
The Aleph Manual
Version 4 and above

Then the rabbi said, “Golem, you have not been completely formed, but I am about to finish
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1 Introduction

This document provides reference information on A Learning Engine for Proposing
Hypotheses (Aleph). Aleph is an Inductive Logic Programming (ILP) system. This manual
is not intended to be a tutorial on ILP. A good introduction to the theory, implementation
and applications of ILP can be found in S.H. Muggleton and L. De Raedt (1994), Inductive
Logic Programming: Theory and Methods, Jnl. Logic Programming, 19,20:629–679,
available at ftp://ftp.cs.york.ac.uk/pub/ML_GROUP/Papers/lpj.ps.gz.

Aleph is intended to be a prototype for exploring ideas. Earlier incarnations (un-
der the name P-Progol) originated in 1993 as part of a fun project undertaken by Ash-
win Srinivasan and Rui Camacho at Oxford University. The main purpose was to un-
derstand ideas of inverse entailment which eventually appeared in Stephen Muggleton’s
1995 paper: Inverse Entailment and Progol, New Gen. Comput., 13:245-286, available at
ftp://ftp.cs.york.ac.uk/pub/ML_GROUP/Papers/InvEnt.ps.gz. Since then, the imple-
mentation has evolved to emulate some of the functionality of several other ILP systems.
Some of these of relevance to Aleph are: CProgol, FOIL, FORS, Indlog, MIDOS, SRT, Tilde,
and WARMR. See Chapter 4 [Other Programs], page 39 for more details on obtaining some
of these programs.

1.1 How to obtain Aleph

Aleph is written in Prolog principally for use with the Yap Prolog compiler. It should also
run, albeit less efficiently, with SWI Prolog. It is maintained by Ashwin Srinivasan at the
University of Oxford, and can be found at:

http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/aleph.pl.

If you obtain this version, and have not already done so, then subscribe to the Aleph
mailing list. You can do this by e-mailing majordomo@comlab.ox.ac.uk with the body of
the message containing the command: subscribe aleph. This version is free for academic
use (research and teaching). If you intend to use it for commercial purposes then please
contact Ashwin Srinivasan (ashwin at comlab dot ox dot ac uk).

NB: Yap is available at:

http://yap.sourceforge.net/

Aleph requires Yap 4.1.15 or higher, compiled with the DEPTH LIMIT flag set to 1 (that
is, include -DDEPTH LIMIT=1 in the compiler options). Aleph 5 requires SWI Version
5.1.10 or higher.

SWI Prolog is available at:

http://www.swi-prolog.org/

1.2 How to use this manual

• If you are a first-time user, proceed directly to Section 1.3 [Aleph Algorithm], page 2.
• If you have mastered the naive use of Aleph then see Chapter 3 [Advanced Use], page 9

on how to get more out of this program. You may also want to look at the [Concept
Index], page 57.

ftp://ftp.cs.york.ac.uk/pub/ML_GROUP/Papers/lpj.ps.gz
ftp://ftp.cs.york.ac.uk/pub/ML_GROUP/Papers/InvEnt.ps.gz
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/aleph.pl
mailto:majordomo@comlab.ox.ac.uk
http://yap.sourceforge.net/
http://www.swi-prolog.org/
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• If you are familiar with idea of setting parameters, altering search methods, etc within
Aleph, then see Chapter 5 [Notes], page 41 for ideas that have proved worthwhile in
applications.

• If you are interested in what is new with this version, see Chapter 6 [Change Logs],
page 49 for a change-log.

The Texinfo source file of this manual is available at:
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/aleph.tex

A “Makefile” is available for generating a variety of output formats:
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/Makefile.txt

1.3 The basic Aleph algorithm

During routine use, Aleph follows a very simple procedure that can be described in 4 steps:
1. Select example. Select an example to be generalised. If none exist, stop, otherwise

proceed to the next step.
2. Build most-specific-clause. Construct the most specific clause that entails the example

selected, and is within language restrictions provided. This is usually a definite clause
with many literals, and is called the “bottom clause.” This step is sometimes called the
“saturation” step. Details of constructing the bottom clause can be found in Stephen
Muggleton’s 1995 paper: Inverse Entailment and Progol, New Gen. Comput., 13:245-
286, available at ftp://ftp.cs.york.ac.uk/pub/ML_GROUP/Papers/InvEnt.ps.gz.

3. Search. Find a clause more general than the bottom clause. This is done by searching
for some subset of the literals in the bottom clause that has the “best” score. Two
points should be noted. First, confining the search to subsets of the bottom clause does
not produce all the clauses more general than it, but is good enough for this thumbnail
sketch. Second, the exact nature of the score of a clause is not really important here.
This step is sometimes called the “reduction” step.

4. Remove redundant. The clause with the best score is added to the current theory,
and all examples made redundant are removed. This step is sometimes called the
“cover removal” step. Note here that the best clause may make clauses other than the
examples redundant. Again, this is ignored here. Return to Step 1.

A more advanced use of Aleph (see Chapter 3 [Advanced Use], page 9) allows alteration to
each of these steps. At the core of Aleph is the “reduction” step, presented above as a simple
“subset-selection” algorithm. In fact, within Aleph, this is implemented by a (restricted)
branch-and-bound algorithm which allows an intelligent enumeration of acceptable clauses
under a range of different conditions. More on this can be found in Section 5.7 [Aleph
Implementation], page 43.

http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/aleph.tex
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/Makefile.txt
ftp://ftp.cs.york.ac.uk/pub/ML_GROUP/Papers/InvEnt.ps.gz
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2 Getting started with Aleph

2.1 Loading Aleph

Aleph code is contained in a single file, usually called ‘alephX.pl’ (the X stands for the
current version number, for example aleph4.pl refers to Version 4). To load Aleph, you will
need to consult this file into your Prolog compiler, with sufficient stack and heap size (the
more, the better!). Here is an example of loading Aleph into the Yap compiler, with a stack
size of 5000 K bytes and heap size of 20000 K bytes:

yap -s5000 -h20000

[ Restoring file startup ]

yes

?- [aleph4].

Aleph requires 3 files to construct theories. The most straightforward use of Aleph would
involve:
1. Construct the 3 data files called ‘filestem.b, filestem.f, filestem.n’. See Sec-

tion 2.2 [Background Knowledge File], page 3, Section 2.3 [Positive Examples File],
page 5, and Section 2.4 [Negative Examples File], page 5.

2. Read all data using the read_all(filestem) command. See Section 2.5 [Read Input
Files], page 5.

3. Construct a theory using the induce command See Section 2.6 [Construct Theory],
page 6.

2.2 Background knowledge file

All background knowledge for Aleph is contained in a file with a .b extension. Background
knowledge is in the form of Prolog clauses that encode information relevant to the domain.
It can also contain any directives understood by the Prolog compiler being used (for exam-
ple, :- consult(someotherfile).). This file also contains language and search restrictions
for Aleph. The most basic amongst these refer to modes, types and determinations (see Sec-
tion 2.2.1 [Modes], page 3, Section 2.2.2 [Types], page 4, and Section 2.2.3 [Determinations],
page 4).

2.2.1 Mode declarations

These declare the mode of call for predicates that can appear in any clause hypothesised
by Aleph. They take the form:

mode(RecallNumber,PredicateMode).

where RecallNumber bounds the non-determinacy of a form of predicate call, and
PredicateMode specifies a legal form for calling a predicate.
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RecallNumber can be either (a) a number specifying the number of successful calls to
the predicate; or (b) * specifying that the predicate has bounded non-determinacy. It is
usually easiest to specify RecallNumber as *.

PredicateMode is a template of the form:

p(ModeType, ModeType,...)

Here are some examples of how they appear in a file:
:- mode(1,mem(+number,+list)).
:- mode(1,dec(+integer,-integer)).
:- mode(1,mult(+integer,+integer,-integer)).
:- mode(1,plus(+integer,+integer,-integer)).
:- mode(1,(+integer)=(#integer)).
:- mode(*,has_car(+train,-car)).

Each ModeType is either (a) simple; or (b) structured. A simple ModeType is one of: (a)
+T specifying that when a literal with predicate symbol p appears in a hypothesised clause,
the corresponding argument should be an “input” variable of type T; (b) -T specifying that
the argument is an “output” variable of type T; or (c) #T specifying that it should be a
constant of type T. All the examples above have simple modetypes. A structured ModeType
is of the form f(..) where f is a function symbol, each argument of which is either a simple
or structured ModeType. Here is an example containing a structured ModeType:

:- mode(1,mem(+number,[+number|+list])).

With these directives Aleph ensures that for any hypothesised clause of the form H:-
B1, B2, ..., Bc:
1. Input variables. Any input variable of type T in a body literal Bi appears as an output

variable of type T in a body literal that appears before Bi, or appears as an input
variable of type T in H.

2. Output variables. Any output variable of type T in H appears as an output variable
of type T in Bi.

3. Constants. Any arguments denoted by #T in the modes have only ground terms of
type T.

2.2.2 Type specifications

Types have to be specified for every argument of all predicates to be used in constructing a
hypothesis. This specification is done within a mode(...,...) statement (see Section 2.2.1
[Modes], page 3). For Aleph types are just names, and no type-checking is done. Variables
of different types are treated distinctly, even if one is a sub-type of the other.

2.2.3 Determinations

Determination statements declare the predicated that can be used to construct a hypothesis.
They take the form:



Chapter 2: Getting started with Aleph 5

determination(TargetName/Arity,BackgroundName/Arity).

The first argument is the name and arity of the target predicate, that is, the predicate
that will appear in the head of hypothesised clauses. The second argument is the name
and arity of a predicate that can appear in the body of such clauses. Typically there will
be many determination declarations for a target predicate, corresponding to the predicates
thought to be relevant in constructing hypotheses. If no determinations are present Aleph
does not construct any clauses. Determinations are only allowed for 1 target predicate on
any given run of Aleph: if multiple target determinations occur, the first one is chosen.

Here are some examples of how they appear in a file:
:- determination(eastbound/1,has_car/2).
:- determination(mult/3,mult/3).
:- determination(p/1,’=’/2).

2.3 Positive examples file

Positive examples of a concept to be learned with Aleph are written in a file with a .f
extension. The filestem should be the same as that used for the background knowledge.
The positive examples are simply ground facts. Here are some examples of how they appear
in a file:

eastbound(east1).
eastbound(east2).
eastbound(east3).

Code exists for dealing with non-ground positive examples. However, this has never been
tested rigorously.

2.4 Negative examples file

Negative examples of a concept to be learned with Aleph are written in a file with a .n
extension. The filestem should be the same as that used for the background knowledge.
The negative examples are simply ground facts. Here are some examples of how they appear
in a file:

eastbound(west1).
eastbound(west1).
eastbound(west1).

Non-ground constraints can be a more compact way of expressing negative informa-
tion. Such constraints can be specified in the background knowledge file (see Section 3.2.5
[Constraints], page 23). Aleph is capable of learning from positive examples only. This is
done using a Bayesian evaluation function (see posonly in Section 3.2.2 [Search Function],
page 21).

2.5 Read all input files

Once the ‘filestem.b, filestem.f’ and ‘filestem.n’ files are in place, they can be read
into Aleph with the command:
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read_all(filestem).

Finer-grain specification of the example files can be achieved by setting the train_pos
and train_neg flags (see Section 3.1 [Other Settings], page 10).

2.6 Construct a theory

The basic command for selecting examples and constructing a theory is:

induce.

When issued Aleph does the four steps described earlier (see Section 1.3 [Aleph Algo-
rithm], page 2). The result is usually a trace that lists clauses searched along with their
positive and negative example coverage, like:

eastbound(A) :-
has_car(A,B).

[5/5]
eastbound(A) :-

has_car(A,B), short(B).
[5/5]
eastbound(A) :-

has_car(A,B), open_car(B).
[5/5]
eastbound(A) :-

has_car(A,B), shape(B,rectangle).
[5/5]

and the final result that looks like:

[theory]

[Rule 1] [Pos cover = 5 Neg cover = 0]

eastbound(A) :-
has_car(A,B), short(B), closed(B).

[pos-neg] [5]

induce also reports the performance on the training data as a confusion matrix that
looks like:

[Training set performance]

Actual
+ -

+ 5 0 5
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Pred
- 0 5 5

5 5 10

Accuracy = 100%

Performance on a test data is also reported if values for the parameters test_pos and
test_neg are set (see Section 3.1 [Other Settings], page 10).

The simplest use of induce implements a simple greedy cover-set algorithm. Aleph allows
you to experiment with a number of other ways of searching for answers (see Chapter 3
[Advanced Use], page 9).

2.7 Save a theory

The final theory constructed by Aleph can be saved in a file FileName using the command:

write_rules(FileName).

Alternatively, the command:

write_rules.

calls write_rules/1 with the current setting for the parameter rulefile.

