decided to induce separate rules for each bubble type. Consequently a specific
set of rules was learned for each size type. The generated rule set was quite large. For example, in

total 5806 reduction rules were induced from a set of 37271 "|X| = 2" bubbles.

Some examples of sentence reduction rules are provided in Table 6.2. The eliminated sentence
portion is marked in bold and the rule syntax follows the same as shown and explained previously in

Section 1.3.

However, the system is not perfect as it can lead to erroneous sentence reduction rules, by elimi-
nating wrong sentence portions, either by eliminating some key elements, or producing syntactically
incorrect sentences. Table 6.3 show six erroneous situations of reduction rules applied to sentences.
However, as our results show, the majority’ of rule applications produce good or acceptable results.

Here acceptable means that semantic key terms were preserved and that no major syntactical errors

60
50 43,0
40
o 30 25.9
20 145
1.2 0.8 0.5 0.3

Bubble middle size (| X]|)

Figure 6.12: Bubble middle size distribution for a set of 143761 extracted bubbles.

"An Fy5 value of 73.01% (Section 7.3.1, table 7.10)
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6.3 Learned Rules and their Applications

Table 6.2: Some examples of good sentence reduction rules showing the eliminated sentence portions in each

case.

Sentence

Reduction Rule

I want to move now to international affairs, the war

on terror.

L.=VP A X3 =RB AR =to A |X|=1

Andrea Mitchell is also a very good reporter but she'’s

alousy ...

Le=VP A X;=RB A R3=1JJ A |X]=1

My comment has everything to do with the way the
media is covering Obama and nothing to do with

racism.

Le=VP A X;=NNA R =to A |X|=1

Wasn't his entire campaign therefore more a product

and function of greed than any before it?

Ly=NN A X;=RB A R3=NN A [X|]=1

With the financial crisis still worsening, obama said
his main goal is finding a remedy for the economic

woes.

Le=PP A X, =PP A Ry =NN A |X|=2

Obama continued to say that the

domestic automotive industry must put an even

bigger emphasis than in the past on developing

fuel-efficient vehicles and hybrid vehicles.

Ly =the AN Xc =NP A Ry =NN A [X|=2

He rallied support for an auto bailout and the
massive economic stimulus he announced this week-

end.

Ly =the A X, =NP A Ry =NN A |X|=2

This is the kind of behaviour any five-year-old child

could see through, and habitually does.

Lc=NP A Xp=0f A Re=NP A |X|=2

Complaining that and washington pols have done lit-
tle for people facing foreclosure or struggling to get

loans and jobs.

L.=VP A X; =that A Re=NP A |X|=3

Despite the nation's massive debt, Obama said he
won't be focusing on building a balanced budget at the

start of his administration.

L.=NP A X; =the A Re =NP A |X|=3

As a first time user, your comment has been submit-

ted for review.

Le=PP A X;=a A Re=NP A |X|=3

Congressional leaders say the emerging stimulus pro-
gram could cost between $400 billion and $700 billion.

Lo=VP A X;=the A Ry =NN A |X|=3

were introduced in the final sentence.

At this stage, a practical safety procedure is suggested, in order to minimize the inappropriateness

of rule application to certain sentences that would result in syntactical errors and sentence discon-

tinuities, as can be seen from the examples shown in Table 6.3. In order to achieve that, we applied

part-of-speech n-gram models. First we have created the models from a large corpus of near 1 GB

of text. This corpus was transformed into a "corpus” of part-of-speech terms like for example:

"(...) NNP VBZ RB VBG IN NNP IN NNS WDT MD VB IN DT NN IN DT

JJ NN IN NNP NN NN .

RBR DT NN NN NNP NNP NNP VBD NNS TO VB
NNP IN DT NNP CC NNP NNP NN TO NNS VBN IN NNP .

..o
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6. INDUCTION OF SENTENCE REDUCTION RULES

Table 6.3: Six examples of bad sentence reduction rule applications.

N | Sentence Reduction Rule
I want to move now to international affairs, the war

1 Lc=VP A X;=RB A Rj=to A |X]=1
on terror.
Andrea Mitchell is also a very good reporter but she's

2 Le=VP A X;=RB A R;3=JJ A |X|=1
a lousy ...

My comment has everything to do with the way the
3 | media is covering Obama and nothing to do with | L, =VP A X; =NN A Ry =to A |X|=1

racism.

Wasn't his entire campaign therefore more a product
4 thetefore Ly =NN A Xy =RB A R3=NN A [X]|=1
and function of greed than any before it?

With the financial crisis still worsening, obama said

5 | his main goal is finding a remedy for the economic | L, =PP A X, =PP A Ry =NN A |X| =1

woes.

Obama continued to say that the

domestic automotive industry must put an even
6 | T ) Li=the A X, =NP A Ry =NN A |X|=2
bigger emphasis than in the past on developing

fuel-efficient vehicles and hybrid vehicles.

This excerpt of POS tags corresponds to the text block shown below:

"(...) Apple is also working with Intel on microprocessors that will serve as the heart
of a new generation of Macintosh computer hardware. Earlier this year Apple CEO Steve
Jobs announced plans to change Macs from the IBM and Motorola-manufactured PowerPC

architecture to chips made by Intel. (...)"

Afterwards, we employ the CMU-Toolkit (Clarkson & Rosenfeld, 1997) to compute 2-gram and 4-gram
models and then use these models to ensure that the reduced sentence still maintains a "reasonable
expectable POS sequence”, meaning that we still have a likely syntactical sequence of words in the
resulting sentence. To explain the method used, we first present it through Algorithm 5, which also

presents the main document summarization procedure.

Function "summarizeSentences” (line 4) contains the main conceptual summarization algorithm we
have implemented. It receives a document and for each one of its sentences tries to apply a reduction
rule, previously learned (line 9). If the rule (r) match the sentence (s) being considered, a secondary
test is performed in order to ensure that the resulting sentence (s’) will have a likely sequence of
POS tags (line 11). If so then the original sentence is updated to its reduced version (line 12), and at
the end it is concatenated' to the summary being produced (line 16). Note that more than one rule

may be applied to a given document sentence.

"The @ operator represents string concatenation.
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6.3 Learned Rules and their Applications

Algorithm 5 Summarization loop with model based safety procedure for avoiding bad rule application.

1: rules < LearnReductionRules(corpora)

2: model «— loadNGramModel ()

3:

4: function summarizeSentences (document) : summary
5: summary «— @

6: sentences «— ListO fSentences(document)

7: for s € sentences do

8: for p € rules do

9: if match(p,s) then

10: s’ « applyRule(p, s)

11: if POSlikely(s’, model) then
12: s«

13: end if

14: end if

15:  end for
16:  summary <« summary @ s
17: end for

18: end function

To explain the execution of the POSlikely(s’, model) test (line 11), consider a general sentence

scheme, tagged as shown below, where w stands for word and t for POS tag:
s = wy/t; wa/ty w3/tz [wy/ty ws/ts we/te] wy/t; wg/tg

Let us assume that there exist some reduction rule p specifying conditions such that the middle
bracketed sequence in s can be eliminated. According to the algorithm, this means that we would

have:

s’ = w1/t wa/ty wi/ts wr/t; ws/ts

and s will be updated with s’ only if the "POSlikely" test is true. Since this test is based on POS tag
sequences, we must compare the likelihood of sequences (t1, to, t3, t4, t5, te, 7, £3) and iy, t2, t3, t7, tg)
in a balanced/normalized way, i.e. the comparison should be independent from the whole sequence
lengths. Therefore the middle sequence boundaries are considered for calculation. For example
if a 2-gram test is performed then we compare the likelihood of (t3,t4) and (t¢,t7), with the one
obtained from (3, t7), which would be a resulting subsequence if the rule is applied. In this case,
and weighting equally the middle sequence boundaries we would have the following test:

VP{(t3, f4>}2* P{{te,t7)} (6.4)

P{(t3,t7)} >
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6. INDUCTION OF SENTENCE REDUCTION RULES

where "P{X}" stands for "the probability of X". The hypothesis here is that if the probability of the
resulting POS sequence (({t3, 7)) is relatively low, then it might e better to ignore this rule. So, if the
test from condition 6.4 holds then the rule is applied and the original sentence is updated to its new
reduced version. A similar calculation can be made for 3-grams and 4-grams and then the probability
values would be combined to make the best decision. In fact a 4-gram model was one of our first

experiments.

However, the results reported in Subsection 7.3.1, were obtained from a sample of a differently
generated dataset. In this case, instead of trying to apply all possible rules to a sentence, we
focused on just applying the best rule matching the sentence, if at least one exists. So, in this case

the previously shown algorithm (5) has become slightly different: Here pp.s; and g5 represents

Algorithm 6 Summarization loop choosing the "best” rule to apply.

1: rules < LearnReductionRules(corpora)

2: model < load NGramModel()

3:

4: function summarizeSentences (document) : summary
5: summary «— @

6: sentences «— ListO fSentences(document)

7: for s € sentences do

8 Ppest — D, Gpest < 0

9:  for p € rules do

10: if match(p,s) then

11: g «— ruleQuality(p, s)
12: if g > qpest then

13: Poest <~ 07 qbest < 4
14: end if

15: end if

16:  end for

17: if ppest 7 © then

18: s’ «— applyRule(ppest, S)

19: if POSlikely(s’, model) then

20: s« s
21: end if
22:  endif

23 summary < summary @ s
24: end for

25: end function

naturally the "best” rule for sentence "s" and its "quality”. So, the question that remains is how do we
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6.4 Induction Time Complexity

calculate the rule quality (line 12 in Algorithm 6)? We consider a combination of three parameters,

where one is a 2-gram model ratio, as shown in condition 6.4.

_ P{{ti tisn+1)}
P b)) = PLm b)) (©3)

The second parameter for rule quality calculation is the number of words eliminated by the rule,

p

lets say n, to comply with the notation of Equation 6.5. The third parameter is the rule coverage,
represented by "c". Each induced rule generated by Aleph has a coverage value associated with it,
indicating the number of positive learning instances covered by the rule. Hence, the final rule quality

is calculated through a weighted geometrical mean involving these three parameters:
ruleQuality(p,s) = ¢2°108(p)+] log(n)+ log(c) (6.6)

Thus, more importance is given to the n-gram model parameter (p) than the other two. This formula
and its parameter weights were the result of several experiments carried out, where values were

gradually tuned according to the obtained results.

6.4 Induction Time Complexity

In the earlier' days of ILP, the computation time spent by the existing systems was a serious difficulty
and a critical bottleneck, disabling its implementation on real life problems. However, nowadays
these time efficiency issues have been overcome, through more efficient implementation techniques
and the steady growing of computational power, opening a wide range of application possibilities, for
many problems, ranging from Biology to Natural Language Processing. The graph in Figure 6.13, shows
that even with considerable big datasets, our Aleph based learning system evidences acceptable
feasible computation times. These computation measures were taken from a machine with an Intel

Core 2 Duo processor, working at 1.83Ghz, having 2GB of RAM, and running a POSIX? operating system.

To give an idea about the size of an induced rule set, and taking as an example the learned rules with
|X| = 2, these were learned from a dataset containing 37271 £(2,0) bubbles, and in the final 5806

sentence reduction rules were produced, through the induction process which took 53 minutes.

6.5 Final Remarks

In this chapter we focus on the work related with our last system's module - the induction of sentence
reduction rules. We describe the learning data preparation used, which includes the selection of
special structures from the aligned paraphrases called bubbles. These are transformed into learning

instances that are subsequently used for rule induction in an ILP based learning system - Aleph.

'In the 1990-2000 decade.
2In our case the Mac OS X.
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Figure 6.13: Time spent during the induction process, for datasets with size expressed in thousands of bubbles.

Although we have only considered bubbles with |X| < 3, a sentence may have a compression length
greater than this value, since several compression rules may be applied to a single sentence. Even
compositional rule application is likely. One or more rules are initially applied to a sentence, trans-
forming it into a new (simpler) sentence where other reduction rules can fire and continue the
sentence reduction process until no more rules match the sentence. An experiment we have carried
out shows that for a collection of learned rules and a collection of sentences targeted for reduction,

we have on average three rules firing in the first level for each sentence.

For the future, we have a large set of directions to follow, within this particular issue. We let here
some ideas. Due to its complexity, we have not yet worked with bubbles where X ”“ﬁf Y, with
Y # @, and |X| > |Y| . These are likely to be relevant to induce rewriting rules. We also want to
explore other structures, obtained from the alighments, that we may call "extremes”, in which one of
the paraphrasic sentences initial or final segment is aligned with an empty sequence. We also think
that a better chunker, capable of identifying subject-object relations will generate better rules and

improve correctness.

The work described in this chapter allow us to have another scientific contribution, published in pro-
ceedings of the ACL 2009 conference (Cordeiro et al., 2009). It was presented in workshop specially
dedicated to text generation and summarization, entitled Workshop on Language Generation and

Summarisation (UCNLG+Sum).
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Chapter 7

Results

"Ever)/thing that can be counted does not necessarily count; everything that counts

cannot necessarily be counted. "

Albert Einstein

This chapter gathers a set of results and main conclusions, from various experiments conducted
throughout the research work of this thesis. The main research subjects: paraphrase extraction,
paraphrase word alignment, and sentence reduction, were reported in chapters 3, 4, and 6 respec-
tively. In this chapter, sections 7.1, 7.2, and 7.3 discuss the corresponding experiments carried out

and provide the respective results obtained.

7.1 Paraphrase Extraction

In this work we have carried out an investigation concerning how to identify paraphrases. A set of
already known and used functions was tested and new functions proposed. Therefore an experimental
comparative study included nine functions in conjunction with three paraphrase corpora described

as follows.

Two standard corpora were used for comparative tests of different metrics: the Microsoft Research
Paraphrase Corpus (Dolan et al., 2004) and a paraphrase corpus supplied by Daniel Marcu that has
been used in many other experiments, namely for sentence compression (Knight & Marcu, 2002;
Nguyen et al., 2004). By making some adaptations in these two corpora, we have obtained three new
paraphrase corpora to serve as a benchmark for our comparative experimentations. In the following

subsections we give a more detailed description concerning the method used in this process.

7.1.1 The Microsoft Paraphrase Corpus

In 2005 Microsoft researchers (Dolan et al., 2004) published the first freely available paraphrase
corpus containing a total of 5801 sentences pairs, with 3900 annotated as "semantically equivalent”

or true paraphrases and the remaining 1901 with the opposite label, stored as negative paraphrase
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examples. Throughout the rest of our text we will refer to this corpus as MSRPC'.

This corpus was constructed by selecting paraphrases from massive parallel news sources using a
semi-automatic process, where first a shallow sentence similarity function was employed as well as a
heuristic permitting to pair initial sentences from different news stories as paraphrases. The shallow

function employed was the well-known Sentence Edit Distance (see Section 3.2.1). Afterwards human

1. The sentences have different content: prototypical example.

2. The sentences share content of the same event, but lacking details.
3. One cannot determine if sentences refer to the same event.