2.8 Evaluate a theory

Besides automatic performance reporting, the theory constructed by Aleph can be evaluated
on examples in any data file using the command:

test(File,Flag,Covered,Total)

File is the name of the data file containing the examples. Flag is one of show or noshow
to show examples covered or otherwise. Both File and Flag have to be provided. test/4
then returns the following numbers. Covered is the number of examples in the data file
covered by current theory. Total is the total number of examples in the data file.

2.9 Some simple examples

Some simple examples of Aleph usage can be found in
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/examples.zip

In each sub-directory you should find Aleph input files and, usually, a typescript of Aleph
running on the data provided to accomplish some task.

http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/examples.zip
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3 Advanced use of Aleph

Advanced use of Aleph allows modifications to each of the steps to the basic algorithm (see
Section 1.3 [Aleph Algorithm], page 2):
1. Select example. A sample of more than 1 example can be selected (see samplesize in

Section 3.1 [Other Settings], page 10). The best clause obtained from reducing each
corresponding bottom clause is then added to the theory. Alternatively, no sampling
need be performed, and every example can be saturated and reduced (see induce in
Section 3.2 [Other Searches], page 19).

2. Build most-specific-clause. Bottom clauses may be constructed “lazily” or not at all
(see construct_bottom in Section 3.1 [Other Settings], page 10). Literals in the a
bottom clause may be evaluated “lazily” (see lazy_evaluate in Section 3.11 [Other
Commands], page 34). Individual bottom clauses can be constructed and examined
(see sat in Section 3.11 [Other Commands], page 34).

3. Search. The search for clauses can be altered and customised to try different search
strategies, evaluation functions, and refinement operators (see Section 3.2 [Other
Searches], page 19). A bottom clause can be reduced repeatedly using different search
constraints (see reduce in Section 3.11 [Other Commands], page 34).

4. Remove redundant. Examples covered may be retained to give better estimates of
clause scores (see induce in Section 3.2 [Other Searches], page 19).

There is now some software in place that allows exploration of the following:
1. Randomised search. The basic Aleph algorithm does a fairly standard general-to-

specific search. Some variation on this is possible by the user specifying his or her own
refinement operator. In other areas (satisfiability of propositional formulae, simulation
of discrete events), randomised methods have proven extremely useful tools to search
very large spaces. The implementation within Aleph is an adaptation of the standard
randomised methods: GSAT, WSAT, RRR, and the Metropolis algorithm (a special
case of simulated annealing with a fixed ‘temperature’) (see Section 3.3 [Randomised
Search], page 24 and Section 3.2 [Other Searches], page 19).

2. Incremental learning. The basic Aleph algorithm is a “batch” learner in the sense that
all examples and background are expected to be in place before learning commences. An
incremental mode allows Aleph to acquire new examples and background information
by interacting with the user (see Section 3.4 [Incremental Learning], page 26).

3. Theory learning. The basic Aleph algorithm constructs a “theory” one clause at a
time. This is an implementation of the greedy set-cover algorithm to the problem of
identifying a set of clauses. There is some empirical and theoretical work done on on
ILP of sets of clauses at once: see the work of I. Bratko and H. Midelfart in Proceedings
of the Ninth International Workshop on Inductive Logic Programming (ILP’99), LNAI-
1634. Theory learning by Aleph uses randomised search methods (see next) to search
through the space of theories. It has not been tested to any significant extent (see
Section 3.5 [Theory Learning], page 27).

4. Learning trees. The basic Aleph algorithm constructs clauses using a greedy set-
covering algorithm. In some sense, this can be seen as the first-order equivalent of
propositional rule-learning algorithms like Clark and Niblett’s CN2. There is now
a substantial body of empirical work (done by researchers in Leuven and Freiburg)
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demonstrating the utility of first-order equivalents of propositional tree-learning pro-
cedures. Tree-based learning can be seen as a special case of theory learning and the
implementation in Aleph uses the standard recursive-partitioning approach to con-
struct classification, regression, class probability, or model trees (see Section 3.6 [Tree
Learning], page 28).

5. Learning constraints. The basic Aleph algorithm constructs definite clauses normally
intended to be components of a predictive model for data. Early ILP work (in the
Claudien system) demonstrated the value of discovering all non-Horn constraints that
hold in a database. The implementation of these ideas in Aleph uses a naive generate-
and-test strategy to enumerate all constraints within the mode language provided (see
Section 3.7 [Constraint Learning], page 29).

6. Learning modes. The basic Aleph algorithm assumes modes will be declared by the
user. There has been some work (by McCreath and Sharma) on automatic extraction of
mode and type information from the background knowledge provided. The implemen-
tation of these ideas in Aleph follows these ideas fairly closely (see Section 3.8 [Mode
Learning], page 31).

7. Learning features. The basic Aleph algorithm constructs a set of rules that, along with
the background knowledge, entail the positive examples. Good clauses found during
the search for this set of rules can be used to construct boolean features. These can
then be used techniques like maximum entropy modelling, support vector machines
and so on (see Section 3.10 [Feature Construction], page 33).

These are all at very early stages of development and therefore even less reliable than
the rest of the code (probably).

3.1 Setting Aleph parameters

The set/2 predicate forms the basis for setting a number of parameter values for Aleph.
Parameters are set to values using:

set(Parameter,Value)

The current value of a parameter is obtained using:
setting(Parameter,Value)

A parameter can be un-set by using:
noset(Parameter)

Meaningful set/2 statements for Aleph are:

set(abduce,+V)
V is one of: true or false (default false). If V is true then abduction and
subsequent generalisation of abduced atoms is performed within the induce
loop. Only predicates declared to be abducible by abducible/1 are candidates
for abduction. See Section 3.9 [Abductive Learning], page 31 for more details.

set(best,+V)
V is a ‘clause label’ obtained from an earlier run. This is a list containing at
least the number of positives covered, the number of negatives covered, and the
length of a clause found on a previous search. Useful when performing searches
iteratively.
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set(cache_clauselength,+V)
V is a positive integer (default 3). Sets an upper bound on the length of clauses
whose coverages are cached for future use.

set(caching,+V)
V is one of: true or false (default false). If true then clauses and coverage
are cached for future use. Only clauses upto length set by cache_clauselength
are stored in the cache.

set(check_redundant,+V)
V is one of: true or false (default false). Specifies whether a call to
redundant/2 (see Section 3.11 [Other Commands], page 34) should be made
for checking redundant literals in a clause.

set(check_useless,+V)
V is one of: true or false (default false). If set to true, removes literals
in the bottom clause that do not contribute to establishing variable chains to
output variables in the positive literal, or produce output variables that are not
used by any other literal in the bottom clause.

set(classes,+V)
V is a list of classes to be predicted by the tree learner (see Section 3.6 [Tree
Learning], page 28).

set(clauselength,+V)
V is a positive integer (default 4). Sets upper bound on number of literals in
an acceptable clause.

set(clauselength_distribution,+V)
V is a list of the form [p1-1,p2-2,...] where “pi” represents the probability of
drawing a clause with “i” literals. Used by randomised search methods See
Section 3.3 [Randomised Search], page 24.

set(clauses,+V)
V is a positive integer. Sets upper bound on the number of clauses in a the-
ory when performing theory-level search (see Section 3.5 [Theory Learning],
page 27).

set(condition,+V)
V is one of: true or false (default false). If true then randomly gener-
ated examples are obtained after conditioning the stochastic generator with the
positive examples.

set(confidence,+V)
V is a floating point number in the interval (0.0,1.0) (default 0.95). Deter-
mines the confidence for rule-pruning by the tree learner (see Section 3.6 [Tree
Learning], page 28).

set(construct_bottom,+V)
V is one of: saturation, reduction or false (default saturation). Specifies
the stage at which the bottom clause is constructed. If reduction then it
is constructed lazily during the search. This is useful if the bottom clause
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is too large to be constructed prior to search. This also sets the flag lazy_
bottom to true. The user has to provide a refinement operator definition
(using refine/2). If not, the refine parameter is set to auto. If false then
no bottom clause is constructed. The user would normally provide a refinement
operator definition in this case.

set(dependent,+V)
V is a positive integer. Denotes the argument of the dependent variable in the
examples (see Section 3.6 [Tree Learning], page 28 and Section 3.10 [Feature
Construction], page 33).

set(depth,+V)
V is a positive integer (default 10). Sets an upper bound on the proof depth
to which theorem-proving proceeds.

set(explore,+V)
V is one of: true or false (default false). If true then forces search to
continue until the point that all remaining elements in the search space are def-
initely worse than the current best element (normally, search would stop when
it is certain that all remaining elements are no better than the current best.
This is a weaker criterion.) All internal pruning is turned off (see Section 3.2.3
[Pruning], page 22).

set(evalfn,+V)
V is one of: coverage, compression, posonly, pbayes, accuracy, laplace,
auto_m, mestimate, entropy, gini, sd, wracc, or user (default coverage).
Sets the evaluation function for a search. See Section 3.2 [Other Searches],
page 19.

set(good,+V)
V is one of: true or false (default false). If true then stores a Prolog
encoding of “good” clauses found in the search. A good clause is any clause
with utility above that specified by the setting for minscore. If goodfile is
set to some filename then this encoding is stored externally in that file.

set(goodfile,+V)
V is a Prolog atom. Sets the filename for storing a Prolog encoding of good
clauses found in searches conducted to date. Any existing file with this name
will get appended.

set(gsamplesize,+V)
V is a positive integer (default 100). The size of the randomly generated ex-
ample set produced for learning from positive examples only. See Section 3.2
[Other Searches], page 19.

set(i,+V)
V is a positive integer (default 2). Set upper bound on layers of new variables.

set(interactive,+V)
V is one of: true or false (default false). If true then constructs theories
interactively with induce_rules and induce_tree.
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set(language,+V)
V is an integer >= 1 or inf (default inf). Specifies the number of occurences
of a predicate symbol in any clause.

set(lazy_on_contradiction,+V)
V is one of: true or false (default false). Specifies if theorem-proving should
proceed if a constraint is violated.

set(lazy_on_cost,+V)
V is one of: true or false (default false). Specifies if user-defined cost-
statements require clause coverages to be evaluated. This is normally not user-
set, and decided internally.

set(lazy_negs,+V)
V is one of: true or false (default false). If true then theorem-proving on
negative examples stops once bounds set by noise or minacc are violated.

set(lookahead,+V)
V is a positive integer. Sets a lookahead value for the automatic refinement
operator (obtained by setting refine to auto).

set(m,+V)
V is a floating point number. Sets a value for “m-estimate” calculations. See
Section 3.2.2 [Search Function], page 21.

set(max_abducibles,+V)
V is a positive integer (default 2). Sets an upper bound on the maximum
number of ground atoms within any abductive explanation for an observation.
See Section 3.9 [Abductive Learning], page 31.

set(max_features,+V)
V is a positive integer (default inf). Sets an upper bound on the maximum
number of boolean features constructed by searching for good clauses. See
Section 3.10 [Feature Construction], page 33

set(minacc,+V)
V is an floating point number between 0 and 1 (default 0.0). Set a lower bound
on the minimum accuracy of an acceptable clause. The accuracy of a clause has
the same meaning as precision: that is, it is p/(p+n) where p is the number of
positive examples covered by the clause (the true positives) and n is the number
of negative examples covered by the clause (the false positives).

set(mingain,+V)
V is an floating point number (default 0.05). Specifies the minimum expected
gain from splitting a leaf when constructing trees.

set(minpos,+V)
V is a positive integer (default 1). Set a lower bound on the number of positive
examples to be covered by an acceptable clause. If the best clause covers positive
examples below this number, then it is not added to the current theory. This
can be used to prevent Aleph from adding ground unit clauses to the theory
(by setting the value to 2). Beware: you can get counter-intuitive results in
conjunction with the minscore setting.
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set(minposfrac,+V)
V is a is a floating point number in the interval [0.0,1.0] (default 0.0). Set
a lower bound on the positive examples covered by an acceptable clause as a
fraction of the positive examples covered by the head of that clause. If the best
clause has a ratio below this number, then it is not added to the current theory.
Beware: you can get counter-intuitive results in conjunction with the minpos
setting.

set(minscore,+V)
V is an floating point number (default -inf). Set a lower bound on the utility
of of an acceptable clause. When constructing clauses, If the best clause has
utility below this number, then it is not added to the current theory. Beware:
you can get counter-intuitive results in conjunction with the minpos setting.

set(moves,+V)
V is an integer >= 0. Set an upper bound on the number of moves allowed
when performing a randomised local search. This only makes sense if search
is set to rls and rls_type is set to an appropriate value.

set(newvars,+V)
V is a positive integer or inf (default inf). Set upper bound on the number
of existential variables that can be introduced in the body of a clause.

set(nodes,+V)
V is a positive integer (default 5000). Set upper bound on the nodes to be
explored when searching for an acceptable clause.

set(noise,+V)
V is an integer >= 0 (default 0). Set an upper bound on the number of negative
examples allowed to be covered by an acceptable clause.

set(openlist,+V)
V is an integer >= 0 or inf (default inf). Set an upper bound on the beam-
width to be used in a greedy search.

set(optimise_clauses,+V)
V is one of: true or false (default false). If true performs query optimisa-
tions described by V.S. Costa, A. Srinivasan, and R.C. Camacho in A note on
two simple transformations for improving the efficiency of an ILP system.

set(portray_examples,+V)
V is one of: true or false (default false). If true executes goal aleph_
portray(Term) where Term is one of train_pos, train_neg, test_pos, or
test_neg when executing the command show(Term).

set(portray_hypothesis,+V)
V is one of: true or false (default false). If true executes goal aleph_
portray(hypothesis). This is to be written by the user.

set(portray_literals,+V)
V is one of: true or false (default false). If true executes goal aleph_
portray(Literal) where Literal is some literal. This is to be written by the
user.
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set(portray_search,+V)
V is one of: true or false (default false). If true executes goal aleph_
portray(search). This is to be written by the user.

set(print,+V)
V is a positive integer (default 4). Sets an upper bound on the maximum
number of literals displayed on any one line of the trace.

set(proof_strategy,+V)
V is one of: restricted_sld or sld (default restricted_sld). If
restricted_sld, then examples covered are determined by forcing current
hypothesised clause to be the first parent clause in a SLD resolution proof. If
sld then this restriction is not enforced. The former strategy is efficient, but
not refutation complete. It is sufficient if all that is needed is to determine
how many examples are covered by the current clause, which is what is needed
when Aleph is used to construct a set of non-recursive clauses greedily (for
example using the induce/0 command: see Section 2.6 [Construct Theory],
page 6).

set(prooftime,+V)
V is a positive integer or inf (default inf). Sets an upper bound on the time
(in seconds) for testing whether an example is covered. Overrides any value set
for searchtime.

set(prune_tree,+V)
V is is one of: true or false (default false). Determines whether rules con-
structed by the tree learner are subject to pessimistic pruning (see Section 3.6
[Tree Learning], page 28).

set(record,+V)
V is one of: true or false (default false). If true then trace of Aleph
execution is written to a file. The filename is given by recordfile.

set(recordfile,+V)
V is a Prolog atom. Sets the filename to write a trace of execution. Only makes
sense if record is set to true.

set(refine,+V)
V is one of: user, auto, or false (default false). Specifies the nature of the
customised refinement operator. In all cases, the resulting clauses are required
to subsume the bottom clause, if one exists. If false then no customisation
is assumed and standard operation results. If user then the user specifies a
domain-specific refinement operator with refine/2 statements. If auto then
an automatic enumeration of all clauses in the mode language (see Section 2.2.1
[Modes], page 3) is performed. The result is a breadth-first branch-and-bound
search starting from the empty clause. This is useful if a bottom clause is either
not constructed or is constructed lazily. No attempt is made to ensure any kind
of optimality and the same clauses may result from several different refinement
paths. Some rudimentary checking can be achieved by setting caching to true.
The user has to ensure the following for refine is set to auto: (1) the setting
to auto is done after the modes and determinations commands, as these are
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used to generate internally a set of clauses that allow enumeration of clauses in
the language; (2) all arguments that are annotated as #T in the modes contain
generative definitions for type T. These are called be the clauses generated
internally to obtain the appropriate constants; and (3) the head mode is clearly
specified using the modeh construct.

set(rls_type,+V)
V is one of: gsat, wsat, rrr, or anneal. Sets the randomised search method
to be one of GSAT, WSAT, RRR or simulated annealing. Requires search
to be set to rls, and integer values for tries and moves. See Section 3.3
[Randomised Search], page 24.

set(rulefile,+V)
V is a Prolog atom. Sets the filename for storing clauses found in theory (used
by write_rules/0).

set(samplesize,+V)
V is an integer >= 0 (default 0). Sets number of examples selected randomly
by the induce or induce_cover commands. The best clause from the sample
is added to the theory. A value of 0 turns off random sampling, and the next
uncovered example in order of appearance in the file of training examples is
selected.

set(scs_percentile,+V)
V is an number in the range (0,100] (usually an integer). This denotes that any
clause in the top V-percentile of clauses are considered “good” when performing
stochastic clause selection. Only meaningful if search is set to scs.

set(scs_prob,+V)
V is an number in the range [0,1.0). This denotes the minimum probability of
obtaining a “good” clause when performing stochastic clause selection. Only
meaningful if search is set to scs.

set(scs_sample,+V)
V is a positive integer that determines the number of clauses randomly selected
from the hypothesis space in a clause-level search. Only meaningful if search
is set to scs. his overrules any samplesizes calculated from settings for scs_
percentile and scs_prob.

set(search,+V)
V is one of: bf, df, heuristic, ibs, ils, rls, scs id, ic, or ar (default bf).
Sets the search strategy. See Section 3.2 [Other Searches], page 19.

set(searchtime,+V)
V is an integer >= 0 or inf (default inf). Sets an upper bound on the time
(in seconds) for a search.

set(skolemvars,+V)
V is an integer (default 10000). Sets the counter for variables in non-ground
positive examples. Each variable will be replaced by a skolem variable that has
a unique number which is no smaller than V. This number has to be larger than
the number of variables that would otherwise appear in a bottom clause.
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set(splitvars,+V)
V is one of: true or false (default false). If set to true before constructing a
bottom clause, then variable co-references in the bottom clause are split apart
by new variables. The new variables can occur at input or output positions of
the head literal, and only at output positions in body literals. Equality literals
between new and old variables are inserted into the bottom clause to maintain
equivalence. It may also result in variable renamed versions of other literals
being inserted into the bottom clause. All of this increases the search space
considerably and can make the search explore redundant clauses. The current
version also elects to perform variable splitting whilst constructing the bottom
clause (in contrast to doing it dynamically whilst searching). This was to avoid
unnecessary checks that could slow down the search when variable splitting was
not required. This means the bottom clause can be extremely large, and the
whole process is probably not very practical for large numbers of co-references.
The procedure has not been rigourously tested to quantify this.

set(stage,+V)
V is one of: saturation, reduction or command (default command). Sets the
stage of current execution. This is normally not user-set, and decided internally.

set(store_bottom,+V)
V is one of: true or false (default false). Stores bottom clause constructed
for an example for future re-use.

set(temperature,+V)
V is a non-zero floating point number. Sets the temperature for randomised
search using annealing. Requires search to be set to rls and rls_type to be
set to anneal.

set(test_pos,+V)
V is a Prolog atom or a list of Prolog atoms. Sets the filename or list of
filenames containing the positive examples for testing. No filename extensions
are assumed and complete filenames have to be provided.

set(test_neg,+V)
V is a Prolog atom or a list of Prolog atoms. Sets the filename or list of
filenames containing the negative examples for testing. No filename extensions
are assumed and complete filenames have to be provided.

set(threads,+V)
V is an integer >= 1 (default 1). This is experimental and should not be
changed from the default value until further notice.

set(train_pos,-V)
V is a Prolog atom or a list of Prolog atoms. Sets the filename or list of
filenames containing the positive examples. If set, no filename extensions are
assumed and complete filenames have to be provided. If not set, it is internally
assigned a value after the read_all command.

set(train_neg,-V)
V is a Prolog atom or a list of Prolog atoms. Sets the filename or list of
filenames containing the negative examples. If set, no filename extensions are
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assumed and complete filenames have to be provided. If not set, it is internally
assigned a value after the read_all command.

set(tree_type,+V)
V is one of classification, class_probability, regression, or model (see
(see Section 3.6 [Tree Learning], page 28).

set(tries,+V)
V is a positive integer. Sets the maximum number of restarts allowed for
randomised search methods. This only makes sense if search is set to rls and
rls_type is set to an appropriate value.

set(typeoverlap,+V)
V is a floating point number in the interval (0.0,1.0]. Used by induce_modes/0
to determine if a pair of different types should be given the same name. See
Section 3.8 [Mode Learning], page 31 for more details.

set(uniform_sample,+V)
V is one of: true or false (default false). Used when drawing clauses ran-
domly from the clause-space. If set set to true then clauses are drawn by
uniform random selection from the space of legal clauses. Since there are usu-
ally many more longer clauses than shorter ones, this will mean that clauses
drawn randomly are more likely to be long ones. If set to false then assumes
a uniform distribution over clause lengths (up to the maximum length allowed
by clauselength). This is not necessarily uniform over legal clauses. If ran-
dom clause selection is done without a bottom clause for guidance then this
parameter is set to false.

set(updateback,+V)
V is one of: true or false (default true). If false then clauses found by the
induce family are not incorporated into the background. This is experimental.

set(verbosity,+V)
V is an integer >= 0 (default 1). Sets the level of verbosity. Also sets the
parameter verbose to the same value. A value of 0 shows very little.

set(version,-V)
V is the current version of Aleph. This is set internally.

set(walk,+V)
V is a value between 0 and 1. It represents the random walk probability for
the Walksat algorithm.

set(+P,+V)
Sets any user-defined parameter P to value V. This is particularly useful when
attaching notes with particular experiments, as all settings can be written to
a file (see record). For example, set(experiment,’Run 1 with background
B0’).
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3.2 Altering the search

Aleph allows the basic procedure for theory construction to be altered in a number of
ways. Besides the induce command, there are several other commands that can be used to
construct a theory. The induce family of commands are:
1. induce/0. This has already been described in detail previously (see Section 2.6 [Con-

struct Theory], page 6);
2. induce_cover/0. This command is very similar to induce. The only difference is

that positive examples covered by a clause are not removed prior to seeding on a new
(uncovered) example. After a search with induce_cover Aleph only removes the the
examples covered by the best clause are removed from a pool of seed examples only.
After this, a new example or set of examples is chosen from the seeds left, and the
process repeats. The theories returned by induce and induce_cover are dependent
on the order in which positive examples are presented;

3. induce_max/0. The theory returned by this command is unaffected by the ordering of
positive examples. This is because it saturates and reduces every example. The search
is made more efficient by remembering the coverage of the best clause obtained so far
for each example being generalised. Both induce_cover and induce_max are slower
than induce, and usually produce clauses with a great deal of overlap in coverage.
A separate program will have to be used to find some subset of these clauses that
minimises this overlap (see T-Reduce in Chapter 4 [Other Programs], page 39).

4. induce_incremental/0. This command constructs a theory in an incremental mode:
the user is allowed to update the examples and background knowledge. This mode of
learning is described further in Section 3.4 [Incremental Learning], page 26.

5. induce_clauses/0. This command is simply induce/0 or induce_incremental/0
depending on whether the flag interactive is false or true.

6. induce_theory/0. This command abandons the clause-by-clause approach to theory
construction. Instead, search is done at the theory-level. This is untested and the
current implementation should not be considered definitive. See Section 3.5 [Theory
Learning], page 27 for more details.

7. induce_tree/0. This command abandons the clause-by-clause approach to theory con-
struction. Instead, search is done by constructing a tree using the standard recursive-
partitioning approach. See Section 3.6 [Tree Learning], page 28 for more details.

8. induce_constraints/0. This command abandons the search for predictive clauses.
Instead, search results in all constraints that hold within the background knowledge
provided. See Section 3.7 [Constraint Learning], page 29 for more details.

9. induce_modes/0. This command searches for a mode and type assignment that is
consistent with the background knowledge provided. See Section 3.8 [Mode Learning],
page 31 for more details.

10. induce_features/0. This command searches for boolean features given the examples
and the background knowledge. See Section 3.10 [Feature Construction], page 33 for
more details.