4. Shared content but different rhetorical structure.

5. The sentences refer to the same event but details different emphasis.

Figure 7.1: Guidelines used by human judges in the MSRPC paraphrase corpus construction to determine equiv-

alent pairs.

judges were included in the process to analyze and rate each automatically extracted pair. Three
human judges classified independently each pair as being "equivalent” (paraphrases) or "not equiva-
lent” pairs. To help them in the decision process, specially in the more difficult cases, a set of five
principles or guidelines was elaborated beforehand, stating essentially that a sentence pair should
not be marked as a paraphrase if one condition from the list in Figure 7.1 holds. These guidelines
were oriented towards the extraction of symmetrical paraphrases (see Section 3.3) and therefore do
not quite comply with our broader view of the types of paraphrases that should be considered. Since
our main research objective here is not paraphrasing, but sentence reduction or simplification, we
are also interested in sentence pairs of different generality or information content. In general such
pairs provide information about sentence reduction transformation that we wanted to explore. As
explained in Section 3.3, we are specially interested in asymmetrical paraphrases and so some of the
guidelines formulated for the MSRPC corpus construction conflict with this objective, in particular
the second and fifth directives from the list in Figure 7.1. For instance, although sentences (a) and
(b) below would be rejected as a paraphrase according to the MSRPC construction guidelines, they

form a relevant sentence pair for our research purposes.

(a) Researchers have identified a genetic pilot light for puberty in both mice and humans.

(b) The discovery of a gene that appears to be a key regulator of puberty in humans and mice

could lead to new infertility treatments and contraceptives.

Figure 7.2: An asymmetrical paraphrase pair likely to be rejected according to the MSRPC construction guideline.

' An abbreviation of Microsoft Research Paraphrase Corpus
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Hence it can be expected that our proposed new functions for asymetrical paraphrase identification
(see Section 3.3) would yield a certain amount of disagreement over some MSRPC negative examples,
by identifying them as positive, i.e. true asymmetrical paraphrase cases. On the other hand, it
increases the number of false positives and this phenomenon was in fact experimentally confirmed

(see Table 7.3 in Section 7.1.5).

7.1.2 The Knight and Marcu Corpus

The corpus used by Knight & Marcu (2002) in their sentence compression work contains 1087 sentence
pairs, where for each pair one sentence is a compressed or summarized version of the other one.
Similarly to what we did for the Microsoft Paraphrase Corpus we also labeled this one and referred
to it as the KMC corpus. It was manually crafted by selecting related sentences from a collection of
(Text, Summary) pairs, one sentence from each category the expanded one from the Text and its
compressed version from the Summary. This corpus was constructed to serve as a supervised learning
data set. Such a construction is very laborious and time consuming and even if the corpus has a
significant size it may always be incomplete in terms of linguistic diversity. By the time we started
this research and even during it, this was the only existing sentence reduction corpus available.
Despite its richer content, it was clearly not sufficient for our sentence reduction rule induction
objective, since we aimed at following an unsupervised approach and preferred to rely on massive
data gathered automatically, in order to capture a wide and relevant number of rules. However, even
if KMC is not our primary data source it is still very relevant to test paraphrase extraction functions,
consisting in a golden' asymmetrical paraphrase test set. Furthermore, it helps balancing the overall
paraphrase test set, since on one hand we have the MSRPC containing exclusively symmetrical pairs,

and on the other hand the KMC corpus with only asymmetrical paraphrase types.

These two corpora were conveniently adapted and combined in order to provide relevant test sets

for the paraphrase identification functions.

7.1.3 The Evaluation Paraphrase Corpora

One major limitation with the KMC corpus is that it only contains positive examples and therefore it
should not be taken as such for evaluation. Indeed, it is necessary to add an equal number of negative
examples, pairs of sentences which are not paraphrases, in order to obtain balanced evaluation set
for the paraphrase detection. Even the MSRPC corpus is fairly unbalanced, having only 1901 negative
examples compared to the 3900 positive ones. To perform a fair evaluation, we decided to expand
both corpora by adding negative examples, randomly selected from web news texts, in a sufficient
number to balance the corpora, and so as to end up with the same number of positive and negative

examples. Finally we also decided to create a third corpus, which is a combination of both, MSRPC

"The KMC corpus was manually selected.
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and KMC, to which we added a new set of negative cases. In Figure 7.3, an example of a "random

negative pair" is depicted in order to clarify this point. It is evident that the previous example is in fact

(a) Running back Julius Jones is expected to return after missing the last three games with a

sprained left ankle.

(b) Economists closely watch the performance of consumer spending since it accounts for

two-thirds of total economic activity.

Figure 7.3: An example of a negative paraphrase pair, randomly selected from Web News Texts

a negative paraphrase case with sentences having nothing in common. On the other hand, one may
expect that among a set of news stories talking about a given event it is likely to encounter sentence
pairs that are almost equal (quasi-equal), even coming from different texts. Such pairs are naturally
irrelevant for our research purposes (see the discussion in the beginning of Section 3.3). Hence, our
objective is that our proposed paraphrase identification functions should be immune to these kind of
pairs, by deciding to reject them. Therefore in order to test this feature one may consider to include

a low percentage of such negative cases, like the one shown in Figure 7.4. In Subsection 7.1.7, we

(a) "I don't think my age matters during competitions”, said Nadal.

(b) I don't think my age matters during the competitions, said Nadal.

Figure 7.4: An example of a quasi-equal negative paraphrase pair.

present a discussion and some evaluation based on this issue of adding at random selected sentence
pairs consisting of quasi-equal sentences as negative examples. We show that it does not affect
the performance of our method, as the performance differences between symmetrical paraphrase
(SP) and asymmetrical paraphrase (AP) function types are not affected by the existence of negative

random pairs.

7.1.3.1 The MSRPC U X499 Corpus

This new derived corpus contains the original MSRPC collection of 5801 pairs (3900 positives and 1901
negatives) plus 1999 extra negative examples (symbolized by X;4,), selected from web news stories.

So we end up with 3900 positive pairs and 3900 negatives.

7.1.3.2 The KMCU Xj ), Corpus

From the KMC corpus we derived a new corpus that contains its 1087 positive pairs plus a set of
negative pairs, in equal number, selected from web news stories. We named this new corpus as

KMC U X,

107> Where the X, .- represents the extra negative paraphrase examples, resulting once

again in a balanced test set with an equal number of positive and negative cases.
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7.1.3.3 The MSRPC" UKMC U X 4q, Corpus

Finally, we decided to build a larger corpus that gathers the positive MSRPC part, with 3900 sym-
metrical positive examples and 1087 positive asymmetrical paraphrase pairs from the KMC corpus,
summing up to a total of 4987 positive pairs, of which 21.8% are asymmetrical. To balance the
corpus, an equal number of negative pairs was added, obtained in the same fashion as described
previously for the other two corpora. We labeled this larger corpus as MSRPCt U KMC U X087+
In this corpus, we decided to exclude the MSRPC negative pairs, according to what is discussed in

Subsection 7.1.1.

The data components needed to reconstruct these corpora are available in the following website:
http://www.di.ubi.pt/~jpaulo/competence/'. The MSRPC corpus may be obtained directly from its
source?. The KMC corpus was not publicly available by the time we have conducted our experiences
and it was directly provided by Knight & Marcu (2002). Therefore, we only provide the negative
examples that were used in our tests which were joined with the positive sets to derive the three
main test sets: X4, joined with MSRPC, the X .o, set joined with KMC, and the X, set for the
third one. These data will enable any future reader to reconstruct each paraphrase corpus described,

and make comparative experiments.

7.1.4 How to Classify a Paraphrase?

As in many machine learning problems, in paraphrase identification/extraction a system makes deci-
sions taking into account certain parameters, which are called thresholds and are pre-set by someone:
the user, the programmer, the researcher or even others. In our paraphrase extraction task, which
involves a classification problem, the evaluation of the performance for any paraphrase identification
function, is dependent of a given predefined threshold 6, which conditions the classification. That is,
for a given sentence pair the system computes a proximity or dissimilarity value, which determines
whether the pair is or is not a paraphrase. For example, assuming that we are evaluating the function
pamph(., .), which calculates the likelihood that any two sentences S, and Sy, are a paraphrase pair,
and also assuming that 8 = 0.6, then the pair (S,, S;) would be classified as a paraphrase if and only

if we had paraph(S,, Sp) > 0.6.

Thresholds are parameters that make the process of a fair evaluation more difficult. Indeed the best
possible threshold parameter should be determined first for a given function. However, this is not

always the case and, very often, wrong experimental set-up is used.

In order to avoid this mistake, and since we are comparing the performance of our proposed para-

phrase identification functions with other already existing ones, our evaluation process, does not

'Link available on October 2010.
2http:/ /research.microsoft.com/nlp/ [October 2010].
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pre-define any threshold. Instead, the evaluation procedure will first automatically set the best
threshold function value for a given training corpus. Afterwards the function is tested in the test
corpus. We made this by using 10-fold cross validation. For each run, we divide a given paraphrasic
corpus in two parts: % of data for training and 11—0 for testing. Therefore any function is tested with
its best threshold, the one that maximizes the function performance in the training corpora. This
is equivalent to stating that the paraphrase extraction functions are compared at their maximum

possible performance.
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Figure 7.5: Threshold performance curves for 4 paraphrase identification functions, tested on the MSRPC™ U

KMC U X jgq, corpus.

The pre-scanning of the best threshold is a typical problem of function maximization or optimization
(Polak, 1971), and in order to efficiently find a good approximation to the global maximum, a golden
section search method was employed (Anita, 2002), which progressively divides and narrows a func-
tion interval towards the location of a function extreme. It is guaranteed to converge to the global
maximum, if the function is unimodal. We noticed that the performance function graphs are smooth
curves and almost all reveal the unimodal characteristic’, that is a kind of inverted concavity with a
unique global maximum point. In Figure 7.5 we present four of such curves, for the N-Gram, BLEU,
Sumo and Entropy paraphrase classifiers. These four graphs were produced through an exhaustive
point drawing where nearly 1000 threshold values were sequentially taken in the 0, 1] interval and

their respective classifier performance computed for a specific corpus, which in this case was the

At least all that we have tested and reported here.
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7.1 Paraphrase Extraction

Table 7.1: Threshold means and standard deviations, obtained using a 10-fold cross validation procedure.

thresholds MSRPC U X196 KMC U Xjpg7 MSRPC* UKMC U X4,
Edit 17.003 £ 0.0000 | 18.800 £+ 1.1353 17.000 £ 0.0000
Sim, 0.1668 £ 0.0000 | 0.2096 + 0.0138 0.1298 + 0.0008
Sitexo 0.5000 £ 0.0000 | 0.7205 4 0.0382 0.5000 =+ 0.0000
Bleu 0.6887 +0.0015 | 0.0204 + 0.0051 0.6369 £ 0.0077
Sumo 0.0718 +0.0033 | 0.0049 £ 0.0010 0.0070 £ 0.0001
Trignom 0.2889 4+ 0.0803 | 0.2685 4 0.0000 0.3421 4+ 0.0000
Parabolic J 0.5091 £ 0.0146 | 0.3242 £ 0.0001 0.3255 4+ 0.0048
Entropy 0.6166 4+ 0.0065 | 0.3851 £ 0.0011 0.4455 £+ 0.0319
Gaussian § 0.5250 £ 0.0095 | 0.3670 £ 0.0006 0.3986 + 0.0105

largest one used - the MSRPCT UKMC U X987 COTpUS.

Given this, the golden section search algorithm was used to quickly find the low error approximation
for the best function threshold, on the training corpus. Afterwards a test was run with that threshold
in the test corpus. To provide evidence that we are computing a good approximation of the global
optimum, we show in Table 7.1 the means and standard deviations of all function thresholds, obtained
in each corpus. Each threshold mean is obtaining by averaging the ten results coming from a 10-fold
cross validation. As already mentioned, a given paraphrasic corpus is divided in ten folds, where nine
of them are used to tune the best threshold through the golden section search method. Then the

paraphrase extraction function is tested with that threshold, on the left out fold.

The obtained thresholds (Table 7.1) and their variation range is almost negligible, supporting the
fact that for these functions the golden section search method provides a good approximation of the

global optimum.

7.1.5 Experiments and Results

In order to make a comparative evaluation of all paraphrase identification functions, a 10-fold cross-
validation (cv) method was followed for each function and each paraphrase test set. The performance

was judged using the well known F-Measure' and Accuracy, as shown in equations 7.3 and 7.4. As

'Which is also known as Fg.
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usual, precision and recall were calculated as shown in Equation 7.1 and 7.2

TP
jsion = ———— 7.1
precision TP+ FP (7.1)
TP
Il = ———— 7.2
T = TP Y FN (7.2)

where TP, FP, and FN are the True Positive, False Positive and False Negative values respectively,

obtained from the confusion matrix. In a classification problem this matrix confronts the predicted

Table 7.2: The confusion matrix for a binary classification problem.

Positive | Negative

Positive;.gict TP FP

Negative,, ;. FN TN

outcomes with the actual classifications obtained by the system. Usually the rows refer to the pre-
dictions and the columns to the actual values. The general structure of a confusion matrix for a

binary classification problem is shown in Table 7.2.

Fe— (1+ B?) * precision * recall 7.3)
B~ " B2« precision + recall '

TP+TN
A = 7.4
Y = TP+ TN+ FP+ EN (74)
We took the Fjg evaluation measure with f = 1 meaning that precision and recall are equally
weighted:
F = 2 x precision * recall (7.5)

precision + recall

The following tables 7.3 and 7.4, provide a summary of the F-Measure and the Accuracy values
obtained for each function and each paraphrase test set. We have three test sets and nine functions,
with five of these specially defined to identify symmetrical type paraphrases (Edit, Sim,, Sitey,,
Bleu.). The Edit function is the sentence edit distance, while Sim, and Sim,,, are the simple ant
the exclusive N-gram overlap functions, respectively. Detailed description about these functions are
given in Section 3.2. The three paraphrase corpora cover a wide range of paraphrase types, from
a "pure” symmetrical type (MSRPC U X/ 49) to an asymmetrical type (KMC U X;,e-), and also a
larger corpus including both types (MSRPC+ UKMC U Xy087)-
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7.1 Paraphrase Extraction

Table 7.3: F; evaluation results obtained (in %).

Type Function | MSRPCUXj, | KMCUXjs, | MSRPC UKMC U Xpg,
Edit 74.42 71.06 80.97
SP Sim, 78.94 95.34 94.72
SitMexo 76.54 91.06 86.27
Bleu 78.72 69.26 85.86
average: 77.16 81.68 86.96
Sumo 80.93 98.29 98.52
Trignom 77.12 61.40 87.02
AP Parabolic 80.18 97.55 98.40
Entropy 80.25 97.50 98.35
Gaussian 80.20 97.56 98.37
average: 79.74 90.46 96.13

Table 7.4: Accuracy obtained (in %).

Type Function | MSRPCUXj, | KMCUXjpe, | MSRPCH UKMC U X4,
Edit 67.68 69.26 79.27
SP Sim, 73.85 95.16 94.48
SitMexo 70.51 90.36 84.49
Bleu 74.00 57.88 86.18
average: 71.51 78.17 86.11
Sumo 78.18 98.29 98.52
Trignom 71.63 69.22 87.99
AP Parabolic 75.74 97.58 98.39
Entropy 75.88 97.24 98.34
Gaussian 75.92 97.56 98.37
average: 75.47 91.98 96.32

The results show that, in general, the AP-functions outperform the SP-functions on all paraphrase

corpora, except for the trigonometric function (defined in 3.10), which does not behave very well

and is worse than the majority of the AP-functions on asymmetrical corpora KMC U X| e, and

MSRPC* UKMC U Xgq,. For instance, on the largest corpus MSRPCT U KMC U X4, the AP-

functions correctly classified, on average, 96.32% out of all (9974) sentence pairs, which include both

positive or negative examples, being near 10% better than the SP-functions.

As we expected, the AP-functions performed better on corpora containing asymmetrical pairs, like
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in KMC U X;,g, and MSRPCT UKMCU X957, revealing an Accuracy difference of 12.02%, by
considering the average performance of each type (SP and AP) on both corpora and an equivalent F-
Measure difference of 8.98%. Nevertheless, even in the MSRPC U X444 corpus, which is exclusively
symmetrical, the performance of the AP-functions is surprisingly better than that of the SP-functions,

revealing an average differential of 2.58% in terms of F-Measure and 3.96% in terms of Accuracy.

Within the SP-function class, the simple word N-gram overlap (sim,) and the exclusive LCP N-gram
overlap (sim.y,) metrics always obtain the first and the second place respectively, whereas the Bleu
metric and the Edit Distance obtain the worst results on all paraphrase corpora. Within the AP-
function class our proposed Sumo function obtained the best results. Note that the performance
differences among the functions in this class is very small, with one exception, which is the trigono-

metric function.

7.1.6 The (SP type) Bleu Function - A Special Case

By looking at the Bleu function, in Subsection 3.2.2.2, it is clear that this function should indeed be
interpreted as a set of functions that depends on the upper sum limit (N) chosen. It was set to 4
in our experiments, following indications in literature, as for example Barzilay & Lee (2003). They
propose to use N = 4 for overlap n-grams, that is consider n-grams with length 1, 2, 3 and 4. By
choosing different values for the N limit, a question arises wheter this would imply any significant
difference in performance. We have carried out such tests and observed that for values greater than
4 the performance starts to decrease rapidly. It seems that the main reason for this lays in the fact
that the Bleu function makes a product of N factors (see Equation 3.6). So if just one of these is
a near zero then the overall function performance will be affected. As shown in Table 7.5, when N

decreases from 4 to 1 the Bleu performance tends to improve. We note that in these experiments

Table 7.5: The BLEU results (in %), with N decreasing.

Fg MSRPCU Xp59 | KMCUXjps, | MSRPCT UKMC U Xy,
N=4 76.62 69.32 84.68
N=3 77.82 69.33 87.86
N=2 78.77 68.88 90.18
N=1 79.39 77.45 91.15

the best performance was achieved for N = 1, when only unigram lexical links were counted. We
followed this strategy for our proposed AP-functions, such as Sumo, which relies only on the number
of words from each sentence and the number of exclusive lexical links (see Figure 3.5). Therefore
counting 2-gram, 3-gram, ..., n-gram overlaps would not bring any benefit, but only increase the

computational cost.
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7.1.7 The Influence of Random Negative Pairs

In Section 7.1.3 we described a method to artificially add sentence pairs, randomly picked from
Web News Texts as negative paraphrase pairs, to balance' the corpora. We also mentioned that it is
likely that quasi-equal pairs could be inserted too as negative examples, depending on from where
we obtained our texts. This last option may naturally be criticized, since these quasi-equal pairs
can be seen as symmetrical paraphrases artificially labeled as negatives, and for such pairs the SP-
functions would likely return true, whereas the AP-functions would give false as an answer. This type
of examples will be counted as True Negatives by the AP-functions, but as False Positives by the SP-
functions, and so one may say that the evaluation is biased towards AP-functions. However, our intent
was simply to have a test corpora resembling, as near as possible, to real data, where such functions
would be applied to identify and select instances that facilitates the construction of asymmetrical
paraphrase corpora. On the other hand, these quasi-equal pairs were inserted randomly with very

low probability, and at the end their number in the corpus was less than 1%.

Indeed, to acknowledge this situation and confirm that the performance differences are independent
of the presence of quasi-equal pairs, we performed another experiment with a corpus similar to the
MSRPCT UKMCU X987, but without such pairs. We named this new corpus here as the "BigPure”.
Tables 7.6 and 7.7 present the results for both paraphrase identification function types, which confirm
our claim that the performance difference between AP and SP type functions is independent of the

presence of a small amount of quasi-equal pairs.

Table 7.6: SP-functions on a corpus without quasi-equal negative pairs

BigPure edit sim, SiMexo bleu

F-measure | 80.97% | 94.72% | 86.25% | 85.86%
Accuracy 79.27% | 94.48% | 84.49% | 86.18%

Table 7.7: AP-functions on a corpus without quasi-equal negative pairs

BigPure Sumo | Trignom | Parabolic | Entropy | Gauss

F-measure | 98.51% | 87.02% 98.40% 98.35% | 98.37%
Accuracy | 98.50% | 87.99% 98.40% 98.35% | 98.37%

For this last experiment, the magnitude of the test data ensures us that at least with 99% sta-
tistical confidence? (1% significance) we have Accuracy ap- functions) > ACCUTACY (Sp- Functions) and

F'Measure(AP-functions) > F'Measure(SP-functions)'

"Equal number of positive and negative examples.
2By making a statistical test for Accuracies: Hj : accuracyay = accuracysp against Hy : accuracy,p > accuracysp, and a

similar one for the F-Measure.
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7.2 Paraphrase Alignment

In this section we report the results obtained for the alignment algorithms presented in Chapter
4. Algorithms for word alighment between paraphrasic sentences were conveniently adapted from
Bioinformatics and a new method to dynamically choose between a global and local alignment were
also proposed. In order to assess the accuracy of these alignment methods for our domain, we

designed a test involving human manual evaluation.

7.2.1 Paraphrase Corpora

Automatic evaluation of sequence alignment requires a gold standard data test set. As far as we are
aware of, such data is unavailable for our type of problem, since we are proposing a new alignment
method, specially adapted to our specific domain of word alighment between sentences. Although
sequence alignment is not our main research line, it is part from the whole process, aim to automat-
ically learn sentence reduction rules from text. We decided to carry out a manual evaluation of a

sample of aligned paraphrases in order to get a quantitative measure of the quality of the alignments.

We tested our alignment method by using two sets of aligned paraphrases obtained from different
text sources. One was obtained from the raw text material we are working with - web news sto-
ries. A random sample of 200 extracted aligned paraphrases were gathered as one test set and
for representation convenience we will refer to it as the WNS. This dataset represents the type of
alignments obtained from our working data, from which mainly asymmetrical paraphrases were ex-
tracted. However, in certain cases some symmetrical pairs could also be extracted. Therefore we
also considered the possibility to test our alignment method in a different dataset, with exclusively
asymmetrical paraphrase pairs. For that purpose we decided to use texts from the series of the
Document Understanding Conference (DUC). The DUC series are competitions holding once a year
which aim is to compare the performance of different sentence reduction systems on a wide range of
specific tasks. After each competition, a scientific conference takes place where the main compar-
isons and conclusions are reported. Thus it was relatively easy to select a corpus containing solely
asymmetrical paraphrase pairs from the DUC corpora. We decided to pick the DUC 2002 dataset of
text pairs, where each pair is formed by a text and its corresponding summary. From these text pairs,
405 asymmetrical paraphrases were extracted and aligned. A random sample of 220 pairs' was then
chosen to constitute the second evaluation test set. This test set is referred here simply as the DUC.
Both for the WNS and the DUC, paraphrases were extracted using the Sumo function (see Subsection
3.3.1) and their words aligned using the proposed methodology described in Chapter 4. A difference
between the WNS and the DUC is that in the latter dynamic alignment was used, while in the former

only global alignment was performed.

TComposed of 200 globally aligned and 20 locally aligned.
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7.2.2 Quality of Paraphrase Alignment

For each dataset, selected as previously described, a human judge evaluated the quality of each
paraphrase alignment using four labels, two positive ones and two negative ones: excellent, good,
flawed, and bad. Label excellent was assigned to alignments without any error at all. These are
the perfect cases which are most useful for the subsequent rule induction step. Below are three

examples of aligned pairs that were marked with this label (alignments 1, 2, and 3).

Excellent:

(1) ____ He has helped the Police Department make hundreds of arrests and has " apprehended "
Nero __ ___ helped the police __________ make hundreds of arrests and ___ apprehend
more than 50 felons .
more than 50 felons .

(2) e _ __—_ ___ ___ " That's the lowest pressure ever ________ measured
Winds were clocked at 175 mph and _ ______ the lowest pressure ever recorded ________
in the Western Hemisphere ___ ________ __ ___ ______ , " Zimmer said .
in the Western Hemisphere was measured at its center e

(3) kenya ____ has also claimed that the ________ ___ arms are destined for its ___ military .

kenya says for its own military .

The good label is used for alignments with at most two misalignments without having major impli-
cations on the overall quality of the alignhment. Below we show two examples of such alignments

(alignments 4 and 5).

Good:
(4) fossett , 63 , vanished in his ___ ____ ____ _____ __ ____ airplane after taking off
fossett _ __ _ ________ __ has not been seen since he took off
from a private air strip in northern nevada on september 3 , 2007 .

_ 2007 .

from a private airstrip in nevada in september
(5) Checkpoint Charlie , the Berlin Wall border post

Checkpoint Charlie , the

______________ that symbolized the
most famous symbol of the

Cold War , was ______ hoisted into history today .
Cold War _ was lifted into history today .

The negative label flawed is assigned to those cases where several misalighments were made. Despite
the fact that good matches are present, the amount of wrong word alighments has an overall negative

effect. Two examples of such cases are shown below, in alighments 6 and 7.

Flawed:

_____________ _ With tropical storm force winds extending 250 miles north and
Massive in size , it had storm winds extending 250 miles north and
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200 miles south of the hurricane's center , Gilbert also was one of the largest .
200 miles south of ___ its eye

(7) honda o e

. _ reported a
honda motor co.'s sales dropped 24 percent and general motors corp

. reported a

And finally the second negative label bad is obviously assigned to completely erroneous alighments,

as exemplified with the next two examples (alignhments 8, and 9).

Bad:

(8) The __ best America could do was six medals , its worst Winter
The US had

its worst Winter Olympic

showing in 52 years ___ ____ _____
showing in 52 years the 1988 Games .

(9) there is so far no sign of the single-engine aircraft in which fossett , 63 , ________
_________ mr fossett , 63 , vanished

took off from a nevada

in september last year while on a solo flight that took off from neighbouring _ nevada

ranch in september 2007 .

Even here some tokens got well alighed. However, the overall quality of the alignment is poor and
misleading for our next step of induction of sentence reduction rules. It is noteworthy that we are
comparing alignment qualities in a deeper and more semantic level than comparisons based on our
previously defined lexical “algval (Az«,)" function (Equation 4.9). For instance this function seems
to misevaluate some of these harder examples (Table 7.8), where in fact we have relatively less

words aligned, yet still making sense as alignments between paraphrases (alignments 2 and 3). On

Table 7.8: The algval(Az«,,) values for the previous nine examples shown.

ID: | algval(Azxn) ID: | algval(Azxy) ID: | algval(Azxy)
Tprcel 0.847 4good 0.643 7 fraw 0.429
2excel 0.588 5400 0.743 8pad 0.638
3excel 0.581 6 flaw 0.676 ad 0.495

the other hand, there are situations where a great number of words are aligned with few yet critical

errors for the overall alignment semantics (specially in alignments 6 and 8).

In the case of the DUC corpus, dynamic alighment was used yielding several local alignments. We
asked the judge to classify these alignhments as adequate or inadequate. We were interested in finding

out whether the decision concerning the choice of the local alighment algorithm was adequate,
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whenever such choice was made by the system. The results obtained are shown in Table 7.9. The

Table 7.9: Accuracy obtained in the alignments .

Global Local

Dataset excellent good flawed bad adequate

bucC 67% 22% 7% 4% 80%
200+20 134 44 14 8 16/20

WNS 46% 28% 9% 17%

200 92 56 18 34

DUC U WNS 56.5% 25.0% 8.0%  10.5% 80%
420 226 100 32 42 16/20

last column contains information concerning the adequacy of local alignments. There are 16 adequate
ones from a total of 20 local alignments. As it can be seen the results from each dataset are related,
being better on DUC data. We suppose that the main reason for this is that WNS data are somewhat
more noisy, containing more erroneous cases, including errors coming from the previous steps, like
for example sentences wrongly divided. On the other hand, with respect to DUC data, the text has
been manually pre-selected, ensuring higher quality at the beginning of the process. The overall
performance (DUC U WNS) of the alighment method is quite satisfactory, since it achieved 81.5%
of positive (excellent & good) alighment classifications. This provided us with confidence about the
usage of these alighment techniques and the corresponding alighments obtained to be used in the

next step, where machine learning techniques for sentence reduction rule induction were explored.

7.3 Application of Reduction Rules

The automatic evaluation of a system is always the best way to perform it, due to its objectivity and
scalability. However, in many cases such evaluation is unfeasible for several practical reasons, like
for example the unavailability of data or the huge difficulty to prepare it appropriately. In supervised
learning, manually labeled test sets are used to evaluate the systems. However, these tend to be
relatively small, affecting adversely the statistical significance of the obtained results. For example
in Knight & Marcu (2002) a set of 1035 sentences was used to train their sentence compression system
and only 32 sentences were used to test it, which is indeed a quite small test set. It is also important
to propose many different evaluation techniques. In order to assess well the performance of our
methodology on large datasets, we propose a set of qualitative and quantitative evaluations based
on three different measures: estimated precision (précision), estimated recall (recall), and syntactic

N-gram simplification (ngo). These parameters are explained next together with the evaluations
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carried out.

7.3.1 Evaluation Measures

The first evaluation measure carried out was based on human judgments of the quality of the ap-
plication of sentence reduction rules. For a random sample of compressions, resulted from the ap-
plication of sentence reduction rules, two human judges rated each rule application with an integer
value ranging from 1 up to 5, where 1 means a total erroneous rule application, and 5 a perfect rule
application. So, averaging human ratings, we have obtained a qualitative evaluation expressed quan-
titatively in the [1,5] interval, which we call correctness. The weighed Cohen’s kappa coefficient
(Cohen, 1968) for inter-rater agreement obtained was equal to 64.89%, which means "substantial
agreement”, according to the guidelines of Landis & Koch (1977). The ratings were aggregated in

three main categories: negative (1, 2), neutral (3), and positive (4, 5).

Precision and recall are evaluation measures normally employed in supervised learning, where for
a given test set we know exactly how many elements belong to each class. These two measures
are calculated from a confusion matrix as described previously in Subsection 7.1.5. In our case of
sentence reduction rule application, we are evaluating an unsupervised approach where precision
and recall can not be exactly calculated. Nevertheless, we decided to use an approximation of
these measures. Precision is a measure of exactness calculating the percentage of correct positive
classifications made from the total of instances positively classified by the system. For example in
information retrieval precision is the number of relevant documents obtained from the total number
of documents retrieved. In our specific problem here we approximate precision by normalizing cor-

rectness as proposed in Equation 7.6, where n is the number of sentences for which a rule is applied.