The search for individual clauses (when performed) is principally affected by two pa-
rameters. One sets the search strategy (search) and the other sets the evaluation function
(evalfn).
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3.2.1 Search strategies

A search strategy is set using set(search,Strategy). The following search strategies apply
to the clause-by-clause searches conducted by Aleph:

ar Implements a simplified form of the type of association rule search conducted
by the WARMR system (see L. Dehaspe, 1998, PhD Thesis, Katholieke Uni-
versitaet Leuven). Here, Aleph simply finds all rules that cover at least a
pre-specified fraction of the positive examples. This fraction is specified by the
parameter pos_fraction.

bf Enumerates shorter clauses before longer ones. At a given clauselength, clauses
are re-ordered based on their evaluation. This is the default search strategy;

df Enumerates longer clauses before shorter ones. At a given clauselength, clauses
are re-ordered based on their evaluation.

heuristic
Enumerates clauses in a best-first manner.

ibs Performs an iterative beam search as described by Quinlan and Cameron-Jones,
IJCAI-95. Limit set by value for nodes applies to any 1 iteration.

ic Performs search for integrity constraints. Used by induce_constraints (see
Section 3.7 [Constraint Learning], page 29)

id Performs an iterative deepening search up to the maximum clause length spec-
ified.

ils An iterative bf search strategy that, starting from 1, progressively increases the
upper-bound on the number of occurrences of a predicate symbol in any clause.
Limit set by value for nodes applies to any 1 iteration. This language-based
search was developed by Rui Camacho and is described in his PhD thesis.

rls Use of the GSAT, WSAT, RRR and simulated annealing algorithms for search in
ILP. The choice of these is specified by the parameter rls_type (see Section 3.1
[Other Settings], page 10). GSAT, RRR, and annealing all employ random
multiple restarts, each of which serves as the starting point for local moves
in the search space. A limit on the number of restarts is specified by the
parameter tries and that on the number of moves by moves. Annealing is
currently restricted to a using a fixed temperature, making it equivalent to
an algorithm due to Metropolis. The temperature is specified by setting the
parameter temperature. The implementation of WSAT requires a “random-
walk probability”, which is specified by the parameter walk. A walk probability
of 0 is equivalent to GSAT. More details on randomised search can be found in
Section 3.3 [Randomised Search], page 24.

scs A special case of GSAT that results from repeated random selection of clauses
from the hypothesis space. The number of clauses is either set by scs_sample or
is calculated from the settings for scs_prob and scs_percentile. These rep-
resent: the minimum probability of selecting a “good” clause; and the meaning
of a “good” clause, namely, that it is in the top K-percentile of clauses. This
invokes GSAT search with tries set to the sample size and moves set to 0.
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Clause selection can either be blind or informed by some preliminary Monte-
Carlo style estimation. This is controlled by scs_type. More details can be
found in Section 3.3 [Randomised Search], page 24.

3.2.2 Evaluation functions

An evaluation function is set using set(evalfn,Evalfn). The following clause evaluation
functions are recognised by Aleph:

accuracy Clause utility is P/(P+N), where P, N are the number of positive and negative
examples covered by the clause.

auto_m Clause utility is the m estimate (see mestimate below) with the value of m
automatically set to be the maximum likelihood estimate of the best value of
m.

compression
Clause utility is P - N - L + 1, where P, N are the number of positive and nega-
tive examples covered by the clause, and L the number of literals in the clause.

coverage Clause utility is P - N, where P, N are the number of positive and negative
examples covered by the clause.

entropy Clause utility is p log p + (1-p) log (1-p) where p = P/(P + N) and P, N are
the number of positive and negative examples covered by the clause.

gini Clause utility is 2p(1-p) where p = P/(P + N) and P, N are the number of
positive and negative examples covered by the clause.

laplace Clause utility is (P+1)/(P+N+2) where P, N are the positive and negative ex-
amples covered by the clause.

mestimate
Clause utility is its m estimate as described in S. Dzeroski and I. Bratko (1992),
Handling Noise in Inductive Logic Programming, Proc. Second Intnl. Work-
shop on Inductive Logic Programming, ICOT-TM-1182, Inst. for New Gen
Comput Technology, Japan. The value of m is set by set(m,M).

pbayes Clause utility is the pseudo-Bayes conditional probability of a clause described
in J. Cussens (1993), Bayes and Pseudo-Bayes Estimates of Conditional Prob-
ability and their Reliability, ECML-93, Springer-Verlag, Berlin.

posonly Clause utility is calculated using the Bayesian score described in S. H. Mug-
gleton, (1996), Learning from positive data, Proc. Sixth Intnl. Workshop on
Inductive Logic Programming, LNAI 1314, 358-376, Springer-Verlag, Berlin.
Note that all type definitions are required to be generative for this evaluation
function and a modeh declaration is necessary.

sd Clause utility is related to the standard deviation of values predicted. This is
only used when constructing regression trees and is not available for use during
clause-based search.

user Clause utility is -C, where C is the value returned by a user-defined cost function.
See Section 3.2.4 [Cost], page 22.



22 The Aleph Manual

wracc Clause utility is calculated using the weighted relative accuracy function de-
scribed by N. Lavrac, P. Flach and B. Zupan, (1999), Rule Evaluation Mea-
sures: a Unifying View, Proc. Ninth Intnl. Workshop on Inductive Logic
Programming, LNAI 1634, 174-185, Springer-Verlag, Berlin.

3.2.3 Built-in and user-defined pruning

Two sorts of pruning can be distinguished within Aleph when performing a clause-level
search. Internal pruning refers to built-in pruning that performs admissible removal of
clauses from a search. This is currently available for the following evaluation functions:
auto m, compression, coverage, laplace, mestimate, posonly, and wracc. User-defined prune
statements can be written to specify the conditions under which a user knows for certain
that a clause (or its refinements) could not possibly be an acceptable hypothesis. Such
clauses are pruned from the search. The "prune" definition is written in the background
knowledge file (that has extension ‘.b’). The definition is distinguished by the fact that
they are all rules of the form:

prune((ClauseHead:-ClauseBody)) :-
Body.

The following example is from a pharmaceutical application that states that every ex-
tension of a clause representing a "pharmacophore" with six "pieces" is unacceptable, and
that the search should be pruned at such a clause.

prune((Head:-Body)) :-
violates_constraints(Body).

violates_constraints(Body) :-
has_pieces(Body,Pieces),
violates_constraints(Body,Pieces).

violates_constraints(Body,[_,_,_,_,_,_]).

has_pieces(...) :-

The use of such pruning can greatly improve Aleph’s efficiency. They can be seen as a
special case of providing distributional information about the hypothesis space.

3.2.4 User-defined cost specification

The use of a user-specified cost function is a fundamental construct in statistical decision
theory, and provides a general method of scoring descriptions. Aleph allows the specification
of the cost of a clause. The cost statements are written in the background knowledge file
(that has extension ‘.b’), and are distinguished by the fact that they are all rules of the
form:

cost(Clause,ClauseLabel,Cost):-
Body.

where ClauseLabel is the list [P,N,L] where P is the number of positive examples
covered by the clause, N is the number of negative examples covered by the clause L is the
number of literals in the clause.
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It is usually not possible to devise automatically admissible pruning strategies for an
arbitrary cost function. Thus, when using a user-defined cost measure, Aleph places the
burden of specifying a pruning strategy on the user.

3.2.5 User-defined constraints

Aleph accepts integrity constraints that should not be violated by a hypothesis. These
are written in the background knowledge file (that has extension ‘.b’) and are similar to
the integrity constraints in the ILP programs Clint and Claudien. The constraints are
distinguished by the fact that they are all rules of the form:

false:-
Body.

where Body is a set of literals that specify the condition(s) that should not be violated
by a clause found by Aleph. It is usual to use the hypothesis/3 (see Section 3.11 [Other
Commands], page 34) command to obtain the clause currently being considered by Aleph.

The following example is from a pharmaceutical application that states that hypotheses
are unacceptable if they have fewer than three "pieces" or which do not specify the distances
between all pairs of pieces.

false:-
hypothesis(Head,Body,_),
has_pieces(Body,Pieces),
length(Pieces,N),
N =< 2.

false:-
hypothesis(_,Body,_),
has_pieces(Body,Pieces),
incomplete_distances(Body,Pieces).

The use of constraints is another way for Aleph to obtain interesting hypothesis without
negative examples. Ordinarily, this will result in a single clause that classifies every example
as positive. Such clauses can be precluded by constraints. Note also that an integrity
constraint does not state that a refinement of a clause that violates one or more constraints
will also be unacceptable. When constructing clauses in an incremental mode, Aleph can be
instructed to add a special type of constraint to prevent the construction of overly general
clauses (see Section 3.4 [Incremental Learning], page 26).

3.2.6 User-defined refinement

Aleph allows a method of specifying the refinement operator to be used in a clause-level
search. This is done using a Prolog definition for the predicate refine/2. The definition
specifies the transitions in the refinement graph traversed in a search. The "refine" definition
is written in the background knowledge file (that has extension ".b"). The definition is
distinguished by the fact that they are all rules of the form:

refine(Clause1,Clause2):-
Body.

This specifies that Clause1 is refined to Clause2. The definition can be nondeterministic,
and the set of refinements for any one clause are obtained by repeated backtracking. For
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any refinement Aleph ensures that Clause2 implies the current most specific clause. Clause2
can contain cuts (“!”) in its body.

The following example is from a pharmaceutical application that states that searches for
a "pharmacophore" that consists of 4 "pieces" (each piece is some functional group), and
associated distances in 3-D space. Auxilliary definitions for predicates like member/2 and
dist/5 are not shown. representing a "pharmacophore" with six "pieces" is unacceptable,
and that the search should be pruned at such a clause.

refine(false,active(A)).

refine(active(A),Clause):-
member(Pred1,[hacc(A,B),hdonor(A,B),zincsite(A,B)]),
member(Pred2,[hacc(A,C),hdonor(A,C),zincsite(A,C)]),
member(Pred3,[hacc(A,D),hdonor(A,D),zincsite(A,D)]),
member(Pred4,[hacc(A,E),hdonor(A,E),zincsite(A,E)]),
Clause = (active(A):-

Pred1,
Pred2,
dist(A,B,C,D1,E1),
Pred3,
dist(A,B,D,D2,E2),
dist(A,C,D,D3,E3),
Pred4,
dist(A,B,E,D4,E4),
dist(A,C,E,D5,E5),
dist(A,D,E,D6,E6)).

To invoke the use of such statements requires setting refine to user. For other settings
of refine see entry for refine in Section 3.1 [Other Settings], page 10.

3.3 Randomised search methods

The simplest kind of randomised search is the following: sample N elements (clauses or the-
ories) from the search space. Score these and return the best element. Ordinal optimisation
is a technique that investigates the loss in optimality resulting from this form of search.
See:

http://hrl.harvard.edu/people/faculty/ho/DEDS/OO/OOTOC.html

A study of the use of this in ILP can be found in: A. Srinivasan, A study of two
probabilistic methods for searching large spaces with ILP (under review), available at:

ftp://ftp.comlab.ox.ac.uk/pub/Packages/ILP/Papers/AS/dami99.ps.gz

For a clause-level search, this is invoked by setting the parameter search to scs (to
denote “stochastic clause selection”). The number N is either set by assigning a value to
scs_sample or calculated automatically from settings for scs_prob and scs_percentile.
If these values are denoted “P” and “K” respectively, then the sample size is calculated to
be log(1-P)/log(1-K/100), which denotes the number of clauses that have to be sampled
before obtaining, with probability at least P, at least one clause in the top K-percentile of
clauses Sampling is further controlled by by specifying the setting scs_type to be one of

http://hrl.harvard.edu/people/faculty/ho/DEDS/OO/OOTOC.html
ftp://ftp.comlab.ox.ac.uk/pub/Packages/ILP/Papers/AS/dami99.ps.gz
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blind or informed. If “blind” then clauses are uniform random selections from the space
of all legal clauses. If “informed” then they are drawn from a specific distribution over
clauselengths. This can either be pre-specified (by setting clauselength_distribution)
or obtained automatically by a Monte-Carlo like scheme that attempts to estimate, for each
clause length, the probablity of obtaining a clause in the top K-percentile. In either case,
the resulting distribution over clauselengths is used to first decide on the number of literals
“l” in the clause. A legal clause with “l” literals is then constructed.

In fact, this simple randomised search is a degenerate form of a more general algorithm
known as GSAT. Originally proposed within the context of determining satisfiability of
propositional formulae, the basic algorithm is as follows:

currentbest:= 0 (comment: ‘‘0’’ is a conventional default answer)
for i = 1 to N do

current:= randomly selected starting point
if current is better than currenbest then

currentbest:= current
for j = 1 to M do begin

next:= best local move from current
if next is better than currenbest then

currentbest:= next
current:= next

end
return currentbest

N and M represent the number of tries and moves allowed. It is apparent that when
searching for clauses, a M value of 0 will result in the algorithm mimicking stochastic clause
selection as described above. A variant of this algorithm called Walksat introduces a further
random element at the point of selecting next. This time, a biased coin is flipped. If
a “head” results then the choice is as per GSAT (that is, the best choice amongst the
local neighbours), otherwise next is randomly assigned to one of any “potentially good”
neighbours. Potentially good neighbours are those that may lead to a better score than the
current best score. This is somewhat like simulated annealing, where the choice is the best
element if that improves on the best score. Otherwise, the choice is made according to a
function that decays exponentially with the difference in scores. This exponential decay is
usually weighted by a “temperature” parameter.

The randomly selected start clause is usually constructed as follows: (1) an example is
selected; (2) the bottom clause is constructed for the example; (3) a legal clause is randomly
drawn from this bottom clause. The example may be selected by the user (using the sat
command). If bottom clauses are not allowed (by setting construct_bottom to false) then
legal clauses are constructed directly from the mode declarations. The clause selected is
either the result of uniform random selection from all legal clauses, or the result of a specific
distribution over clauselengths (specified by setting clauselength_distribution). The
latter is the only method permitted when bottom clauses are not allowed. (In that case,
if there is no value specified for clauselength_distribution, then a uniform distribution
over all allowable lengths is used.)