. . 1 rate(reduction correctness
precision = precision = Li=1 5( . K = 5 (7.6)

The recall measure is a measure of completeness, calculating the percentage of positive classifica-
tions effectively made from the total of all positive classifications that the system could have made.
In the example of information retrieval, this is the number of relevant documents found divided by
the number of relevant ones existing in the collection. In order to have an approximation for recall
too, we considered the number of sentences for which at least one reduction rule was applied, in a
given text sentence collection being used for evaluation. This number is divided by the collection
size. Let us assume that we are using a collection of m sentences S = {s,...,s,; } for evaluating a
given ruleset R. Then recall is approximated as in Equation 7.7.

# reductionsp (S)
m

recall ~ recall = (7.7)

where “# reductions (S)" is the number of reduced sentences obtained from S through R.
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The F-Measure (Equation 7.3) combines precision and recall in a single evaluation metric. By varying
the B parameter, we are able to increase the importance of precision (8 < 1) or recall (8 > 1). For
our F-Measure approximation we decided to give more relevance to preécision than recall. We think
that our defined recall is a less accurate approximation than précision, because not all S sentences
are eligible to be summarized. We may already have a subset of quite simple sentences contained in
S, for which any further simplification is no more possible without wiping out necessary fundamental

components/information. Therefore, we decided to use an F-Measure approximation with g = 0.5
(Fos):
1.25 * precision = recall

7.8
0.25  precision + recall (7.8)

Fos = Fo5 =

The syntactic n-gram simplification methodology is an automatic extrinsic test performed in order
to perceive how much a given set of sentence reduction rules would simplify sentences in terms
of syntactical complexity. The answer is not obvious at first sight and smaller sentences are not
necessarily simpler, because even smaller sentences can contain more improbable syntactical se-
quences. In terms of syntactical analysis we are just working with shallow techniques, in particular
here we are only considering the part-of-speech tags (POS)'. To compute the syntactical complexity
of a sentence, we used a 4-gram model and computed a normalized? sequence probability as defined
in Equation 7.9 where W = [t1,t2, ..., tm] represents the POS sentence sequence, with size m of any

sentence of length m
m 1
complex(W) = (T PAte | ti1,otin}) ™ 7.9)
k=n

where P{#; | tx_1,..,tk_n} Means the conditional probability of tag t; given the tag sequence

ty_1, .-, tx_,. For example, for the sentence:
"The/DT passage/NN of /IN the/DT bill/NN by/IN an/DT overwhelming/JJ majority/NN."

we will have Wl = [DT,NN,IN,DT,NN,IN,DT,JJ,NN], and assuming a simplified version of this

sentence to be:

"The/DT passage/NN of /IN the/DT bill/NN by/IN majority/NN."

its corresponding W2 sequence would be equal to [DT,NN,IN,DT,NN,IN,NN]. As such, we can com-
pare the POS sequence complexities of V\71 and Wz through Funtion 7.9 and take note if complex(Wz) <
complex(VVl) or not. It is naturally expected that simplified sentences will result in less complex POS
sequences, i.e. with lower P(W) value, meaning naturally a more likely sequence. This computation
is based on a n-gram model of POS sequences and the n variable in Function 7.9 corresponds exactly
to the n-gram used, in our case n = 4. The parameters of the POS 4-gram model were trained over a

corpus of web news stories with approximately 1GB text size. In our particular example complex(Wz)

For POS tagging the Penn Treebank Tag Set was employed.
2Because it is raised to the inverse power of m — 1 + 1, which is the number of factors being multiplied.
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would be equal to

1

(P(DTIDT,NN,IN) * P(NN|NN,IN,DT) * P(IN|IN,DT,NN) x* P(NNIDT,NN,IN)) :

As usual in these cases, the log probability is taken to avoid round-offs to zero, since calculating
the exact values is irrelevant, and the most important is to compare the complexity of different
sequences. Thus instead of applying directly Function 7.9, we propose its log transformation as in
Function 7.10.

Leomplex(W) =

m
e k; Log(P{tx | tx—1,--rtk—u}) (7.10)

The third evaluation is qualitative. We measured the quality of the learned rules when applied to
sentence reduction. The objective is to assess how correct the application of the reduction rules is.
This evaluation was made through manual cross annotation for a statistically representative random
sample of compressed sentences. Two human judges evaluate the adequacy and correctness of each
reduction rule to a given sentence segment, in a scale from 1 to 5, where 1 means that it is absolutely
incorrect and inadequate, and 5 that the reduction rule fits perfectly to the situation (sentence) being

analyzed.

7.3.2 Evaluation Results

In the evaluation, a sample of 300 sentences was randomly chosen, where at least one compression
rule had been applied. This evaluation set was subdivided into three subsets, where 100 instances
came from rules with |X| = 1 (BD1), 100 from rules with |X| = 2 (BD2), and the other 100 from
rules with | X| = 3 (BD3). Another random sample, also with 100 cases was chosen to evaluate our
baseline (BL), which consists in the direct application of bubbles to make compressions, meaning
that no learning process is performed at all, but instead, we store the complete bubble set as if they
were rules, in a similar way as Nguyen et al. (2004), using them directly for sentence compressions.
For any sentence, if there exists a bubble match then simplification is made in an identical format

as specified by that bubble.

Table 7.10 shows the comparative results for correctness, précision, recall, Fy, and n-gram simpli-
fication, for all datasets. The precision is simply a normalized correctness, obtained from dividing
it by five which is the maximum correctness mark. The percentage values for n-gram simplification

are the proportion of counted test cases where P{reduced(W)} > P{W} is verified.

Table 7.10 provides evidence of the improvement achieved with the induced rules in comparison
with the baseline BL, on each measure. Considering the three experiences, BD1, BD2, and BD3,
as a unique evaluation run, we can see the obtained results in the last line of the table (BD). For
each evaluation parameter the average results on these three datasets are shown. Comparing these

values with the baseline (BL) we can see improvements on every evaluation parameter.
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Table 7.10: Results with four evaluation parameters.

correctness | précision | recall Es ngo
BL 2.97 59.40% 8.65% | 27.33% | 47.39%
BD1 3.43 68.60% 32.67% | 56.23% | 89.33%
BD2 3.52 70.40% 85.72% | 73.01% | 90.03%
BD3 3.49 69.80% 26.86% | 52.89% | 89.23%
BD 3.48 69.60% 48.42% | 60.71% | 89.53%

Moreover, best results overall are obtained for BD2 with 70.4% précision, 85.72% recall, which gives
an Fy 5 value of 73.01%. For the N-gram simplification parameter (ngo) we still obtain the best result
of 90.03%, on BD2. This means that we can expect a reduction of two words with high quality for a
great number of sentences. Some examples of compressed sentences using our induced rules can be

found in tables 6.2 and 6.3.
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Chapter 8

Conclusion and Future Directions

" There is nothing as to begin, to see how hard it is to conclude."

Victor Hugo

Sentence Reduction continues to be an active research topic, where several relevant contributions
have been achieved. The pursuit of better sentence simplification systems, resembling more to what
humans do has motivated many to follow this line of research. We see Logic, and especially ILP
systems, as useful strategies to achieve further advances, since they are able to represent better
the human knowledge. The work presented here describes the first research step, with recourse to
powerful computing tools, in which knowledge in the form of rules was obtained from a huge set of

news articles, electronically available nowadays.

The core of our system, as schematized earlier in Figure 1.2, consists of an ILP learning system able to
induce relational rules from learning instances. Obviously, as any leaning system, it depends on the
amount and quality of learning instances supplied. Therefore we spent a considerable effort on the
issue of data preparation, aiming to automate this process. Despite the difficulties and challenges
of such automation, it was worthwhile and yielded the possibility to obtain relatively large amounts

of learning examples, enabling a more reliable rule induction.

This chapter concludes our work, giving a final overview about what we did (Section 8.1), highlighting
the innovative aspects proposed, as well as related scientific contributions. We conclude this chapter

by pointing out to some relevant future directions worth to be explored.

8.1 Conclusions

After several years of research while preparing this thesis, we have finally reached the point where
it is important to look back and observe the directions we followed, as well as look forward, to see
how to propose possible future research issues. A research work is certainly never linear and direct,
but includes many slopes, curves, and valleys, involving a combination of methodic work, sometimes
with unpredictable outcomes, leading many times to dead ends. In several cases one must stop and

backtrack to choose new directions, and our work was no exception.
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In our quest for a more effective and autonomous process for simplifying sentences, we have designed
a system constituted by several independent and interconnected modules, organized in a pipeline
fashion. On one side web news stories enter and on the other side we obtain the sentence reduction
rules, as it was initially schematized in Figure 1.2. Related web news stories are automatically col-
lected on a daily basis, and from such corpora, specific functions are used to automatically identify
and extract paraphrases, which is our first module (Chapter 3). In our second module (Chapter 4),
classical Bioinformatics algorithms for DNA sequence alighment are conveniently adapted for word
alignments of paraphrase sentence pairs. These sentence alignments are important for exploring
related dissimilarities between paraphrasic sentences, enabling the learning of sentence equivalen-
cies and transformational rules. In our third module, specific sentence aligned sequences, named
bubbles, are automatically extracted from the set of aligned paraphrase pairs, and converted into
learning instances, which are then used for the induction of sentence reduction rules. This is done in
our fourth module (Chapter 6), by using an Inductive Logic Programming system (Aleph). Finally our
fifth module is responsible for applying induced rules to new sentences, included in new web texts

(Section 6.3).

Comparing our work to previous ones in the field of Sentence Reduction/Compression described in
Chapter 2, it can be noted that our work follows an innovative approach to the problem of sentence
simplification, by including several new techniques and much more automation, which provide our
system with the capability to process large amounts of real text. Contrarily to several relevant ap-
proaches in this area, which are exclusively based on linguistic knowledge (Clarke & Lapata, 2006;
Jing, 2000; Jing & McKeown, 2000), our work is almost completely independent of it. The only re-
sources used are a POS tagger and a shallow syntactical analyzer from the OpenNLP' project. In
particular, both exploit machine learning techniques, which means that they can be adapted to new
languages, by providing convenient training examples to generate new language models. Besides
these two linguistic tools, our system is automatic and does not require any human intervention,
which is relevant for a possible migration to other languages, not requiring specific linguistic knowl-

edge or resources.

Other approaches found in the literature that exploit machine learning, use supervised learning
(Knight & Marcu, 2002; Turner & Charniak, 2005; Witbrock & Mittal, 1999), or a combination of this
with linguistic knowledge (predefined rules), as in Vandeghinste & Pan (2004). However, we saw a
great difficulty in using supervised learning for our problem, since we are dealing with rich linguistic
varieties, containing many complex cases. Even with a considerable amount of manually crafted
training examples, such systems are likely to fail to capture the whole phenomena by only inducing
a relatively small number of reduction rules. For example, the Knight & Marcu (2002) system was

trained with a very small dataset, and so in this case the learned rules when used in new unseen

TURL: http://opennlp.sourceforge.net/ [November 2010]
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documents may only apply to relatively few sentences. On the other hand, the migration of such a
system to other languages would require a huge amount of human labour, to provide new training sets.
Our implemented system is based on unsupervised learning techniques, and the training examples
are automatically mined and constructed from web texts. Thus, a language migration would not

imply any major difficulty, provided that texts were electronically available for that language.

One other tendency in the literature is inspired by automatic machine translation methods, where
the main procedure consists essentially of observing a large number of translation cases, named as
templates, and "memorizing” them, so that they can be applied in the future (Nguyen et al., 2004).
However, this approach acquires rules ("sentence simplification templates”) lacking in generalization
power. This is again due to the reduced size of the learning set, since it is again based on supervised
learning. While in automatic machine translation, high volumes of parallel texts are electronically
available, this is not the case for sentence reduction, where these texts must be directly supplied
by humans, which is a serious bottleneck. Our system does not require this work, since a kind of
simplification templates, named bubbles, are automatically extracted in a very large number. Then
an induction process, with the recourse to Inductive Logic Programming, is carried out, yielding a

generalized set of sentence reduction rules.

With respect to our main scientific achievements, this work resulted into five relevant publications,
one in a scientific journal and the others in the proceedings of important scientific conferences.
The first article (Cordeiro et al., 2007a) is concerned with our initial proposed function - the Sumo
function - for paraphrase identification in corpora (Subsection 3.3.1). The second published article
(Cordeiro et al., 2007d) discusses word alignments in paraphrasic sentences, described in Chapter
4. Our third publication (Cordeiro et al., 2007c) starts with our Sumo function and goes a bit fur-
ther, by proposing a new family of functions sharing several common characteristics appropriate
for asymmetrical paraphrase identification in corpora. This work contains also a comparative study
with the conventional existing functions for shallow symmetrical paraphrase identification (section
3.3). Our last publication (Cordeiro et al., 2009) is related to the induction process using Inductive
Logic Programming for learning sentence reduction rules, presented in Chapter 6. Our second and
fourth publications were made at workshops of the Association for Computational Linguistics con-
ferences, and this last one in a specific workshop about language generation and summarization.
Several adapted/improved versions of some of the techniques presented in this thesis have already
been incorporated in new research tasks beyond the scope of this thesis. This has produced a recent
publication in the proceedings of the COLING's 2010 conference (Grigonyté et al., 2010). A more

detailed list of these articles is given in Section 1.4.
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8.2 Future Trends

Any PhD research work is certainly never definitely concluded, since many research issues, related to
the initial problem still remain open and even new ones are unfold. Therefore, it is important to look
into the future and consider what seems worthy to be continued. There are research opportunities in
each one of our three main research lines: extraction, alignment and induction. Several suggestions

have been already made in the final sections of the corresponding chapters.

Paraphrase Extraction. For paraphrase extraction deeper linguistic techniques could be experi-
mented with. However, these would necessarily require significantly more computation time, since
huge amounts of texts need to be processed during paraphrase mining. The complexity is O(nz) in
the number of processed sentences. However, as results indicate, the performance could not be
much improved, since the performance achieved with the proposed lexically-based techniques al-
ready reads a satisfactory level in terms of F-Measure for the AP-functions (Table 7.7). A shallower
technique that can be experimented consists in the introduction of multiword units (Dias et al., 2000)
for enhancing the quality of the paraphrases extracted. In this case the paraphrase identification
function can be adapted to account for different word/multiword lengths, where longer overlapping
terms would get proportionally heavier weights in the final calculation of the sentence pair connec-
tion strength. In fact, we have recently made a first experiment with this for two specific domains

(computer security and medic domain). This was included in the publication (Grigonyté et al., 2010).

Paraphrase Alignment. In terms of paraphrase word alignments, we see several issues worth explor-
ing, such as trying new word alignment functions, thereby introducing some semantic relations, or by
trying to improve the dynamic method that chooses at run-time between global and local alignhment.
Another possibility is to start dividing longer sentences into their main thematic components, in par-
ticular long sentences having several conjunctions. In these cases, one may split the initial sentence
and work with each part separately. We think that this could decrease significantly the alignment
errors reported in Subsection 7.2.2. Another idea worth experimenting, either for paraphrase extrac-
tion or alignment, is to use a thesaurus and work with synonyms. We may have terms representing
synonymy classes of words or even multiwords. For example, the word speak may represent "spoke”,

"talk”, "chat", and "speak up", among other possibilities.

Rule Induction. The induction component of our system is the one which contains much "unexplored
territory”, and a possibility exists of using different paraphrasic text structures, besides bubbles. We
can observe that bubbles are more appropriate to induce a kind of local sentence simplification,
i.e. small sentence segments having at most five or six words. In fact, bubbles with larger kernels
are hard to find in corpora, implying fewer data is available for induction and consequently less
accurate theories are learned. By looking at the aligned paraphrase data it is possible to observe

certain regularities in longer alighed segments, different from bubbles, at the extremes ends - at
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the beginning and at the end of sentences. Such structures are more complex but could probably
yield richer and more effective reduction rules. So far, we have only worked with X tmﬁf @ type
bubbles (see Section 6.1), while more general X tmﬁf Y types could also be experimented with.
That is, instead of only looking at conditions in which a sentence segment can be dropped, we may

also investigate those in which it can be substituted by an equivalent shorter segment.

Active Learning. Another possibility to improve the learned rules is to use active learning to incre-
mentally refine the induction in subsequent learning cycles. We can for example manually collect
cases of negative rule applications to sentences' and then use them as negative feedback to be added
to the learner, that initiates a new learning cycle. As mentioned, we do not use negative examples
in our first learning cycle. However, we think that the inclusion of negative evidence in the learner

would yield more specialized and accurate rules.

Rule Application. In terms of rule application, we see a newly open question that needs to be
addressed in the future: what is the best strategy to apply rules to sentences? In Algorithm 6, we
have presented the general procedure for rule application, in which a rule is only applied if the
resulting reduction complies with a syntactical statistical model previously trained. Indeed, we only
applied one rule - the most promising one, based on Function 6.6. However, in many cases there
are several rules applicable to a given sentence. Furthermore, we can also have compositional rule
applicability. That is, the application of one rule can transform the sentence into another one for
which new rules, which were not applicable before, become applicable. With a sufficiently large

rule set this poses the problem of finding the best solution in a search space.

Finally, we think that our work can be combined with the so called edmundson paradigm (Subsec-
tion 1.1.1) in which a text summary is created solely by selecting a number of relevant sentences.
Combining this extractive approach with ours of sentence reduction can improve the final quality of
summary, aiding more naturally the user's required compression level as well as the abstractiveness

of the generated summaries.

'As those shown on Table 6.3.
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Appendix A

Mathematical Logic

The discipline of Mathematical Logic is the direct foundation for many other scientific disciplines and
methodologies, including Mathematics, Logic Programming (LP), and Inductive Logic Programming
(ILP). This last one was a key element used in our work, as shown throughout chapters 5 and 6, where
there are some logic concepts and terminations employed. Therefore we have decided to include
here some relevant notes from Mathematical Logic, namely Propositional Logic (PL) and First Order
Logic(FOL), which, among other things, defines rigorously the notion o deduction, which can be seen

as the induction "inverse mechanism"”.

A.1 Propositional Logic

Propositional Logic (PL) can be seen as a simpler version of First Order Logic (FOL), presented in the
next section. It gives a synthesized preview for several topics extended in FOL. The main fundamental
difference between PL and FOL consists in the absence or presence of variables. In PL we do not
have variables and the theory is much more simpler. The presence of these entities requires the
existence of other elements, in particular the quantifiers. The paradigm of FOL contains a wider
range of possibilities that have to be proved. The theoretical frame set of PL is much more simpler.
In this section we present a quick overview of PL since some concepts are further developed in
the next section of FOL. We do not pretend to have here a complete formalization of the field
but present only the key elements and main theoretical results. To dive into a more formally and
complete presentation several well known text books on Mathematical Logical are available, for

example Mendelson (1997) and Enderton (2001).

The whole idea in Propositional Logic is to know in which conditions their expressions are true or
false, and how to ensure the validity (true) of new expressions derived from already known valid
ones (the concept of deduction). PL is a language with syntactical rules, in which expressions are

constructed and evaluated into one of their two logical values - true or false.

The language of PL, Lp;, is formed by parenthesis "(" and ")", the negation symbol "—" as the unique

unary operator, a set of binary operators and an infinite set of propositional symbols represented here
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with uppercase letters, e.g. A, B, P, Q, P;, P», etc. Each propositional symbol may assume only
two possible values - true or false. The four principal binary operators used in any PL expression are
A (conjunction), V (disjunction), = (implication) and < (equivalence). There are other operators
but they can be reduced to a combination of these four. Furthermore, any Lp; expression can be
replaced by an equivalent one that uses combinations of only the — and the A operators. However,

it is usual to work with the aforementioned four operators as they simplify expression readings.

We can construct syntactical correct expressions in Lp;, named as propositions , by following a
small set of procedures, as explained next. First, any propositional symbol is syntactically correct
in Lpr, as well as their negation. Second, any expression constructed from two correct expressions
through a binary operator result in a correct expression. For example, P; = P, is correct because
P; and P, are correct (propositional symbols). Parenthesis can be found in PL expressions in a similar
form as in elementary algebra to change operation priorities. Naturally, for any opening parenthesis
there must exist only one corresponding closing parenthesis. Here are some PL correct expressions

(propositions):

P = (P2 A P3) (A.1)
PiANP, = P (A.2)
ﬁ(P] AN PQ) = (_‘Pl V —\P2) (A.3)

We name the set of all syntactical correct expressions in Lpy, as Spy..

One of the main objectives in logic is to know in which conditions a given proposition is true, also
named as valid, and also in which conditions a set of formulae gives rise to a new formula, defined
as the consequent. For example, P, is clearly a consequent of P; A P, since whenever the latter is
true, so it is the former. This concept can be rigorously defined by using a true assignment function,
also known as a valuation function, which considers all possible (true, false) combinations, for every

propositional symbol in the formula and computes the overall true value.

Definition 6 (valuation). A valuation is a function v from the set of all correct expressions Sp;, into

the {true, flase} boolean set, such that for every a € Sp; and B € Sp; we have:

« v(a) # 0(~w), i.e. if one is true the other must be false.
« o(aV ) = true iff ov(a) =true or ov(B) = true

« v(@AP) = true iff o(a)=true and v(B) = true

« v(a = B) = false iff v(a)=true and v(B) = false

« o(a & B) = true iff v(a)=0(p)
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Table A.1: A true table for the formula A = (B A C), for all possible combination of values assumed by their
propositional symbols.

A B C a="A= (BAQC)"
true | true | true true
true | true | false true
true | false | true true
true | false | false true
false | true | true true
false | true | false false
false | false | true false
false | false | false false

An example of a true table for the proposition A = (B A C) is shown in table A.1.

Whenever a proposition is true for all the possible combinations of their propositional symbol values
we say that we have a tautology. That is, for « € Sp; we have v(a) = true, and it is written as

"= a". Formulae A.2 and A.3 are two examples of tautologies.

Now we can define an important issue in PL, which is the meaning of the statement "a set of propo-
sitions gives rise to a new proposition”. This was already mentioned previously and can be defined

as a logical implication.

Definition 7 (Logical implication). A proposition « € Spy is said to imply logically another proposi-
tion B € Spy, typed as « |= B, if and only if « = B is a tautology: = « = B. A set of propositions
{a1, ..., an} from Spy. logically implies another proposition B if and only if |= a1 A ... A ay = B.

Another notion related to the previous definition is the notion of logical equivalence between two
well formed formulae, which holds whenever one implies logically the other one and vice-versa, as

stated in definition 8

Definition 8 (Logical equivalence). Any proposition « € Spy is said to be logically equivalent to
another proposition p € Spy, typed as « = B, if and only if = o = B and |= B = «.

In PL it is important to know whether a proposition § is implied by a set of other propositions, lets
say X, according to definition 7. However, assuming that p might be a quite long expression and
¥ can contain many propositions, it may be very difficult to prove that £ |= B. Hopefully, there
exist an equivalent way to prove this by using natural deduction, which is based on modus ponens,
presented in section A.2, in A.13 and A.14. As in FOL, in PL there are theoretical results ensuring
us that deduction and logical implication are in fact equivalent, though in FOL it involves a more

complex theoretical formulation, as it is shown in the following section.
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A.2 First Order Logic

The Inductive Logic Programming (ILP) learning paradigm, used in our work and presented in section
5.3, is based on Logic Programming which in turn is based on Mathematical Logic. One big subject in
this scientific fundamental discipline, directly related to the ILP theoretical frameset, is First Order
Logic (FOL). In order to provide some explanations about the ILP operationality and foundation, sev-
eral necessary FOL terminology and related propositions will be introduced here. We do not pretend
to have here a complete and exhaustive FOL theoretical chapter and it is assumed that the reader
has already been in contact with this subject. It is included here as a terminological complement for
the issues presented in chapters 5 and 6. Good bibliographic material about Mathematical Logic can
easily be found, two good references for an interested reader are Mendelson (1997) and Enderton

(2001).

FOL is an extension of the propositional calculus, in which the concept of variable and relationship
is introduced. The L language alphabet is made of logic symbols and parameters. In the first class
we have punctuation, connectives, and variables. The second one contains quantifiers, constants,
predicate symbols, and functional symbols. These two last ones are alphanumeric sequences repre-
senting the names for predicates and functions. All these elements are synthetically described and

exemplified in table A.2.

Table A.2: The £ language fundamental components.

Type Description Examples

punctuation | The comma, left and right parenthesis. A e

connectives Unary and binary operators for connecting other el- VA, S, e
ements.

variables An alphanumeric sequence representing a range of | X, Y, Velocity,
possible values in the universe. Temperature

quantifiers The universal and the existential quantifiers. v,

constants An alphanumeric sequence representing concrete | a, b, 7, 23, 7t, new_york,
entities in the universe. john

predicates An alphanumeric sequence followed by an n-ary tu- | less(X,3), prime(7),
ple representing a relation. parent(john, albert).

functions An alphanumeric sequence followed by an n-ary tu- | square(3), sin(X),
ple representing a transformation. weight(john).

The constants are also named as atoms, and some authors consider them as 0-ary functions (En-
derton, 2001). Following a Logic Programming convention, we use names starting in upper case for

representing variables while constants, function, and predicate names always start in lower case.

In FOL the universe concept does not refer to any set in particular. It is purely an abstraction, a meta-
concept representing any possible universe. An instantiation of the universe to a concrete entity is

made through an interpretation (definition 10). For example, such interpretation may instantiate
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the universe into the set of all natural numbers (IN), or even into a set like "all the sentences written

in English".

Predicates and functions define respectively relations and transformations for the elements in the
universe. For example, if our universe is interpreted as IN, then the shown examples of predicate
"less(X,3)", and function "square(3)" may represent respectively an order relation (X < 3) and the

arithmetic square function (X2), in this case applied to the constant 3.

In FOL terms represent the nouns and pronouns of the £ language. A term can be either a constant,
a variable, or be obtained from these two by applying zero or more times functional composition,

like for example: square(X), maximum(weight(john), weight(mary))'.

Finally, another fundamental concept in FOL is an atomic formula, which is the most basic well
formed expression in the £ language. An atomic formula has the form of P(ty,fy,...,t,), Where
"P" is an n-ary predicate symbol and for any i, {; is a term. Examples of atomic formulae are

parent(anne, john) and less(0, square(X)).

Similarly to what happens in any human natural language, a number of syntactical rules must be
obeyed to correctly construct valid expressions in L. After presenting the FOL main fundamental
entities, we have now all the necessary elements to define the set of well formed expressions, in the

L language.

Definition 9 (Well Formed Formula (wff)). In a FOL language L a well formed formula (wff) is either
an atomic formula or the composition of atomic formulae by applying connectives and quantifiers,
i.e. if we know that P and Q are well formed formulae then —P, VxP, 3yP, and P ® Q, with
© € {V, A, =, &}, are also well formed formulae.

The set of all wffs is designated here as F. A few examples of wffs are:

less(0,3) A less(3,0) (A.4)
mother(anne, mary) (A.5)
Vx3y divide(Y, X) = —prime(X) (A.6)
VxVyVyz less(X,Y) Aless(Y,Z) = less(X,Z) (A7)

In FOL validity and proof is more difficult to verify than in PL, due to a number of more complex
entities like variables, terms, and quantifiers. To define the validity of a given formula ¢ € F we
need first to introduce the interpretation and model concepts. From here on until the rest of this
section we present several theoretical key points, to be used for ensuring validation and proof in

FOL.

T Assuming naturally that maximum and weight are respectively 2-ary and 1-ary functional symbols.
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In general the FOL universe and all its fundamental components are considered in a pure abstract
form. We designate this meta-universe as Lij,iverse- However, frequently it is important, for illus-
trative and practical reasons, to specify a particular universe where we are able to give meaning
(interpret) to quantifiers, variables, predicates, and functions. Therefore an interpretation is a
mapping from this abstract meta-universe into a concrete universe. This is what is defined next, in
definition 10.

Definition 10 (Interpretation). In FOL an interpretation Z is a mapping from the Lij,iverse t0 a

particular set |I| referred simply as "the universe", giving a concrete meaning to any variable,
predicate and function, such that:

« I(V) = ||

» For any n-ary predicate P, Py is an n-ary relation with each component being a member of
|Z|, i.e we have Pr C |Z|".

« For any n-ary function f, Z(f) = f7 is an n-ary operation in |Z|, i.e we have f7 : |Z|" — |Z|

Each constant symbol c will be a member of the universe, i.e cz € |Z|

Note that |Z| represents a set, possibly infinite and uncountable, and that the assertion Z (V) = |Z|
specifies the universal quantifier range, meaning that when we have for example "Vx" in a formula
it really means "Vxe|z|"- In order to illustrate this definition, let us consider the following wff about

which in general (in the Lyj,iverse) We can not say much about it:
Vx¥yVz P(X,Y)AP(Y,Z) = P(X,Z) (A.8)

However, if we have an interpretation 7 defined as:

« Z(VY) = |Z| = N, the set of all natural numbers.

« P7 ="<", the partial order in IN, meaning that for m € IN and n € N, the pair (m,n) € Pr,

also typed as Pz(m,n), iff m < n.

+ Having a function f interpreted as the sucessor function, i.e f; = S such that S(n) = n+1
and S(0) = 1.

« Having a constant c interpreted as c; =0

We can see that the formula A.8 has now a particular clear meaning with this interpretation, repre-
senting the transitivity property of the partial order relation (<) in IN. We can say that this formula
is true for that interpretation, or that the chosen interpretation satisfies the formula. We could also
easily think about another different interpretation that would not satisfy formula A.8. Whenever a

formula ¢ is satisfied through an interpretation Z it is said to be a model for ¢, typed as =7 ¢.
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In formula A.8 all variables are quantified, however, we may have formulae containing variables that
are not under the scope of any quantifier. These are called free variables. For example, in formula
A.9, V, is a free variable.

Vv,

w P(Vo, V1) (A.9)
A wff without any free variable is called a sentence. An interpretation must also address free
variables in formulae. This requires the additional definition of a function that maps all free variables
to concrete entities in the interpreted universe, otherwise the formula would remain ambiguous.
Thus, being V the set of all variables we define s as a function mapping V into the interpreted
universe, that is s : ¥V — |Z|. For example, if we define s(V;) = k (k € IN), then we are able
to complete the interpretation shown in the previous example, in order to give meaning to formula
A.9. It will now state that Vy, P(s(Vp), Vi) or equivalently that Vy, 0 < V; which is true in IN.
The formula is valid for that interpretation, which includes the definition of s. In this case we type

=1 ¢ [s]. There are further technical details involved in the definition of s that we will ignore here.

They may be consulted in Enderton (2001).