RRR refers to the ‘randomised rapid restarts’ as described by F. Zelezny, A. Srinivasan,
and D. Page in Lattice Search Runtime Distributions May Be Heavy-Tailed available at:

ftp://ftp.comlab.ox.ac.uk/pub/Packages/ILP/Papers/AS/rrr.ps.gz

ftp://ftp.comlab.ox.ac.uk/pub/Packages/ILP/Papers/AS/rrr.ps.gz
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In the current implementation, RRR stops as soon as a clause with an requisite minimum
positive coverage (set using minpos) and acceptable utility is reached (set using minscore).
The procedure in the paper above stops as soon as a minimum acceptable accuracy is
reached. This same effect can be achieved by setting evalfn to accuracy.

It is intended that the randomised local search methods (GSAT, Walksat, RRR and
annealing) can be used either for clause-level search or theory-level search. No equivalent
of stochastic clause selection is provided for theory-level search: this has to be mimicked by
using the randomised local search, with appropriate settings. At the clause level, local moves
involve either adding or deleting a literal from the current clause. Normally, local moves
in the clause-space would also involve operations on variables (introducing or removing
variable co-references, associating or disassociating variables to constants). These have to
accomplished within Aleph by the inclusion of an equality predicate with appropriate mode
declarations. Local moves for a theory-level search are described in Section 3.5 [Theory
Learning], page 27.

Randomised local search is invoked within Aleph by setting the parameter search to
rls. In addition, the type of search is specified by setting rls_type to one of gsat,
wsat, rrr or anneal. Walksat requires a specification of a biased coin. This is done by
setting the parameter walk to a number between 0 and 1. This represents an upper bound
on the probability of obtaining a “tail” with the coin. The implementation of simulated
annealing is very simple and uses a fixed temperature. This is done by setting the parameter
temperature to some real value.

3.4 Incremental construction of theories

Most prominent ILP systems are “batch learners”: all examples and background knowledge
are in place before learning commences. The ILP system then constructs a hypothesis for
the examples. A less popular, but nevertheless interesting alternative is that of “incremental
learning”, where examples, background and hypothesis are incrementally updated during
the course of learning. Aleph allows such an incremental construction of clauses by typing:

induce_incremental.

This results in Aleph repeatedly performing the following steps:
1. Ask user for an example. The default is to use a new positive example from previous

search. If the user responds with Ctrl-d (eof) then search stops. If the user responds
with “ok.” then default is used; otherwise the user has to provide a new example
(terminated by a full-stop);

2. Construct bottom clause for example. Aleph thus expects the appropriate mode dec-
larations. These can be added in Step 4;

3. Search. Aleph searches for the best clause;
4. Ask user about best clause. Aleph asks the user about the clause C returned by the

search. At this point the user can respond with:
• ok. Clause C is added to the hypothesis;
• prune. Statement added to prevent C and any clauses subsumed by it from ap-

pearing as the result of future searches;
• overgeneral. Constraint added to prevent C and clauses subsuming it from ap-

pearing as the result of future searches;
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• overgeneral because not E. E is added as a negative example;
• overspecific. C is added as a positive example;
• overspecific because E. E is added as a positive example;
• X. X is any Aleph command. This can be something like covers or mode(*,has_

car(+train,-car));
• Ctrl-d. Returns to Step 1.

Note: the command induce_clauses/0 with the flag interactive set to true simply
performs the same function as induce_incremental.

The incremental mode does not preclude the use of prior sets of examples or background
information. These are provided in the usual way (in files with .b, .f and .n suffixes). An
example of using the incremental learner to construct a program for list membership can
be found in the incremental sub-directory in:

http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/examples.zip

3.5 Theory-level search

An adequate explanation for a set of examples typically requires several clauses. Most ILP
systems attempt to construct such explanations one clause at a time. The procedure is
usually an iterative greedy set-covering algorithm that finds the best single clause (one that
explains or “covers” most unexplained examples) on each iteration. While this has been
shown to work satisfactorily for most problems, it is nevertheless interesting to consider
implementations that attempt to search directly at the “theory-level”. In other words,
elements of the search space are sets of clauses, each of which can be considered a hy-
pothesis for all the examples. The implementation in Aleph of this idea is currently at a
very rudimentary level, and preliminary experiments have not demonstrated great benefits.
Nevertheless, the approach, with development, could be promising. The implementation
within Aleph is invoked by the command:

induce_theory.

This conducts a search that moves from one set of clauses to another. Given a clause
set S local moves are the result of the following:

1. Add clause. A clause is added to S. This is usually a randomly selected legal clause
constructed in the manner described in Section 3.3 [Randomised Search], page 24;

2. Delete clause. A clause is deleted from S ;
3. Add literal. A literal is added to a clause in S ; and
4. Delete literal. A literal is deleted from a clause in S.

As noted in Section 3.3 [Randomised Search], page 24, the use of an equality predicate
with appropriate mode declarations may be needed to achieve variable co-references, etc.

Currently, induce_cover starts with an initial set of at most C clauses, where this num-
ber is specified by setting the clauses parameter. Each of these are randomly selected legal
clauses. induce_cover then performs theory-level search either using as search strategy a
randomised local search method (obtained by setting the search parameter to rls: see Sec-
tion 3.3 [Randomised Search], page 24), or a markov chain monte carlo technique (obtained
by setting search to mcmc). The latter is untested. The only evaluation function allowed

http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/examples.zip
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is accuracy. For theories, this is the number (TP+TN)/(TP+TN+FP+FN) where TP,TN are
are the numbers of positive and negative examples correctly classified respectively; FP is
the numbers of negative examples incorrectly classified as positive; and FN is the number of
positive examples incorrectly classified as positive.

3.6 Tree-based theories

The algorithm embodied in induce can be seen as the first-order equivalent of a proposi-
tional rule-learning algorithms like Clark and Niblett’s CN2. There is now a substantial
body of empirical work (done by researchers in Leuven and Freiburg) demonstrating the
utility of first-order equivalents of propositional tree-learning procedures. Tree-based learn-
ing can be seen as a special case of theory learning and the implementation in Aleph uses
the standard recursive-partitioning approach to construct classification, regression, class
probability, or model trees. Tree-based theory construction is invoked by the command:

induce_tree.

The type of tree constructed is determined by setting tree_type to one of:
classification, regression, class_probability, or model. The basic procedure
attempts to construct a tree to predict the output argument in the examples. Note that
the mode declarations must specify only a single argument as output. Paths from root to
leaf constitute clauses. Tree-construction is viewed as a refinement operation: any leaf can
currently be refined (converted into a non-leaf) by extending the corresponding clause
(resulting in two new leaves). The extension is done using Aleph’s automatic refinement
operator that extends clauses by a single literal within the mode language . That is, Aleph
sets refine to auto. Note that using the automatic refinement operator means that the
user has to ensure that all arguments that are annotated as #T in the modes contain
generative definitions for type T. The lookahead option allows additions of several literals
at once. The impurity function is specified by the setting the evalfn parameter. Currently
for classification and class_probability trees evalfn must be one of entropy or
gini. For regression trees the evaluation function is automatically set to sd (standard
deviation). For model trees, evalfn must be one of mse (mean square error) or accuracy.
In all cases, the result is always presented a set of rules. Rules for class_probability and
regression trees make their predictions probabilistically using the random/2 predicate
provided within Aleph.

In addition, settings for the following parameters are relevant: classes, the list of
classes occuring in examples provided (for classification or class_probability trees
only); dependent, for the argument constituting the dependent variable in the examples;
prune_tree, for pruning rules from a tree; confidence, for error-based pruning of rules
as described by J R Quinlan in the C4.5 book; lookahead, specifying the lookahead for
the refinement operator to mitigate the horizon effect from zero-gain literals; mingain,
specifying the minimum gain required for refinement to proceed; and minpos specifying the
minimum number of examples required in a leaf for refinement to proceed.

Forward pruning is achieved by the parameters (mingain) and minpos. The former
should be set to some value greater than 0 and the latter to some value greater than 1.
Backward pruning uses error pruning of the final clauses in the tree by correcting error
estimates obtained from the training data. Automatic error-based pruning is achieved
by setting the parameter prune_tree to auto. For classification trees the resulting
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procedure is identical to the one for rule pruning described by Quinlan in C4.5: Programs
for Machine Learning, Morgan Kauffmann. For regression trees, error-based pruning
results in corrections to the sample standard deviation. These corrections assume normality
of observed values in a leaf: the method has been studied emprically by L. Torgo in "A
Comparative Study of Reliable Error Estimators for Pruning Regression Trees". Following
work by F Provost and P Domingos, pruning is not employed for class probability prediction.
At this stage, there is no pruning also for model trees.

The prediction at each ‘leaf’ differs for each tree type. For classification trees,
prediction is the majority class as estimated from the examples in the leaf; for regression
trees prediction is a value drawn randomly from a normal distribution with mean and
standard deviation estimated from the examples in the leaf; for class_probability trees
prediction is a value drawn randomly from the (Laplace corrected) discrete distribution of
classes in the leaf; and for model trees prediction is achieved by a user-defined background
predicate (see following).

Model trees in Aleph are constructed by examining, at each leaf, one or more model
construction predicates. These predicates are defined as part of background knowledge,
and can specify different kinds of models For example, the predicates may be for linear
regression, polynomial regression etc. for predicting a continuous variable; a decision tree,
logistic regression etc. for predicting a nominal variable. For each kind of model, the user
has to provide a definition for a predicate that is able to: (a) construct the model; and (b)
predict using the model constructed. The process is the same as that for lazy evaluation.
Each such predicate is specified using the model/1 command. If several different predicates
are specified, then, at each leaf, each predicate is called to construct a model and the
predicate that constructs the best model (evaluated using the current setting for evalfn)
is returned. This can be computationally intensive, but can lead to the construction of
fairly complex theories, in which different leaves can contain different kinds of models (for
example, linear regression models in one leaf and quadratic regression models in another).

Tree-learning can be performed interactively, with the user specifying the split to be
selected. This is done by setting interactive to true before executing the induce_tree
command.

An example of using the tree learner can be found in the tree sub-directory in:
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/examples.zip

3.7 Constraint learning

The basic Aleph algorithm constructs definite clauses normally intended to be components
of a predictive model for data. Early ILP work (for example, in the Claudien system)
demonstrated the value of discovering all non-Horn constraints that hold in a database. A
similar functionality can be obtained within Aleph using the command:

induce_constraints.

The implementation of these ideas in Aleph uses a naive generate-and-test strategy
to enumerate all constraints within the background knowledge (for the mode language
provided). All constraints are of the form:

false:- ...

and are stored in the user-specified goodfile (the specification of this file is mandatory
for induce_constraints to work). With appropriate mode settings for false and not it is

http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/examples.zip
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possible to identify non-Horn constraints in the same way as Claudien. For example given
the background knowledge:

male(’Fred’).
female(’Wilma’).

human(’Fred’).
human(’Wilma’).

and the mode declarations:
:- modeh(1,false).

:- modeb(*,human(-person)).
:- modeb(1,male(+person)).
:- modeb(1,female(+person)).
:- modeb(1,not(male(+person))).
:- modeb(1,not(female(+person))).

Aleph identifies the following constraints:

false :-
human(A), male(A), female(A).

false :-
human(A), female(A), male(A).

false :-
human(A), not male(A), not female(A).

false :-
human(A), not female(A), not male(A).

After removing redundant constraints (which Aleph does not do), these are equivalent
to the following:

false :- human(A), male(A), female(A).

male(A) ; female(A) :- human(A).

The validity of these constraints can only be guaranteed if the background knowledge
is assumed to be complete and correct. To account for incorrect statements in the back-
ground knowledge it may sometimes be relevant to alter the noise setting when obtaining
constraints which now specifies the number of falsifying substitutions tolerated. The minacc
parameter is ignored.

An example of using the constraints learner can be found in the constraints sub-
directory in:

http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/examples.zip

3.8 Mode learning

The basic Aleph algorithm assumes modes will be declared by the user which, in the past,
this has been the source of some difficulty. There has been some work (by E. McCreath and
A. Sharma, Proc of the 8th Australian Joint Conf on AI pages 75-82, 1995) on automatic
extraction of mode and type information from the background knowledge provided. The

http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/examples.zip
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implementation of these ideas in Aleph follows these ideas fairly closely and can be invoked
by the command:

induce_modes.

Given a set of determinations, the procedure works in two parts: (i) finding equivalence
classes of types; and (ii) finding an input/output assignment.

Unlike the McCreath and Sharma approach, types in the same equivalence class are given
the same name only if they "overlap" significantly (the overlap of type1 with type2 is the
proportion of elements of type1 that are also elements of type2). Significantly here means
an overlap at least some threshold T (set using typeoverlap, with default 0.95). Values of
typeoverlap closer to 1.0 are more conservative, in that they require very strong overlap
before the elements are called the same type. Since this may not be perfect, modes are
also produced for equality statements that re-introduce co-referencing amongst differently
named types in the same equivalence class. The user has to however explicitly include a
determination declaration for the equality predicate.