We can now present a definition of logical implication for FOL formulae, equivalent to definition 7,
made for PL.

Definition 11 (Logical implication). A set of wffs T logically implies another wff ¢, written asT |= ¢,
iff for any interpretation Z and any function s : V — |Z|, such that 7 and s satisfies every member
of T, they also satisfies ¢.

Note that when I' contains only sentences the reference to the s function is not necessary, as stated
by the following corollary.

Corollary 1. A set of sentences % implies logically a sentence o, written as ¥ |= o, iff every model
of X is also a model of o. A sentence o is valid iff it is true in every interpretation and in this case
it is written as |= 0.

In FOL validity is the equivalent concept of tautology in PL. Naturally, for a wff with free variables

saying that |= ¢ means un indeed that = ¢ [s] for any function s.

Definition 11 ensures us a theoretical method to know whether we have or not logical implication and
validity in FOL. However, it would be unpractical to verify it in a given case, since we have to check it
for every interpretation! Hopefully logicians from the twentieth century provided us with systematic
methods to verify validity and logical implication. In the reminder of this section we present a
number of results allowing us to verify ¥ |= ¢, without having to check every interpretation. One
first relevant theorem is the Compactness theorem ensuring that we may search for a proof in a set
of finite sentences and it will at most be finitely long.

Theorem 4 (Compactness). We have T |= ¢ if and only if there exists a finite set of formulas Ty C T
such that Ty |= ¢. In particular a set ¥ of sentences has a model iff every finite subset of ¥ has a
model.
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In FOL we often consider a special kind of wffs called axioms, which are assuming to be valid a priori,
without having to prove them. They represent the kind of knowledge that are widely accepted to be
true in a given theoretical field, being the foundation elements upon which a theory is constructed.
For example, for the natural numbers there are the Peano Axioms from which we show the first three

of them, establishing the reflexive, symmetric and transitive properties for the "equal” predicate.

Vx X=X (A.10)
VxVy X =Y =Y =X (A.11)
VxVyVzy X=YAY=Z = X=Z (A.12)

Being FOL also a theory, it also contains their own axioms, named here as the set of logical axioms
and represented by the letter A. In fact we have rather a set with six axiom families, shown in

definition 12.

Definition 12 (Logical axioms). In FOL, a wff is a logical axiom if it complies with one of the following
cases:

1. Any FOL generalization of a PL tautology is an axiom.

2. Vx ¢ = ¢, where term t is substitutable for variable X in formula ¢.

3. Vx (e = B) = (Vxa = VxP), where X is a variable and « and p are wffs
4. ¢ = Vx¢, where variable X does not occur free in formula ¢

5 X=X

6. X =Y = (¢x = ¢y), where ¢x is an atomic formula and ¢y is obtained from ¢x by
replacing X in zero or more places by Y.

The majority of these axioms are quite obvious and for the rest of them a more detailed description
is made in Enderton (2001). For example, the first axiom states that any FOL formula with the same
structure as a propositional logic tautology is a logical axiom. The "same structure” means that it
was obtained from a PL formula just by replacing its propositional symbols. For example, formula

P, = (P, = Pp) is a PL tautology, and so the following three formulae are logical axioms in FOL.

o less(0,3) = (less(1,0) = less(0,3))
o dxprime(X) = (Vynatural(Y) = Ixprime(X))

o Jacreator(A) = (VyVrhuman(H) A theory(T) A believe(H, T) = 3 screator(A))

These formulae were obtained from the same PL tautology, and besides calling them logical axioms

in FOL, we still call them tautologies to.
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One of the most hardwired and relevant mechanism in FOL, originally conceived and employed by
the classical greek philosophers and rigorously formalized by the twentieth century logicians, is de-
duction. In general, deduction states that if we know that a given rule is true and we also know that
its preconditions (premises) are satisfied, then we may conclude its consequent. A classical example
is the well known syllogism: "All men are mortal”, "Socrates is a man", then "Socrates is mortal". That
is, given formulae « and 3, if we know that « = B and a are true then we conclude that g is also
true. This mechanism is also known as modus ponens, the main inference rule used in FOL. In a more

schematic form, it can be represented as in proposition A.13.

x AN a=>f

A.13
B (A.13)

or just as:

& x=p (A.14)

The following definition defines deduction in a more formal way.

Definition 13. A deduction of a wff ¢ from a set of wffs I is a sequence (¢, ..., ¢,,—1, ¢| off wffs
such that for each k < n, we have either:

e g€ AUT

* ¢y is obtained by modus ponens from two earlier formulae in the sequence, i.e there arei < k
and j < k, such that ¢; and ¢; are in the sequence and ¢; is equal to ¢; = ¢y.

We say that ¢ is deduced from I', written as I' - ¢ if there exists a deduction of ¢ from the formulae
in AUT. A formula deduced from T is called a theorem of I'. To exemplify a deduction, suppose

that we have:

I'={Vx(a=p), ~a=p, —p}

with &, B, and p being wffs, and X a variable that does not occur free in a. Then we are going to
show that I' - Vx 3, by presenting a deduction using the formulae in I', some tautologies, and modus

ponens (MP). In each deductive step (each line) the justification is given in the right hand side. So,
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we have:
(1) (mra=p)=(—p=«) is a tautology
(2) —a=p formulain T
B) p=ua MP (1) and (2)
(4) —p formulain T
(5) w MP (3) and (4)
(6) Vx(a= B) = (Vxa = Vxp) instance of axiom 3
(7) Vx(a=B) formulain T
(8) Vxa = Vxp MP (6) and (7)
(9) a=Vxa instance of axiom 4
(10) Vxa MP (5) and (9)
(11) VxB MP (8) and (10)

therefore we can say that I' - Vx 8, or that Vxp is deducible from I', or even that it is a theorem

obtained from I'.

The deduction mechanism is clearly a useful practical method conveying a systematic reasoning
search, though not deterministically, in theorem proving. At this point two pertinent theoretical

question rises:
1. Does a theorem from a given set still be logically implied by it, according to definition 11?7
2. Can a logically implied formula be deduced?
Note that the deduction mechanism was presented without any reference to a particular interpre-

tation nor any s function. So, one may wonder if a deduced formula still be logically valid, and

reversely if any valid or logically implied formula has a deduction.

These two questions have indeed positive answers through two of the most important theoretical
results in Logic: the soundness theorem and well known Godel's completeness theorem, with which

we conclude our theoretical notes on FOL.

Theorem 5 (Soundness). For a set of wffs I and a wff ¢, if we have T I ¢ then T |= ¢ holds.

Theorem 6 (Completeness - Godel, 1930). For a set of wffs I' and a wff ¢ we have:

(a) IfT=¢thenTF ¢
(b) Any consistent set of formulae is satisfiable.
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From the previous two theorems we know now that I' = ¢ if and only if I' - ¢, which is a remarkable
result. On one hand it says that deductions will lead only to correct conclusions (valid formulae),
and on the other hand that a valid formula must have a deduction. This equivalence gives deduction
a higher theoretical value, worth to be employed in theorem proving. Now we do not need to
worry about interpretations and variable-universe mapping functions to show that I' =7 ¢ [s]. It is
sufficient to find a deduction of ¢ from I'. The fields of logic programming and automatic theorem

proving are mainly based on these two theoretical results.
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Appendix B

Relevant Code Fragments

This appendix contains a selection of several code fragments relative to some implementation key

aspects. The presentation and description about the Java class hierarchy we have implemented was

made in subsection 6.2 and the material provided here will complement a bit further that general

overview.

/

{

P

*

*

*

/

The Sumo-Metric for calculating similarity
among sentences.

2006-03-25

@param s The other sentence to compare to.
@return double The similarity value.

public double dsumo(Sentence s)

if (s == null ) return 0.0;

int[] u= this.getCodes();
int[] v= s.getCodes();
int n, m;
if (u.length > v.length) {
n = v.length; m = u.length;
}
else {
n= u.length; m= v.length;
}

//count the number of matches
int NL= 0;
for (int i=0; i<u.length; i++)
for (int j=0; j<v.length; j++)

if ( v[j] >= 0 && u[i] >= 0 && Math.abs(u[i]-v[]]) == 0 ) {
NL++;
vijl= -1*v([]l1;
ufi]= -1*u[i];
break;
}
//reset link marks
for (int i=0; i<u.length; i++) if ( u[i] < 0 ) wu[i]= -1*u[i];
for (int i=0; i<v.length; i++) if ( v[i] < 0 ) v[i]= -1*v[i];

//proceed to final calculations
double pm= (double)NL/m;

double pn= (double) NL/n;
double alfa= 0.5;

double beta= 1.0 - alfa;

double similarity= - alfa*log2(pm) - beta*log2(pn);
if ( similarity > 1.0 ) similarity= 1.0/Math.exp(3*similarity);

return similarity;

Figure B.1: The Sumo-Metric method for computing sentence similarity.

The first code snippet is about the calculation of the Sumo function for two sentences, represented
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by the class "Sentence" (see the class diagram in Figure 4.14). Like other implemented sentence
similarity measures, it calculates the proximity of two sentences and returns a value in the [0, 1]
interval. For efficiency reasons the getCodes () method returns the array of word indexes repre-
senting the sentence words. Hence, all the calculations are performed by using integer comparisons
between two arrays: u and v. Whenever a link is discovered among two positions, lets say i and j
their content are switched to negative values in order to avoid any further connections of this already

assigned positions. That is exactly what the v[jl=-1%v[j] and u[il=-1*ul[i] instructions make.

An example of a paraphrasic pair alignment is made inside the printAlignments (*,*,*) method,

from the GenAlignParaphCorpus class, listed in Figure B.2. We can see the issues of global, local,

* %
* Compute and print alignments for a paraphrase sentence pair. The output format
* comply with an XML syntax.
* @param st One of the paraphrase sentences.
* @param su The other paraphrase sentence.
* @param dx The proximity value under which parphrases were selected. To be printed.
*/
private void printAlignments(Sentence st, Sentence su, double dx) {
double px = -1.0;
if (ALIGNTYPE == DYNAMIC) {
px = Sentence.countNormIntersectLinks(su, st);

}

if (ALIGNTYPE == SWATERMAN || (ALIGNTYPE == DYNAMIC && px > 0.4)) {
SWaterman sw = new SWaterman(st.getCodes(), su.getCodes(), dictionary);
Vector<String[]> vs = sw.getParaAlignsHoriz();

if (vs == null || vs.size() < 1) {
return;
}
outfile.printf(Locale.US, " <paraph id=\"%d\" alg=\"SW\" prc=\"%$£f\">\n", ++IDPAIR, dx);
outfile.printf(Locale.US, " <nx>(%d, %d, %f)</nx>\n", st.cod, su.cod, dx);
outfile.printf (" <sl>%s</sl1l>\n", st);
outfile.printf (" <s2>%s</s2>\n", su);
for (int k = 0; k < vs.size(); kt++) {
String[] as = vs.get(k);
outfile.printf (" <subalgn id=\"%d\">\n", k + 1);
outfile.printf (" <sal>%s</sal>\n", as[0]);
outfile.printf (" <sa2>%s</sa2>\n", as[l]);
outfile.print( " </subalgn>\n");
}
outfile.printf (" </paraph>\n\n");

} else { //---> NWunsh - Global Alignment.
NWunsch nw = new NWunsch(st.getCodes(), su.getCodes());
nw.setDic(dictionary);
nw.buildMatrix();
String[] as = nw.getAlignmentH();

outfile.printf(" <paraph id=\"%d\" alg=\"NWw\">\n", ++IDPAIR);
outfile.printf(Locale.US, " <nx>(%d, %d, %f)</nx>\n", st.cod, su.cod, dx);
outfile.printf(" <sl1>%s</s1l>\n", st);

outfile.printf (" <s2>%s</s2>\n", su);

outfile.printf(" <sal>%s</sal>\n", as[0]);

outfile.printf (" <sa2>%s</sa2>\n", as[1l]);

outfile.printf(" </paraph>\n");

Figure B.2: The "printAlignments" method for computing and printing paraphrase sentence alignments to an XML
file.

and dynamic alignment being involved here to choose the best algorithm for aligning a given sentence
pair, indicated by the first two parameters ("st" and "su"

If the ALYGNTYPE is DYNAMIC, the number of crossings between two sentences, as discussed in Subsec-
tion 4.2, and in particular illustrated in Figure 4.7, is calculated and based on this result the decision

for one algorithm is made, as presented in Algorithm 2. The "SWaterman" and "NWunsch" classes hold
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the data items and the processing methods to compute the alignment algorithms, respectively the

Smith-Waterman and the Needleman-Wunsch, as suggested by the corresponding class names.

The implementation of the crossings calculation, as described in Subsection 4.2, is shown in the code

listing from Figure B.3.

/x*

* Counts te number of link intersections existing between the two sentences.
* <p>Purpose: help in the choosing of the alignment algorithm:

* SWaterman or NWunsch</p>

* <p>Date: 2007/03/23</p>

* @param sl Sentence

*

@param s2 Sentence
* @return int

3/
public static int countIntersectLinks(Sentence sa, Sentence sb) {
if ( sa == null || sb == null || sa.length() < 1 || sb.length() < 1 ) return -1;
int[] va= sa.getCodes();
int[] vb= sb.getCodes();
int[][] A= readLinks(va, vb);
if ( A == null) {
Text t= new Text();
t.add(sa);
t.add(sb);
t.codify();
va= t.get(0).getCodes();
vb= t.get(1l).getCodes();
A= readLinks(va, vb);
if ( A == null ) return -101;
int counter= 0;
for (int i=0; i<A[0].length-1; i++) {
for (int j = i+l; j < A[O0].length; j++) {
//compare ai =<x,a> with aj=<y,b>
int x= A[0][1], y= A[0][]]1;
int a= A[1][i], b= A[1][]];
if ( (x-y)*(a-b) < 0 ) {
counter++;
}
}
}
return counter;
}

Figure B.3: Count the relative number of crossings between two sentences. Method from the Sentence class and
related to the previous listing.
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Appendix C

Relevant Aleph Elements

This appendix contains several Aleph data elements, some illustrative and some employed in our
research, both referred in the thesis. The first listing contains the background knowledge file for the

good graph example, presented in Section 5.4, and directly related with Figure 5.5.

set(depth, 100).
set (clauselength,10) .

modeb(1, numvertex(+gname, -int)).
modeb (1, numedges(+gname, -int)).
modeb(1, maxdegree(+gname, -int)).
modeb (*, diff(+int, +int, #int)).
modeb (*, odd(+int)).

modeb(*, even(+int)).

modeb (*, prime(+int)).

1

2

3

4

5 :— modeh(1, goodgraph(+gname)).
6

7

8

9

W~ 2o
I R |

o
I

determination(goodgraph/1, numvertex/2).

17 :- determination(goodgraph/1, numedges/2).
18 :- determination(goodgraph/1, maxdegree/2).
19 :— determination(goodgraph/1, diff/3).
20 :- determination(goodgraph/1, odd/1).
21 :- determination(goodgraph/1, even/1).

~
N
1

determination(goodgraph/1, prime/1).

5

26 % TYPES

277 %

28 gname(a). gname(b). gname(c). gname(d).

29  gname(e). gname(f). gname(g). gname(h).

30 gname(i). gname(j). gname(k). gname(1).

31 %

32 % ALL 12 GRAPHS

3 %

34 % POSITIVES %

35 graph(a, [1-2, 2-3, 3-1])

36  graph(c, [1-2, 1-3, 1-4, 1-5, 4-5, 5-3, 3-2]).

w  graph(e, [1-2, 1-7, 1-6, 1-5, 7-6, 4-5, 4-2, 2-3])
38 graph(g, [1-2, 2-3, 1-5, 5-4]).

39  graph(i, [1-4, 1-5, 5-4, 4-2, 4-3, 2-3]).

40 graph(k, [1-2, 3-2, 1-9, 1-8, 1-6, 6-7, 1-5, 1-4]).
4

42 % NEGATIVES 7

43 graph(b, [1-3, 1-4, 4-3, 3-2, 3-5, 5-6, 2-6]).

44  graph(d, [1-3, 3-2, 2-4, 4-1])

45  graph(f, [1-5, 1-6, 1-2, 1-3, 4-5]).

46  graph(h, [1-2, 2-4, 4-3, 4-7, 4-5, 4-6, 5-8, 5-9]).
47  graph(j, [1-2, 1-3, 1-4, 3-5, 4-5]).

48 graph(1, [1-2, 2-3, 3-5, 4-1, 4-5, 4-6, 6-5, 6-7, 7-1]).
9 %

50

51

52 %

53 % ARITHEMETIC DEFINITIONS.

54 h

55 odd(N) :- N mod 2 =:= 1.

56

57 even(N) :- N mod 2 =:= 0.
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58
59 diff (X,Y,YX) :- YX is Y-X.
60
61

62 %

63 % LIST OF ALL DISTINCT VERTICES, FROM A GRAPH
64 U

65 vertices(ID, LVert) :-

66 graph(ID, G),

67 vertices(G, [], LVert)

68

69
70  vertices([], LVert, LVert).
71 vertices([X-Y|R], V, LVert) :-

72 union([X,Y], V, VXY),

73 vertices(R, VXY, LVert)

74

75

76

77 %

78 % NUMBER OF VERTEXES IN A GRAPH
9 h

80 numvertex(ID, N) :-

81 vertices(ID, V),

82 length(V, N)

83 .

84

85

86 %

87 % NUMBER OF EDGES IN A GRAPH

88

89 numedges (ID, N) :-

90 graph(ID, G),

91 length(G, N)

92 .

93

94 % MAXIMUM VERTEX DEGREE FOR A GIVEN GRAPH
95 %

96  maxdegree(ID, Max) :-

97 graph(ID, G),

98 vertices(ID, V),

99 maxdegree(V, G, 0, Max)

100

101

102 maxdegree([]l, _, M, M.

103 maxdegree([AIR], G, M, Max) :-
104 degree(A, G, N),

105 (N>M->

106 maxdegree(R, G, N, Max)
107 ;

108 maxdegree(R, G, M, Max)
109 )

110

11

112

13 %

114 % DEGREE OF A VERTEX.

15 h

116 degree(A, G, N) :- degree(A, G, 0, N), !.
117

118 degree(_, [1, N, N).
119 degree(A, [X-YIRI, K, N) :-

120 (X ==A; Y ==14),
121 K1 is K+1,

122 degree(A, R, K1, N)
123 .

124  degree(d, [_IR], K, N) :-
125 degree(A, R, K, N)
126

127

128

129 %

130 % REUNION OF TWO LISTS.
31 %

132 union([], Set, Set) :- !.
133 union([X|R], Set, USet) :-

134 orput (X, Set, SetX),
135 union(R, SetX, USet).
136

137

138 orput(X, [XIR], [XIR]) :- !.
139 orput (X, [YIR], [YIRX]) :-
140 X \==1Y,

141 ',
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142 orput (X, R, RX)
143 .

144

145 orput(X, [1, [X1).

146

147

148

149 %

150 % TEST IF A GIVEN INTEGER IS PRIME.
151 %

152 prime(1).
153 prime(2).
154  prime(N) :-

155 N> 2,

156 divisor(K,N,_),
157 K ==

158

159

160

161 %

162 % K DIVIDES N GIVING Q AS THE QUOTIENT: N = KxQ.
163 %

164  divisor(X,N,Q) :-
165 N>0,

166 SN is sqrt(N),

167 divisor__(XK, 2, N:SN, Q)
168 .

169

170 divisor__(1, Kx, N:SN, N) :-
171 Kx > SN,

172 !

173 .

174 divisor__(X, K, N:_, Q) :-
175 N mod K =:= 0,

176 Q is N//K,

177 !

178 .

179 divisor__(K, Kx, N:SN, Q ) :-

180 Kx < SN+1,
181 Kx1 is Kx+1,

182 divisor__(K, Kx1, N:SN, Q)
183 .

Listing C.1: The good graph background knowledge file.

The next listing contains the template file used to generate Aleph's background knowledge file for a

given set of examples (bubbles).

%

2 %

3 % AUTOMATICALLY GENERATED BY:... "$PROG_NAME"
4 % INPUT FILE:......cvuueneanennn "$INPUT_FILE"
5 o MOMENT : ..ot vieet e ieeeennn $MOMENT
6

7%

8 h

9 % ALEPH PARAMETERS

10 :- set(evalfn,user).

11 :- set(minpos, 5).

12 ;- set(verbosity, 0).

13

14

15

16 % MODE DECLARATIONS

17 h

18 :— modeh(1, rule(+bub)).

19

20 :- modeb(1, transfdim(+bub, n(#nat,#nat))).
21 :- modeb(3, chunk(+bub, #side, #chk)).

2 :— modeb(*, inx(+bub, #side, #k, #tword)).
23

24 :- determination(rule/1, transfdim/2).

25 :- determination(rule/1, chunk/3).

26 :- determination(rule/1, inx/4).

27

28

29 %

30 % YAP FILE

31 %
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32 $YAP_FILE

33
34

35 %

36 % DATA FILE
37 %

38 numero_instancias ($DATA_SIZE).
39

40 $DATA_FILE

41

42

43 %

44 % COSTS | CONSTRAINTS | REFINEMENT
45 %

46

47 cost(_, [P,_,L], Cost) :-

48 value_num_literals(L, Valuel),
49 Cost is P/$DATA_SIZE * ValueL

50
51
52 value_num_literals(1,
53 value_num_literals(2,
54  value_num_literals(3, 0.50). %

.10). % |
|
55  value_num_literals(4, 1.00). % | -
|
|

.26). % 1.0

57  value_num_literals(6, 0.40). %

0

0

0

1

56 value_num_literals(5, 0.60). %

0

58 value_num_literals(7, 0.20). %
0

59  value_num_literals(_, 0.00). % 1 2 3
60

61

62 false :-

63 hypothesis(rule(_), true, _)

64 .

65

66 false :-

67 hypothesis(rule(_), Body, _),

68 num_literais(Body, N),

69 N <2

70

7

72

73 num_literais(Body, N) :- num_literais(Body, 0, N).

74
75  num_literais((_,Resto), K, N) :-

76 K1 is K+1,

77 num_literais(Resto, K1, N),

78 !

79

80

81 num_literais(_, K, N) :-

82 N is K+1

83

84

85

86 /xx/

87 false :-

88 hypothesis(rule(_), Body, _),

89 contar_restr_zonas(Body, NL, NX, NY, NR),
90 nao_valido(NL, NX, NY, NR)

91 .

92  /*x/

93 /*x/

94 nao_valido( 0, 0, O, O0). %----> nenhuma zona restrita.

95 nao_valido( _, 0, _,

9 nao_valido( O, _, _, _). > left sem restrigdes.
97 nao_valido( _, _, _, 0). %----> right sem restrigdes.
98 /*x/

929

100

101 contar_restr_zonas(Body, NL, NX, NY, NR) :-

102 contar_restr_zonas__(Body, 0:NL, O:NX, 0:NY, 0:NR)

103

104

105 contar_restr_zonas__((G,GR), KL:NL, KX:NX, KY:NY, KR:NR)
106 arg(2, G, Zona),

107 incrementa_zona(Zona, KL:KL1, KX:KX1, KY:KY1, KR:KR1),
108 contar_restr_zonas__(GR, KL1:NL, KX1:NX, KY1:NY, KR1:NR),
109 !

110 .

111 contar_restr_zonas__(G, KL:NL, KX:NX, KY:NY, KR:NR) :-

12 arg(2, G, Zona),

13 incrementa_zona(Zona, KL:NL, KX:NX, KY:NY, KR:NR)

114

115

172

). %----> sé contextos laterais definidos.



116
17
118
119
120
121
122
123
124
125
126
127

incrementa_zona(left, KL:KL1, KX:KX, KY:KY, KR:KR ) :- KL1 is KL+1,
incrementa_zona(center:x, KL:KL, KX:KX1, KY:KY, KR:KR ) :- KX1 is KX+1,
incrementa_zona(center:y, KL:KL, KX:KX, KY:KY1, KR:KR ) :- KY1 is KY+1,

incrementa_zona(right, KL:KL, KX:KX, KY:KY, KR:KR1) :- KR1 is KR+1,
incrementa_zona( ., KL:KL, KX:KX, KY:KY, KR:KR).
false :-

hypothesis(rule(_), Body, _),
contem(chunk(_,center:x,vp), Body)

Listing C.2: Our template for background knowledge generation - file "bub-b.lgt"

This template file from Listing C.2 is used by a Java program to generate the final background know!-

edge file for Aleph. Therefore some Prolog extraneous elements are contained in it, specially meta-

variables which start with the "$" character. These are meant to be replaced by concrete elements,

during a given background knowledge file generation. For example: $PROG_NAME, $INPUT_FILE, and

$MOMENT, in lines 3, 4, and 5. The $DATA_FILE meta-variable will be replaced by a Prolog directive to

load the file containing the set of training examples - the codified bubbles. Similarly the $YAP_FILE

will include a file containing common Prolog utilities, employed in the "x.b" file being generated,

and presented in Listing C.3.

%
% IMPORTS & AUXILIAR DEFINITIONS.

%
import(File) :-
atom_concat('/lib/prolog/', File, PathFile),
reconsult (PathFile)

:— import('utils.lgt').

bub(X) :- entre(X, 0, $DATA_SIZE).

:- import('penpostags.lgt').

tag(X) :- pempost(_, X, ).

%

% TYPE DEFINITIONS

A
side(left).
side(right).
side(center:x).
side(center:y) .

k(1. k(2). k(3).
chk(np) . chk (undefined) . chk(np) . chk(vp) .

chk(pp) . chk(prt) . chk(advp). chk(multi).

nat(X) :- entre(X,0,20).

A
% DOMAIN KNOWLEDGE
%

:- op(250, xfx, --->).

% DIMENSIONS

dimension(ID, left, Ln) :- bub(ID, t(_,0), L, _--->_, _), length(L, Ln).
dimension(ID, right, Rn) :- bub(ID, t(_,0), _, _--->_, R), length(R, Rn).
dimension(ID, center:x, Xn) :- bub(ID, t(_,0), _, X--->_, _), length(X, Xn).
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47  dimension(ID, center:y, Yn) :- bub(ID, t(_,0), _, _--->Y, _), length(Y, Yn).
48

49 dimLeft(ID, Ln) :- dimension(ID, left, Ln).

50 dimRight (ID, Rn) :- dimension(ID, right, Rn).

51

52

53

54 % Definitions of a dimensional transformation

55 %

56 transfdim(ID, n(Xn,Yn)) :-

57 dimension(ID, center:x, Xn),

58 dimension(ID, center:y, Yn)

59

60

61

62 %

63 % In lexicon-syntactic context

64 U

65 inx(ID, Side, K, TWord) :-

66 side(Side),

67 context(ID, Side, Context),

68 k(K),

69 inKpos(Context, K, TWord)

70 .

7

72 inKpos(Context, K, Word) :- inKLEX(Word, K, Context).
73 inKpos(Context, K, pos(Tag)) :- inKPOS(Tag, K, Context).
74

75 context(ID, left, L) :- bub(ID, t(_,0), L, _--=>_, _).
76  context(ID, right, R) :- bub(ID, t(_,0), _, _--->_, R).
77 context (ID, center:x, X) :- bub(ID, t(_,0), _, X--->_, _).
78 %context(center:y, Y) :- bub(ID, _, _—-->Y, _).

79

80

81 %

82 % Lexical scan

83

84 inLEX(ID, center:x, Word) :- bub(ID, t(_,0), _, X--->_, _), inLEX(Word, X).
85 inLEX(ID, left, Word) :-  bub(ID, t(_,0), Context, _, _), inLEX(Word, Context).
86 inLEX(ID, right, Word) :-  bub(ID, t(_,0), _, _, Context), inLEX(Word, Context).
87 inLEX(ID, center:y, Word) :- bub(ID, t(_,0), _, _--->Y, _), inLEX(Word, Y).
88

89 inLEX(Word, [Word/_/_1_1).

90 inLEX(Word, [_ITaill]) :- inLEX(Word, Tail).

91

92

93 %

94 % Positional lexical scan

95 %

9% inKLEX(ID, left, K, Word) :-

97 bub(ID, t(_,0), Context, _, _),

98 k(K),

99 inKLEX (Word, K, Context)

100 .

101 inKLEX(ID, right, K, Word) :-

102 bub(ID, t(_,0), _, _, Context),

103 k(K),

104 inKLEX (Word, K, Context)

105

106

107 inKLEX(ID, center:x, K, Word) :-

108 bub(ID, t(_,0), _, CX--->_, ),

109 k(K),

110 inKLEX (Word, K, CX)

11

112

13 inKLEX(ID, center:y, K, Word) :-

114 bub(ID, t(_,0), _, _--->CY, CY),

115 k(K),

116 inKLEX (Word, K, CY)

117

118

119 inKLEX(LEX, 1, [LEX/_/_1_1).
120 inKLEX(LEX, K, [_|Taill) :-
121 K>1,

122 K1 is K-1,

123 inKLEX (LEX, K1, Tail)
124

125

126

127 %
128 % Syntactical scan
129 %
130 inPOS(ID, center:x, Tag) :- bub(ID, t(_,0), _, X--->_, _), 1inP0S(Tag, X).
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131
132
133
134
135
136
137
138
139
140
141
142
143

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

Listing C.3:

inP0S(ID, left, Tag) :- bub(ID, t(_,0), Context, _, _), inP0S(Tag, Context).
Context), inP0S(Tag, Context).

inP0S(ID, right, Tag) :- bub(ID, t(_,0), _, _,
inPOS(ID, center:y, Tag) :- bub(ID, t(_,0), _, _--—->Y, ),

inPOS(POS, [_/POS/_1_1).
inP0S(P0S, [_ITaill) :- inPOS(POS, Tail).

inP0S(Tag, Y).