The i/o assignment is not straightforward, as we may be dealing with non-functional
definitions. The assignment sought here is one that maximises the number of input args
as this gives the largest bottom clause. This assignment is is sought by means of a search
procedure over mode sequences. Suppose we have a mode sequence M = <m1,m2,..m\i-
1\> that uses the types T. An argument of type t in mode m\i\ is an input iff t overlaps
significantly (used in the same sense as earlier) with some type in T. Otherwise the argument
is an output. The utility of each mode sequence M is f(M) = g(M) + h(M) where g(M)
is the number of input args in M; and h(M) is a (lower) estimate of the number of input
args in any mode sequence of which M is a prefix. The search strategy adopted is a simple
hill-climbing one. Note that the procedure as implemented assumes background predicates
will be generative (which holds when the background knowledge is ground).

An example of using the mode learner can be found in the modes sub-directory in:
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/examples.zip

3.9 Abductive learning

The basic Aleph algorithm assumes that the examples provided are observations of the
target predicate to be learned. There is, in fact, nothing within the ILP framework that
requires this to be the case. For example, suppose the following was already provided in
the background knowledge:

grandfather(X,Y):-
father(X,Z),
parent(Z,Y).

parent(X,Y):-
father(X,Y).

father(’Fred’,’Jane’).

mother(’Jane’,’Robert’).
mother(’Jane’,’Peter’).

then the examples:

http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/examples.zip
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grandfather(’Fred’,’Robert’).
grandfather(’Fred’,’Peter’).

are clearly not entailed by the background knowledge. Aleph would then simply try to
learn another clause for grandfather/2, perhaps resulting in something like:

grandfather(X,Y):-
father(X,Z),
mother(Z,Y).

In fact, the job would have just as easily been done, and the result more useful, if Aleph
could learn the following:

parent(X,Y):-
mother(X,Y).

This requires Aleph to be able to do two things. First, given observations of
grandfather/2 that are not entailed by the background knowledge, generate instances
of parent/2 that will allow the observations to be entailed. Second, use the instances
of parent/2 that were generated to obtain the clause for parent/2 above. The first of
these steps requires a form of abduction. The second requires generalisation in the form of
learning. It is the combination of these two steps that is called “Abductive Learning” here.

The basic procedure used by Aleph is a simplified variant of S. Moyle’s Alecto program.
Alecto is described in some detail in S. Moyle, "Using Theory Completion to Learn a
Navigation Control Program", Proceedings of the Twelfth International Conference on ILP
(ILP2002), S. Matwin and C.A. Sammut (Eds), LNAI 2583, pp 182-197, 2003. Alecto does
the following: for each positive example, an “abductive explanation” is obtained. This
explanation is set of ground atoms. The union of abductive explanations from all positive
examples is formed (this is also a set of ground atoms). These are then generalised to give the
final theory. The ground atoms in an abductive explanation are obtained using Yamamoto’s
SOLD resolution or SOLDR (Skip Ordered Linear resolution for Definite clauses).

Currently, abductive learning is only incorporated within the induce command. If
abduce is set to true then Aleph first tries to obtain the best clause for the observed
predicate (for example, the best clause for grandfather/2). Abductive explanations are
then generated for all predicates marked as being abducible (see abducible/1) and gen-
eralisations constructed using these. The best generalisation overall is then selected and
greedy clause identification by induce repeats with the observations left. Care has to be
taken to ensure that abductive explanations are indeed ground (this can be achieved by
using appropriate type predicates within the definitions of the abducible predicates) and
limited to some maximum number (this latter requirement is for reasons of efficiency: see
setting for max_abducibles).

It should be evident that abductive learning as described here implements a restricted
form of theory revision, in which revisions are restricted to completing definitions of back-
ground predicates other than those for which observations are provided. This assumes that
the background knowledge is correct, but incomplete. In general, if background predicates
are both incorrect and incomplete, then a more elaborate procedure would be required.

3.10 Feature Construction

One promising role for ILP is in the area of feature construction. A good review of the use of
ILP for this can be found in S. Kramer, N. Lavrac and P. Flach (2001), Propositionalization



Chapter 3: Advanced use of Aleph 33

Approaches to Relational Data Mining, in Relational Data Mining, S. Dzeroski and N.
Lavrac (eds.), Springer.

Aleph uses a simple procedure to construct boolean features. The procedure is invoked
using the induce_features/0 command. This is almost identical to the induce_cover/0
command. Recall that induce_cover/0 uses a a covering strategy to construct rules that
explain the examples (the slight twist being that all positive examples are retained when
evaluating clauses at any given stage). The difference with induce_features/0 is that all
good clauses that are found during the course of constructing such rules are stored as new
features. A feature stored by Aleph contains two bits of information: (1) a number, that
acts as a feature identifier; and (2) a clause (Head:-Body). Here Head is a literal that unifies
with any of the examples with the same name and arity as Head and Body is a conjunction
of literals. The intent is that the feature is true for an example if and only if the example
unifies with Head and Body is true. For classification problems, the user has to specify the
the dependent variable. This is done using set(dependent,...).

The process of finding rules (and the corresponding features) continues until all examples
are covered by the rules found or the number of features exceeds a pre-defined upper limit
(controlled by set(max_features,...)).

What constitutes a “good clause” is dictated by settings for various Aleph parameters.
The following settings are an example of some parameters that are relevant:

:- set(clauselength,10).
:- set(minacc,0.6).
:- set(minscore,3).
:- set(minpos,3).
:- set(noise,50).
:- set(nodes,5000).
:- set(explore,true).
:- set(max_features,20000).

Features found by Aleph can be shown by the show(features) command. Aleph can
be used to show the boolean vectors for the train and test examples using a combination of
set(portray_examples,...), features/2 appropriate definitions for aleph_portray/1
and show(train_pos), show(train_neg) etc. Here is an example of the use of aleph_
portray/1 for examples in the training set:

aleph_portray(train_pos):-
setting(train_pos,File),

show_features(File,positive).
aleph_portray(train_neg):-

setting(train_neg,File),
show_features(File,negative).

show_features(File,Class):-
open(File,read,Stream),
repeat,

read(Stream,Example),
(Example = end_of_file -> close(Stream);

write_features(Example,Class),
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fail).

write_features(Example,_):-
features(_,(Example:- Body)),
(Body -> write(1), write(’ ’); write(0), write(’ ’)),
fail.

write_features(_,Class):-
writeq(Class), nl.

If portray_examples is set to true, Aleph will call aleph_portray(Term), when the
command show(Term) is executed (with Term being one of train_pos, train_neg, test_
pos or test_neg).

3.11 Other commands

There are a number of other useful commands in Aleph. These are:

rdhyp Read a hypothesised clause from the user.

addhyp Add current hypothesised clause to theory. If a search is interrupted, then the
current best hypothesis will be added to the theory.

sphyp Perform Generalised Closed World Specialisation (GCWS) on current hypoth-
esis. This can result in the creation of new abnormality predicates which define
exceptional conditions (see Chapter 5 [Notes], page 41)

addgcws Add hypothesis constructed by performing GCWS to theory.

covers Show positive examples covered by hypothesised clause.

coversn Show negative examples covered by hypothesised clause.

reduce Run a search on the current bottom clause, which can be obtained with the
sat/1 command.

man(-V) V is of location of the on-line manual.

abducible(+V)
V is of the form N/A, where the atom N is the name of the predicate, and
A its arity. Specifies that ground atoms with symbol N/A can be abduced if
required.

commutative(+V)
V is of the form N/A, where the atom N is the name of the predicate, and A
its arity. Specifies that literals with symbol N/A are commutative.

symmetric(+V)
V is of the form N/A, where the atom N is the name of the predicate, and A
its arity. Specifies that literals with symbol N/A are symmetric.

lazy_evaluate(+V)
V is of the form N/A, where the atom N is the name of the predicate, and
A its arity. Specifies that outputs and constants for literals with symbol N/A
are to be evaluated lazily during the search. This is particularly useful if the
constants required cannot be obtained from the bottom clause constructed by
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using a single example. During the search, the literal is called with a list
containing a pair of lists for each input argument representing ‘positive’ and
‘negative’ substitutions obtained for the input arguments of the literal. These
substitutions are obtained by executing the partial clause without this literal
on the positive and negative examples. The user needs to provide a definition
capable of processing a call with a list of list-pairs in each argument, and how
the outputs are to be computed from such information. For further details see
A. Srinivasan and R. Camacho, Experiments in numerical reasoning with ILP,
To appear: Jnl. Logic Programming.

model(+V)
V is of the form N/A, where the atom N is the name of the predicate, and A
its arity. Specifies that predicate N/A will be used to construct and execute
models in the leaves of model trees (see Section 3.6 [Tree Learning], page 28).
This automatically results in predicate N/A being lazily evaluated (see lazy_
evaluate/1).

positive_only(+V)
V is of the form N/A, where the atom N is the name of the predicate, and A its
arity. States that only positive substitutions are required during lazy evaluation
of literals with symbol N/A. This saves some theorem-proving effort.

random(V,+D)
V is a random variable from distribution D. D is the specification of a discrete
or normal distribution. The discrete distribution is specified as [p1-a,p2-b,...]
where “p1” represents the probability of drawing element “a”, “p2” the prob-
ability of drawing element “b” and so on. A normal distribution with mean
“m” and standard deviation “s” is specified by the term “normal(m,s)”. If V
is bound to a value then the predicate succeeds if and only if the value has
a non-zero probability of occurrence (which is trivially satisfied for a normal
distribution).

sat(+V) V is an integer. Builds the bottom clause for positive example number V.
Positive examples are numbered from 1, and the numbering corresponds to the
order of appearance in the ‘.f’ file.

example_saturated(-V)
V is a positive example. This is the current example saturated.

show(+V) Different values of V result in showing the following.

bottom Current bottom clause.

constraints
Constraints found by induce_constraints.

determinations
Current determination declarations.

features Propositional features constructed from good clauses found so far.

gcws Hypothesis constructed by the gcws procedure.
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good Good clauses found in searches conducted so far (good clauses all
have a utility above that specified by minscore).

hypothesis
Current hypothesised clause.

modes Current mode declarations (including all modeh and modeb decla-
rations).

modehs Current modeh declarations.

modebs Current modeb declarations.

neg Current negative examples.

pos Current positive examples.

posleft Positive examples not covered by theory so far.

rand Current randomly-generated examples (used when evalfn is
posonly).

search Current search (requires definition for portray(search)).

settings Current parameter settings.

sizes Current sizes of positive and negative examples.

theory Current theory constructed.

test_neg Examples in the file associated with the parameter test_neg.

test_pos Examples in the file associated with the parameter test_pos.

train_neg
Examples in the file associated with the parameter train_neg.

train_pos
Examples in the file associated with the parameter train_pos.

Name/Arity
Current definition of the predicate Name/Arity.

redundant(+Clause,+Lit)
A user-specified predicate that defines when a literal Lit is redundant in a
clause Clause. Clause can be the special term bot, in which case it refers to
the current bottom clause. Calls to this predicate are only made if the flag
check_redundant is set to true.

modeh(+Recall,+Mode)
Recall is one of: a positive integer or *. Mode is a mode template as in a
mode/2 declaration. Declares a mode for the head of a hypothesised clause.
Required when evalfn is posonly.

modeb(+Recall,+Mode)
Recall is one of: a positive integer or *. Mode is a mode template as in a
mode/2 declaration. Declares a mode for a literal in the body of a hypothesised
clause.
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text(+L,+T)
L is a literal that can appear in the head or body of a clause. T is a list of terms
that contain the text to be printed in place of the literal. Variables in the list will
be co-referenced to variables in the literal. For example, text(active(X),[X,
’is active’]). Then the clause active(d1) will be written as d1 is active.

hypothesis(-Head,-Body,-Label)
Head is the head of the current hypothesised clause. Body is the body of the
current hypothesised clause. Label is the list [P,N,L] where P is the positive
examples covered by the hypothesised clause, N is the negative examples covered
by the hypothesised clause, and L is the number of literals in the hypothesised
clause,

feature(+Id,+(Head:-Body))
Declares a new feature. Id is a feature identifier (usually a number). Head is a
literal that can unify with one or more of the examples. Body is a conjunction
of literals that constitutes the feature.

features(?Id,?(Head:-Body))
Checks for an existing feature. Id is a feature identifier (usually a number).
Head is a literal that can unify with one or more of the examples. Body is a
conjunction of literals that constitutes the feature.
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4 Related versions and programs

With appropriate settings, Aleph can emulate some the functionality of the following pro-
grams: P-Progol, CProgol, FOIL, FORS, Indlog, MIDOS, SRT, Tilde and WARMR. De-
scriptions and pointers to these programs are available at:

http://www-ai.ijs.si/~ilpnet2/systems/

In addition the following programs and scripts are relevant.