%

% Positional syntactical scan

A
inKPOS(ID, left, K, Tag) :-
bub(ID, t(_,0), Context, _, _),
k(K),
inKPOS(Tag, K, Context)

inKPOS(ID, right, K, Tag) :-
bub(ID, t(_,0), _, _, Context),
k(K),
inKPOS(Tag, K, Context)

inKPOS(ID, center:x, K, Tag) :-
bub(ID, t(_,0), _, CX--->_, _),
k(K),
inKP0S(Tag, K, CX)

inKPOS(ID, center:y, K, Tag) :-
bub(ID, t(_,0), _, _--->CY, CY),
k(X),
inKP0S(Tag, K, CY)

inKPOS(POS, 1, [_/POS/_I1_1).
inKPOS(POS, K, [_|Taill) :-
K> 1,
K1 is K-1,
inKPOS(POS, K1, Tail)

%

% Chunking scan

A
chunk(ID, left, TAG) :-
bub(ID, t(_,0), Left, _, _),
inKCHK(TAG, 1, Left)

chunk(ID, right, TAG) :-
bub(ID, t(_,0), _, _, Right),
inKCHK(TAG, 1, Right)

chunk (ID, center:x, TAG) :-
bub(ID, t(_,0), _, CX--->[1, _),
struct_chunk(CX, TAG)

P
3
% Positional chunking scan

%

inKCHK (TAG, 1, [_/_/TAGI_1).
inKCHK(TAG, K, [_ITaill) :-
K>1,
K1 is K-1,
inKCHK (TAG, K1, Tail)

%

% Structural chunks in a sequence.

%

struct_chunk([_/_/CHK|Tail], Tag) :- struct_chunk(Tail, CHK,

struct_chunk([], CHK, CHK) :- !.

struct_chunk([_/_/CHK|Tail], CHK, Tag) :- struct_chunk(Tail,

struct_chunk([_/_/_1_], _, multi).

Tag) .

CHK, Tag), !.

File with common Prolog utilities to be included in any generated background knowledge file.
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The "utils.lgt" file, imported in the previous listing's line 10, is another Prolog file with more general

utilities and it can be seen next, in our last listing.

% General Utilities

% JPC, since May 2005

% Write a line with N characters indicated in CH.

10

11 linha(N, CH) :-

12 linha(user_output, N, CH)
13

14

16  linha(Stream, N, CH) :-

17 N >0,

18 linha_(N, CH, Lista:[]),
19 atom_concat (Lista,Linha),
20 write(Stream, Linha)

21

22

24 linha_(0, _, L:L).
25 linha_(N, C, L:LAcc) :-

26 N >0,

27 N1 is N-1,

28 linha_(N1, C, L:[C|LAccl)
29

30

31

2 %

33 % Defines the membership of a literal, in a list of literals:
34 ) example:

35 % 7- contem(p(X), (q(t), p(a), s(u))).

% % 7-X=a

37

38 contem(Literal, (Literal,_)) :- !.

39 contem(Literal, ( _, Resto)) :- contem(Literal, Resto), !.

40  contem(Literal, Literal).

3

44 % Operating system utilities.
s %

46 :- op(100, fx, $).

47 $(Command) :- system(Command).
48

49 :- op(95, fx, say).

50  say(Message) :-

51 atom_concat('say ', Message, Command),
52 $ (Command)

53

54

55

56 %

57 % Left padding - example:
58 % 7- lpad(75, 0, 5, A).
59 % A = '00075'

60 %

61 % ?- lpada(ubi, '|', 5, A).

62 % A= "'[lubi'

6 %

64  lpad(Atom, CH, M, CHMAtom) :-

65 ( number (Atom) ->

66 number_chars(Atom, AC)

67 ;

68 atom_chars(Atom, AC)

69 ),

70 length(AC, N),

7 (N>M->

72 CHMAtom = Atom

73 ;

74 DMN is M-N,

75 list_expand(CH, DMN, List),
76 atomic_concat(List, CHM),
77 atomic_concat ([CHM, Atom], CHMAtom)
78 )

79
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80
81
82
83

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99
100
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102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

145
146
147

list_expand(_, 0, [1).
list_expand(X, N, [X|Tail]) :-
N>oO,
N1 is N-1,
list_expand(X, N1, Tail)

% Reverse a list of elements.
%

reverse(List, RList) :- reverse(List, [], RList).

reverse([], LACC, LACC).
reverse([X|R], LACC, RList) :- reverse(R, [X|LACC], RList).

% Outputs all list elements. The second argument is the separator, which is
% meant to be written between any two list elements.

output([], nl) :- nl, !.
output([J, _) :- !.
output ([X[R], nl) :-

write(X), nl,

output (R, nl),

|

output ([X|R], Separator) :-
write(X), (Separator \== void -> write(Separator) ; true),
output (R, Separator)

output (Lista) :- output(Lista, void).

% Test if X is a number satisfying A =< X =<B. If X is a variable and A, and B
% are numbers in entre/2, then X will be instantiated with each element between
% A, and B, in H steps, i.e: X = A, A+H, A+2H, ..., until A+nH > B

entre(X,A,B) :- entre(X,[A,B]:1).
entre(X,[A,B]) :- entre(X,[A,B]l:1).

entre(X,[A,B]:_ ) :- number (X), !, A=<X, X=<B.
entre(A,[A,B]:_) :- A=<B.
entre(X, [A,B]:H) :-

AH is A+H,

AH =< B,

entre(X, [AH,B] :H).

% Instantiates a list of variables with numbers ranging in the [A,B] interval,
% with H increments.

instanciar([],_).
instanciar([X|R], [A,B]:H) :- entre(X,[A,B]:H), instanciar(R, [A,B]:H).

% Membership test
%
member (X, [X]|_1).

member (X, [_IR]) :- member(X, R).

Listing C.4: The "utils.lgt" file with general Prolog utilities, used and inported in the file from listing C.3.
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Appendix D

System Execution Example

Previously, on Section 6.2, we have already presented the key issues related to the execution of each
one of our system modules. This appendix is a kind of complement for that section, where not only
the complete set of execution procedures are shown but also their necessary pre-configurations to
make it possible, like for example the operating system settings and third part necessary modules.
Therefore we will focus on a concrete example, comprehending a set of web news stories collected
during 15 days. All the necessary files, for settling this execution example in a machine, may be

downloaded from the following address:

http://www.di.ubi.pt/~jpaulo/competence/ [November 2010]

These 15 days of news stories corresponds to 15 files, one per day, obtained by running our news
extractor program "GoogleNewsSpider. java" in a POSIX machine. A small Bash script launched

daily by the Unix cron tool, start the news extractor, as shown in Listing D.1.

#!/bin/bash

#

# JPC, SEP 2008

#

FILE=$(date "+n%Y/%m%d-%OHh.xml")
CP='/home/jpaulo/bin/HultigJPCLib. jar: /home/jpaulo/bin/GNewsSpider. jar'
java -cp $CP GoogleNewsSpider > /dev/null

N o oA W o

Listing D.1: Google News Spider, launched by a shell script.

Note that the generated file name will be relative to the moment of creation, including year, month,

day and hour, as specified in line five of listing D.1.

The subsequent programs for paraphrase extraction, alignment and bubble selection is also per-

formed by using a shell script, as shown in listing D.2.

#!/bin/bash

# GENERATE A CORPUS OF ALIGNED PARAPHRASES, AUTOMATICALY EXTRACTED FROM
# A FOLDER WITH WEB NEWS STORIES FILES.
java -Xms32m -Xmx1024m GenAlignParaphCorpus -dir "./fnews" -out pac.xml

o U A W N o
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7 # FROM A CORPUS OF ALIGNED PARAPHRASES, EXTRACTS A LIST OF BUBBLES, WHICH
8 # IS SAVED IN A BYNARY FILE.

9 java -Xms32m -Xmx1024m ExtractBubbles -inp pac.xml -fdata lbub.dat mute

11 # GENERATE ALEPH DATASET, FROM BINARY "ListXBubble" FILES, IN THE

12 # CURRENT DIRECTORY, TAKING INTO ACCOUNT THE DEFINED ALEPH TEMPLATE

13 # FILES bub-b.lgt and bub-yap.lgt, STORED IN THE /lib/prolog FOLDER.
14 java hultig.sumo.ListXBubble -aleph dir

Listing D.2: A script launching various system modules.

The commented lines' in this script describe briefly each corresponding command. The input folder
for the first program (line 5) is naturally the "fnews" folder, contained in the current execution
folder. Here the output file is "pac.xml", which is used as the input for the second program execution
concerning bubble selection (line 9). This execution produces the 1bub.dat binary file which in turn
is used as input in the third execution command (line 14). In this "ListXBubble" execution the "dir"
parameter specifies that the current folder will be searched for input files, since more than one
bubble binary file, coming from different origins, can be loaded. In such cases repeated learning

instances are removed from the final list.

As a result of executing the script from Listing D.2, in a folder containing only the "fnews" data folder,
six files are generated, where besides "pac.xml” and "1bub.dat" already mentioned, we also obtain
"1xbub.b", "1xbub.f", "1xbub.1lgt", and "1xbub.yap", which are the Prolog and Aleph files that will
be used in the induction process. To start the induction process an ISO Prolog interpreter must be
installed? and also the Aleph system (Srinivasan, 2000), which in essence is also a program written in
Prolog. After having these elements installed, one should first start the Prolog interpreter and the

Aleph system. Then it is possible to load the learning data files for Aleph and start induction.

[john@jpcmacbook#0 2010-07-30 23:00:05] /a/news@google/testlddays (85.197 Mb)

$ 1s
fnews 1xbub.b 1xbub.lgt pac.xml
1lbub.dat 1xbub.f 1xbub.yap rset20100723233854.txt

[john@jpcmacbook#0 2010-07-30 23:00:11] /a/news@google/testlddays (85.197 Mb)
$ yap

% Restoring file /usr/local/lib/Yap/startup

YAP version Yap-5.1.2

10 ?- ['~/bin/aleph.yap'].

11 % consulting /Users/john/bin/aleph.yap...

14 ALEPH
15 Version 5
16 Last modified: Sun Jun 4 10:51:31 UTC 2006

18 Manual: http://www.comlab.ox.ac.uk/oucl/groups/machlearn/Aleph/index.html

20 % consulted /Users/john/bin/aleph.yap in module user, 99 msec 1126832 bytes
1 yes

22 ?- read_all (1xbub).

23 % reconsulting /a/news@google/testlddays/lxbub.b...

"Those starting with the "#" character.
Zpreferably the "Yap Prolog" (Santos Costa et al., 2002), for efficiency reasons.
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2% % reconsulting /a/news@google/testl4days/lxbub.yap...

25 % reconsulting /lib/prolog/utils.lgt...

26 % reconsulted /lib/prolog/utils.lgt in module user, 2 msec 10176 bytes

27 % reconsulting /lib/prolog/penpostags.lgt...

28 % reconsulted /lib/prolog/penpostags.lgt in module user, O msec 4400 bytes

29 % reconsulted /a/news@google/testid4days/lxbub.yap in module user, 5 msec 35136 bytes
30 % reconsulting /a/news@google/testl4days/lxbub.lgt. ..

31 % reconsulted /a/news@google/testiddays/lxbub.lgt in module user, 2862 msec 27844696 bytes
32 % reconsulting /usr/local/share/Yap/system.yap...

33 % reconsulting /usr/local/share/Yap/lists.yap...

34 % reconsulted /usr/local/share/Yap/lists.yap in module lists, 3 msec 22768 bytes

35 % reconsulted /usr/local/share/Yap/system.yap in module system, 9 msec 82792 bytes

36
37

33  DATA SET SIZE: 39323

39 % reconsulted /a/news@google/testid4days/lxbub.b in module user, 2877 msec 27981472 bytes
4 [consulting pos examples] [lxbub.f]

41 [cannot open] [1lxbub.n]
2 yes

43 ?- induce.

44

45

Listing D.3: Starting Aleph and loading the learning datasets.

In Listing D.3 we can see the command line interaction taken to start Aleph, loading its learning data
files and starting induction. Line one shows the bash prompt, indicating, among other things, the
current directory location. First we list the directory's content, through "1s" command and then start
the YAP interpreter (line 7). Afterwards Aleph is started (line 10) and all learning data files are loaded
through the Aleph's "read_all/1" predicate (line 22). Among the loaded data files, we can also find
several specific Prolog files, some from YAP, and some from our Prolog library "/1ib/prolog". Namely
we are loading "utils.1lgt" and "penpostags.lgt” files, which contains a set of auxiliary predicates
used in the Aleph learning data files. After loading the data we can finally initiate the induction

process by evoking the Aleph's "induce/0" predicate (line 43).

In this particular case with 15 days of news data, from where 39323 learning instances were ex-
tracted, the induction process took approximately 97 minutes and generated 6673 reduction rules.
The machine used was a MacBook with a 2 GHz Intel Core 2 Duo CPU, having 4 GB of RAM. The final

lines of this induction execution are shown in Listing D.4.

1
2 ...

3 [Rule 6978] [Pos cover = 165 Neg cover = 0]

4 rule(d) :-

5 chunk(A,left,np), chunk(A,right,vp), inx(A,center:x,1,pos(cc)).

6

7 [Rule 6979] [Pos cover = 35 Neg cover = 0]

8 rule(A) :-

9 chunk(A,right,np), inx(A,left,3,pos(an)), inx(A,center:x,1,pos(cc)).
10

11 [Rule 6982] [Pos cover = 24 Neg cover = 0]

12 rule(d) :-

13 [Rule 6984] [Pos cover = 25 Neg cover = 0]

14 rule(d) :-

15 chunk(A,right,np), inx(A,left,1,x), inx(A,center:x,1,and).

17 [Training set performance]
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18 Actual

19 + -

20 + 39001 0 39001
21 Pred

2 - 322 0 322
23

24 39323 0 39323

26 Accuracy = 0.991811408081784

27 [Training set summary] [[39001,0,322,0]]
28 [time taken] [5192.898]

29 [total clauses constructed] [2949018]

Listing D.4: Final lines from the 15 days data induction process.
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The Penn Treebank Tag Set

We include here the Penn Treebank Tag set (Marcus et al., 1993) that we have used in our work for

part-of-speech tagging. All the 48 tags are briefly described in the following tables:

The Penn Treebank Tag Set (1-36).

Table E.1:
1. cC
2. CD
3. DT
4. EX
5. FW
6. IN
7. JJ
8. JJR
9. JJs

10. LS
11. MD
12. NN
13. | NNS
14. NP
15. | NPS
16. §| PDT
17. POS
18. PP
19. PP$
20. RB
21. | RBR
22. § RBS
23. RP
24. SYM
25. TO
26. UH
27. VB
28. | vBD
29. | vBG
30. | VBN
31. § vBP
32. § vBZ
33. | wpT
34. WP
35. WP$
36. | WRB

Coordinating conjunction
Cardinal number

Determiner

Existential there

Foreign word

Preposition or subordinating conjunction
Adjective

Adjective, comparative
Adjective, superlative

List item marker

Modal

Noun, singular or mass

Noun, plural

Proper noun, singular

Proper noun, plural
Predeterminer

Possessive ending

Personal pronoun

Possessive pronoun

Adverb

Adverb, comparative

Adverb, superlative

Particle

Symbol

to

Interjection

Verb, base form

Verb, past tense

Verb, gerund or present participle
Verb, past participle

Verb, non-3rd person singular present
Verb, 3rd person singular present
Wh-determiner

Wh-pronoun

Possessive wh-pronoun
Wh-adverb
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Table E.2: The Penn Treebank Tag Set (37-48: punctuation marks).

37. # Pound sign

38. $ | Dollar sign

39. . Sentence-final punctuation
40. s Comma

41. : Colon, semi-colon

42. ( Left bracket character
43. ) Right bracket character
44, " Straight double quote
45, : Left open single quote
46. " | Left open double quote
47. ' Right close single quote
48. " Right close double quote
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