T-Reduce T-Reduce is a companion program to Aleph that can be used to process the
clauses found by the commands induce_cover and induce_max. This finds a
subset of these clauses that explain the examples adequately, and have lesser
overlap in coverage. T-Reduce uses the Yap Prolog compiler. A copy of this
program is available (without support) at:
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/treduce.pl

This has not been used for several years and is vulnerable to the usual forces
of decay that afflict old programs.

GUI A graphical user interface to Aleph has been developed by J. Wielemaker and
S. Moyle. This is written for SWI-Prolog and uses the XPCE library. Details
of this can be obtained from S. Moyle (sam at comlab dot ox dot ac dot uk).

Scripts There are some scripts available for performing cross-validation with Aleph.
Here is a copy of a Perl script written by M. Reid (mreid at cse dot unsw dot
edu dot au):
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/xval_
pl.txt

S. Konstantopoulos (konstant at let dot rug dot nl) and colleagues have a shell
script and a Python script for the same purpose. Copies of these are at:
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/xval_
sh.txt

and
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/xval_
py.txt

http://www-ai.ijs.si/~ilpnet2/systems/
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/treduce.pl
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/xval_pl.txt
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/xval_pl.txt
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/xval_sh.txt
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/xval_sh.txt
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/xval_py.txt
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/xval_py.txt
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5 Notes

This section contains ideas and suggestions that have surfaced during the development of
Aleph and its predecessor programs. The topics themselves are in no particular order. They
are written in a somewhat stylised manner and reflect various personal biases. They should
therefore, not be considered normative in any way.

5.1 On the appropriateness of Aleph

1. There are many ILP programs. Aleph is not particularly special.
2. Check whether the problem needs a relational learning program. Is it clear that sta-

tistical programs, neural networks, Bayesian nets, tree-learners etc. are unsuitable or
insufficient?

3. Aleph’s emulation of other systems is at the “ideas” level. For example, with a setting
of search to heuristic, evalfn to compression, construct_bottom to saturation,
and samplesize to 0, the command induce will a construct a theory along the lines of
the Progol algorithm described by S. Muggleton. This is, however, no substitute for the
original. If you want an implementation of S. Muggleton’s Progol algorithm exactly
as described in his paper, then Aleph is not suitable for you. Try CProgol instead.
The same comment applies to other programs listed in Chapter 4 [Other Programs],
page 39.

4. Aleph is quite flexible in that it allows customisation of search, cost functions, output-
display etc. This allows it to approximate the functionality of many other techniques.
It could also mean that it may not be as efficient as special-purpose implementations.
See also:
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/ilp_
and_aleph.ps

5.2 On predicate-name clashes with Aleph

1. You may get into trouble if predicate names in the background knowledge clash with
those already used within Aleph. This may be benign (for example, two different
predicates that encode the same relation) or malignant (with predicates that have the
same name encoding quite different things). The list of predicate names already in use
can be obtained by repeated calls to the current_predicate(X) goal provided by the
Prolog engine.

2. It would be better if Aleph predicates were renamed, or some modular approach was
adopted. None of this is done so far.

5.3 On the role of the bottom clause

1. Besides it’s theoretical role of anchoring one end of the search space, the bottom clause
is really useful to introduce constants (these are obtained from the seed example), and
variable co-references.

2. If you are not interested in particular constants or the bottom clause introduces too
many spurious co-references, it may be better not to construct a bottom clause. Try
using the automatic refinement operator, or write your own refinement operator.

http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/ilp_and_aleph.ps
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/ilp_and_aleph.ps
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3. If the bottom clause is too large (> 500 literals), then simply printing it on screen takes
a long time. Turn this off with setting verbosity to 0.

4. If the bottom clause is too large (> 500 literals), then you can construct it lazily (during
the search) by setting the construct_bottom flag to reduction.

5.4 On using Aleph interactively.

1. It is always worth experimenting with Aleph before constructing a full theory. The
commands sat/1 or rsat/0, followed by the command reduce/0 are useful for this.
sat(N) constructs the bottom clause for example number N. rsat constructs a bottom
clause for a randomly selected example. reduce does a search for an acceptable clause.

2. You can interrupt a search at any time. The command addhyp/0 then adds the current
best clause to the theory. This has the flavour of anytime-learning.

3. The induce_incremental command is highly interactive. It requires the user to pro-
vide examples, and also categorise the result of searches. This may prove quite de-
manding on the user, but has the flavour of the kind of search done by a version-space
algorithm.

4. Setting interactive to true and calling induce_clauses has the same effect as
calling induce_incremental. Trees can also be constructed interactively by setting
interactive to true and calling induce_tree.

5.5 On different ways of constructing a theory

1. The routine way of using induce/0 is often sufficient.
2. induce/0, induce_cover/0, induce_max/0, induce_clauses/0 and induce_

incremental/0 encode control strategies for clause-level search. They will use any
user defined refinement operators, search and evaluation functions, beam-width
restrcitions etc that are set. In terms of speed, induce/0 is usually faster than
induce_cover/0, which in turn is faster than induce_max/0. The time taken by
induce_incremental/0 is not as easily characterisable. induce_clauses/0 is simply
induce/0 or induce_incremental/0 depending on whether the flag interactive is
false or true respectively.

3. induce_max/0 results in a set of clauses that is invariant of example ordering. Neither
induce_cover/0, induce/0 or induce_incremental/0 have this property.

4. Use the T-Reduce program after induce_max/0 or induce_cover/0 to obtain a com-
pact theory for prediction.

5. You can construct a theory manually by repeatedly using sat/1 (or rsat/0), reduce/0
and addhyp/0.

6. You can mitigate the effects of poor choice of seed example in the saturation step by
setting the samplesize flag. This sets the number of examples to be selected randomly
by the induce or induce_cover commands. Each example seeds a different search and
the best clause is added to the theory.

7. If you set samplesize to 0 examples will be selected in the order of appearance in the
positive examples file. This will allow replication of results without worrying about
variations due to sampling.
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8. The induce_tree command will construct tree-structured theories.
9. The induce_theory command is to be used at your own peril.

5.6 On a categorisation of parameters

1. The following parameters can affect the size of the search space: i, clauselength,
nodes, minpos, minacc, noise, explore, best, openlist, splitvars.

2. The following parameters affect the type of search: search, evalfn, refine,
samplesize.

3. The following parameters have an effect on the speed of execution: caching, lazy_
negs, proof_strategy, depth, lazy_on_cost, lazy_on_contradiction, searchtime,
prooftime.

4. The following parameters alter the way things are presented to the user: print, record,
portray_hypothesis, portray_search, portray_literals, verbosity,

5. The following parameters are concerned with testing theories: test_pos, test_neg,
train_pos, train_neg.

5.7 On how the single-clause search is implemented

1. The search for a clause is implemented by a restricted form of a general branch-and-
bound algorithm. A description of the algorithm follows. It is a slight modification of
that presented by C.H. Papadimitriou and K. Steiglitz (1982), Combinatorial Optimi-
sation, Prentice-Hall, Edgewood-Cliffs, NJ. In the code that follows, activeset contains
the set of “live” nodes at any point; the variable C is used to hold the cost of the best
complete solution at any given time.

begin
active:= {0}; (comment: ‘‘0’’ is a conventional starting point)
C:= inf;
currentbest:= anything;
while active is not empty do begin

remove first node k from active; (comment: k is a branching node)
generate the children i=1,...,Nk of node k, and

compute corresponding costs Ci and
lower bounds on costs Li;

for i = 1,...,Nk do
if Li >= C then prune child i
else begin

if child i is a complete solution and Ci < C then begin
C:= Ci, currentbest:= child i;
prune nodes in active with lower bounds more than Ci

end
add child i to active

end
end

end

2. The algorithm above results in a search tree. In Aleph, each node contains a clause.
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3. A number of choices are made in implementing a branch-and-bound algorithm for a
given problem. Here are how these are made in Aleph: (a) Branch node. The choice
of node to branch on in the activeset is based on comparisons of a dual (primary and
secondary) search key associated with each node. The value of this key depends on the
search method and evaluation function. For example, with search set to bf and evalfn
set to coverage (the default for Aleph), the primary and secondary keys are -L,P-N
respectively. Here L is the number of literals in the clause, and P,N are the positive
and negative examples covered by the clause. This ensures clauses with fewer literals
will be chosen first. They will further be ordered on difference in coverage; (b) Branch
set. Children are generated by refinement steps that are either built-in (add 1 literal
at a time) or user-specified. With built-in refinement, loop detection is performed to
prevent duplicate addition of literals; (c) Lower bounds. This represents the lowest
cost that can be achieved at this node and the sub-tree below it. This calculation is
dependent on the search method and evaluation function. In cases where no easy lower
bound is obtainable, it is taken as 0 resulting in minimal pruning; (d) Restrictions. The
search need not proceed until activeset is empty. It may be terminated prematurely by
setting the nodes parameter. Complete solutions are taken to be ones that satisfy the
language restrictions and any other hypothesis-related constraints.

5.8 On how to reduce the search space

1. Use smaller i setting or smaller clauselength or nodes setting. Avoid setting
splitvars to true (it is not even clear whether this works correctly anyway). Try
relaxing minacc or noise to allow clauses with lower accuracy. Set minpos to some
larger value than the default. Set a different value to best.

2. Write constraints and prune statements.

3. Use a refinement operator that enumerates a smaller space.

4. Restrict the language by allowing fewer determinations.

5. Restrict the search space by setting beam-width (using parameter openlist); or using
an iterative beam-width search (setting search to ibs); or using randomised local
search (setting search to rls) with an appropriate setting for associated parameters);
or using Camacho’s language search (using parameter language or setting search to
ils).

6. Use a time-bounded search by setting searchtime to some small value.

5.9 On how to use fewer examples

1. It need not be necessary to test on the entire dataset to obtain good estimates of the
cost of a clause.

2. Methods like sub-sampling or windowing can be incorporated into ILP programs to
avoid examining entire datasets. These are not yet incorporated within Aleph, although
windowing can be achieved within a general purpose theory-revision program called T-
Revise which can use any ILP program as its generalisation engine (available from
Ashwin Srinivasan, ashwin at comlab dot ox dot ac dot uk). More details on this are
available in: A. Srinivasan (1999), A study of two sampling methods for analysing large
datasets with ILP, Data Mining and Knowledge Discovery, 3(1):95-123.
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3. Using the posonly evaluation function will allow construction of theories using positive
examples only (thus, some savings can be made by ignoring negative examples).

5.10 On a user-defined view of hypotheses and search

1. User-definitions of portray/1 provide a general mechanism of altering the view of the
hypotheses and search seen by the user.

2. There are 3 flags that are used to control portrayal. These are portray_hypothesis,
portray_search and portray_literals. If the first is set to true then the com-
mand show(hypothesis) will execute portray(hypothesis). This has to be user-
defined. If the second flag is set to true then the command show(search) will execute
portray(search). This has to be user-defined. If the third flag is set to true then any
literal L in a clause constructed during the search will be shown on screen by executing
portray(L). This has to be user-defined.

3. Examples of using these predicates can be found in the portray sub-directory in:
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/examples.zip

5.11 On numerical reasoning with Aleph

1. There are many programs specialised to accomplish numerical reasoning. Aleph is not
one of them. Consider parametric techniques, regression trees etc. The ILP program
FORS is an example of an ILP program particularly suited to perform regression like
tasks (see A. Karalic and I. Bratko (1997), First-Order Regression, Machine Learning,
26:147-176). The program SRT is a first-order variant of a regression tree builder (see
S. Kramer (1996), Structural Regression Trees, Proc. of the 13th National Conference
on Artificial Intelligence (AAAI-96)), and the program Tilde has the capability of
performing regression-like tasks (see H. Blockeel, L. De Raedt and J. Ramon (1998),
Top-down induction of clustering trees, Proc of the 15th International Conference on
Machine Learning, pp 55-63). Aleph does have a simple tree-based learner that can
construct regression trees (see Section 3.6 [Tree Learning], page 28).

2. It is possible to attempt guesses at numerical constants that add additional literals to
the bottom clause. An example of how this can be done with a predicate with multiple
recall is in the Aleph files guess.b, guess.f, and guess.n in the numbers sub-directory
in:
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/examples.zip

3. Guessing may not always work. The problem may then be amenable to the use of the
technique of lazy evaluation. Here an appropriate constant in literal Li is obtained
during the search by calling a definition in background knowledge that calculates the
constant by collecting bindings from pos examples that are entailed by the ordered
clause L0, L1, ... Li-1, and the neg examples inconsistent with the ordered clause L0,
L1, ... Li-1 (ie the pos and neg examples “covered” by this clause). An example of
how this can be done is in the Aleph files ineq.b, ineq.f, and ineq.n in the numbers
sub-directory in:
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/examples.zip

4. The technique of lazy evaluation can be used with more than one input argument and
to calculate more than one constant. With several input arguments, values in lists of

http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/examples.zip
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/examples.zip
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/examples.zip
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substitutions can be paired off. An example where it is illustrated how a line can be
constructed from a picking two such substitution-pairs can be found in the Aleph files
ineq.b, ineq.f, and ineq.n in the numbers sub-directory in:
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/examples.zip

5. The use of lazy evaluation, in combination with user-defined search specifications can
result in quite powerful (and complex) clauses. In the file:
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/mut.b

is the background knowledge used to construct theories in a subset of the “mutagenesis”
problem. It illustrates the call to a C function to compute linear regression, user-defined
refinement operators, and a user-defined cost function that forces clauses to be scored
on mean-square -error (rather than coverage)

5.12 On applications of Aleph

1. Earlier incarnations of Aleph (called P-Progol) have been applied to a number of
real-world problems. Prominent amongst these concern the construction of structure-
activity relations for biological activity. In particular, the results for mutagenic and
carcinogenic activity have received some attention. Also prominent has the been the
use for identifying pharmacophores – the three-dimensional arrangement of functional
groups on small molecules that enables them to bind to drug targets. See:
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/applications.html.

2. Applications to problems in natural language processing have been done by James
Cussens and others. See:
http://www.cs.york.ac.uk/~jc/

5.13 On using Aleph with other techniques

1. There is often a significant advantage in combine the results of Aleph with those of
established prediction methods.

2. Three ways of doing this are evident: (a) As background knowledge. Incorporate other
prediction methods as part of the background knowledge for Aleph. An example is the
use of linear regression as a background knowledge; (b) As new features. Incorporate
the results from Aleph into an established prediction method. An example is the
conversion of Aleph derived alerts into “indicator” variables for linear regression; and
(c) For outlier analysis. Use Aleph to explain only those instances that are inadequately
modelled by established techniques. An example is the use of Aleph to explain the
non-linearities left after the linear component adequately explained by regression is
removed.

5.14 On performing closed-world specialisation with Aleph

1. Generalised Closed-World Specialisation (GCWS) is a way of obtaining structured the-
ories in ILP. Given an overgeneral clause C, GCWS specialises it by constructing au-
tomatically new “abnormality” predicates that encode exceptions to C, exceptions to
those exceptions, etc.

2. A classic example is provided by the Gregorian Calendar currently in use in parts of the
world. From 45 B.C.E to 1581 C.E the Holy Roman Empire subscribed to the Julian

http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/examples.zip
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/mut.b
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/applications.html
http://www.cs.york.ac.uk/~jc/
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calendar commissioned by Julius Caesar. This specified that every year that was a
multiple of $4$ would contain an intercalary day to reconcile the calendar with a solar
year (that is, one extra day would be added). This rule is correct up to around one part
in a hundred and so up until 1582 errors could simply be treated as noise. In 1582 C.E
Pope Gregory XIII introduced the Gregorian calendar. The following corrections were
implemented. Every fourth year would be an intercalary year except every hundredth
year. This rule was itself to be overruled every four hundredth year, which would be
an intercalary year. As a set of clauses the Gregorian calendar is:

normal(Y):-
not(ab0(Y)).

ab0(Y):-
divisible(4,Y),
not(ab1(Y)).

ab1(Y):-
divisible(100,Y),
not(ab2(Y)).

ab2(Y):-
divisible(400,Y).

where normal is a year that does not contain an intercalary day. With background
knowledge of divisible/2 GCWS would automatically specialise the clause:

normal(Y).

by constructing the more elaborate theory earlier. This involves invention of the
ab0,ab1,ab2 predicates.

3. See M. Bain, (1991), Experiments in non-monotonic learning, Eighth International
Conference on Machine Learning, pp 380-384, Morgan Kaufmann, CA; and A. Srini-
vasan, S.H. Muggleton, and M. Bain (1992): Distinguishing Noise from Exceptions in
Non-Monotonic Learning, Second International Workshop on ILP, for more details of
GCWS.

4. The way to use GCWS within Aleph is as follows. First try to learn a clause in the
standard manner (that is using the sat and reduce commands). If no acceptable clause
is found, decrease the minimum accuracy of acceptable clauses (by setting minacc or
noise). Now do the search again. You will probably get an overgeneral clause (that
is, one that covers more negative examples than preferrable). Now use the sphyp
command to specialise this hypothesis. Aleph will repeatedly create examples for new
abnormality predicates and generalise them until the original overgeneral clause does
not cover any negative examples. You can then elect to add this theory by using the
addgcws command.

5. The implementation of GCWS within Aleph is relatively inefficient as it requires cre-
ating new examples for the abnormality predicates on disk.
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5.15 On some basic ideas relevant to ILP

1. Some basic ideas relevant ILP can be found at:
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/basic.html

http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/misc/basic.html
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6 Change Logs

6.1 Changes in Version 1

• Wed Nov 10 10:15:44 GMT 1999: fixed bug in bug fix of Fri Oct 8 10:06:55 BST 1999.
• Mon Oct 25 14:06:07 BST 1999: minor improvement to code for stochastic clause

selection; added mailing list info in header
• Fri Oct 8 10:06:55 BST 1999: fixed bug in record_testclause to add depth bound

call to body literals.
• Mon Sep 20 09:50:23 BST 1999: fixed bug in continue_search for user defined cost

function; fixed bug in stochastic clause selection that attempts to select more literals
than present in bottom clause.

6.2 Changes in Version 2

• Fri Mar 31 17:12:52 BST 2000: Some predicates called during variable-splitting did
not account for change that allows arbitrary terms in mode declarations. Changed
split args/4 to split args/5 to fix bug concerning multiple modes for the same predicate.

• Thu Mar 23 09:57:15 GMT 2000: Minor fixes. Some predicates called during lazy
evaluation did not account for change that allows arbitrary terms in mode declarations.

• Fri Jan 28 14:57:32 GMT 2000: Arbitrary terms now allowed in mode declarations;
logfile no longer records date of trace automatically (a system call to ‘date’ causes Yap
to crash on some non-Unix systems – use set(date,...) to record date).

6.3 Changes in Version 3

• Wed May 16 06:22:52 BST 2001:

• Changed retractall to retract all
• Added check for setting(refine,user) in check auto refine (reported by Khalid

Khan)
• Added clause to select nextbest/2 for RefineType = user
• Fixed call to get gains in reduce( ) to include StartClause when using a refinement

operator
• Some calls to idb entries for last refinement and best refinement were incorrectly

using key: "search" instead of "aleph"
• Clause in get refine gain and get refine gain1 when RefineType \= rls had variable

name clash for variable E. Renamed one of these to Example
• Changed representation of gains for openlist. This is now the term [P|S] where P

is the primary key and S is the secondary key. This used to be converted into a
unique number, which required the setting of a base. This is no longer required and
so removed fix base predicate. Corresponding changes to structure for gains idb
also implemented by including P and S as first two arguments, and to uniq insert
to compare using lexicographically

• Call to reduce now catches aborts and reinstates the values of any parameters
saved via the use of catch/3
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• Rls search type is now correctly heuristic (and not bf: reported by David Page
and Khalid Khan)

• Incorporated Filip Zelezny’s corrections to posonly estimate by ensuring that
rm seeds updates atoms left for rand examples.

• sample clauses can now use probability distribution over clauselengths
• Reinstated search ‘scs’ to perform stochastic clause selection (after Aleph 0 this

was being done as a special case of rls before)
• Removed call to store cover to fix problem identified by Stasinos Konstantopoulos

when get hyp label/2 calls covers/1 and coversn/1
• Updated manual to mirror style of Yap’s manual and added patches sent by Stasi-

nos Konstantopoulos
• Fri May 18 07:44:02 BST 2001: Yap was unable to parse calls of the form

recorded(openlist,[[K1|K2]| ], ) (reported by Khalid Khan). Worked around by
changing to recorded(openlist,[H| ], ), H= [K1|K2].

• Wed Jul 25 05:50:12 BST 2001:

• Changed calls to val(ArgNo,Pos). This was causing variable-splitting to fail
• Both input and output variables can now be split in the head literal
• Posonly learning now adds an SLP generator clause for each modeh declaration
• Modes can now contain ground terms
• Restored proper operation of user-defined refinement operator
• Added facility for time-restricted proofs
• Added facility for new computation rule that selects leftmost literals with delaying

• Mon Mar 18 12:49:10 GMT 2002:

• Changed update atoms/2 to check the mode of the ground literal used to produce
the bottom clause. This means copies of ground literals can now exist, if the
corresponding variables are typed differently by the mode declarations. This was
prompted by discussions with Mark Rich.

• continue search/3 replaced by discontinue search/3.
• Added setting for newvars. This bounds the maximum number of new variables

that can be introduced in the body of a clause
• Added code developed by Filip Zelezny to implement randomised local search using

‘randomised rapid restarts’.
• Changed pos ok/6 to check for minpos constraint for any refinement operator r

that is such that for a hypothesis H, poscover(r(H)) <= poscover(H). This cannot
be guaranteed when search = rls or refine = user. In other situations, the built-in
refinement operator that adds literals is used and this property is holds. This was
prompted by discussions with James Cussens.

• Fixed bug in randomised search: rls nextbest/4 that had args for gain/4 in the
wrong order.

• Fixed closed-world specialisation: was not checking for lazy evaluation, also
changed tmp file names to alephtmp.[fn]

• subsumes/2 renamed aleph subsumes/2.
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• Changes to lazy evaluation code that allows a set of input bindings from an exam-
ple. This makes multi-instance learning possible.

• Automatic general-to-specific refinement from modes now ensures that it does not
generate clauses that would succeed on prune/1 .

• Built-in local clause moves in randomised search now ensures that it does not
generate clauses that would succeed on prune/1 .

• Random sampling of clauses from hypothesis space now returns most general clause
on failure.

• Added code check recursive calls/0. This allows calls to the positive examples
when building the bottom clause if recursion is allowed.

• Changed covers/1 and and coversn/1 to check if being called during induce/0.
• Miscellaneous changes of write/1 to writeq/1.

6.4 Changes in Version 4

• Wed Nov 13 16:18:53 GMT 2002:

• Added portability to SWI-Prolog.
• Lazy-evaluation now creates literals identified by numbers that are less than 0

(rather than by positive numbers beyond that obtained from the bottom clause).
• Fixed error in mark redundant lits/2 that checked for redundant literals in the

bottom clause.
• Avoided overloading of the refine flag by introducing a secondary flag refineop that

is actually used by Aleph.
• Avoided overloading of the search flag by introducing a secondary flag searchstrat

that is actually used by Aleph.
• Removed defunct flags verbose, computation rule.
• Added code symmetric match/2 when checking for symmetric literals.
• Added new flags including minposfrac, minscore, mingain, prune tree, confidence,

classes, newvars etc.
• Changed flags so that noise/minacc can co-exist. Now the user’s problem to check

that these are consistent.
• Introduced new predicate find clause/1 to perform basic searches (this was previ-

ously done by reduce/1).
• Miscellaneous rewrites of code for checking lang ok and newvars ok.
• Miscellaneous rewrites of code for optimising clauses.
• Rationalised pruning code.
• Fixed bug in pos ok that affected posonly mode.
• Added code for dealing uniformly with plus and minus infinities in SWI and Yap.
• Added code for dealing uniformly with alarms in SWI and Yap.
• Added code for dealing uniformly with random number generation in SWI and

Yap.
• Added code for dealing with cputime in cygnus (from Mark Reid).
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• Added code for checking flag settings and specification of default values.
• Added code for new evaluation functions entropy, gini, wracc.
• Added code for new search strategy id.
• Added code for showing positive examples left, good clauses, constraints.
• Added code for calculating pos/neg cover of head of clauses. Needed for checking

minposfrac and evaluating wracc.
• Added code for write rules/0 (from Mark Reid) and rewrote code for reading input

files to be compatible with patches used by Mark Reid and Stasinos Konstantopou-
los.

• Added code in auto refine to check for tautologies.
• Added code to add lookahead to automatic refinement operator.
• Added code to check whether clauses found by induce should be added to the

background (controlled by the flag updateback).
• Added code for generating random vars from normal and chi-square distributions.
• Added code to check that clauses below minpos are not added to the theory.
• Added code for testing theory on sets of files pointed to be train pos, train neg,

test pos, and test neg.
• Added code to store “good” clauses either in a file or in memory.
• Added code for Claudien-style induction of constraints in induce constraints.
• Added code for Tilde-style induction of trees in induce tree.
• Added code for McCreath-Sharma induction of modes in induce modes.
• Added code for generation of propositional boolean features from good clauses.
• Removed code for list profile/0.
• Removed code for probabilistic refinement operators.
• Removed code for doing pre-computation of background predicates.
• Removed code for Markov-Chain Monte-Carlo search.

6.5 Changes in Version 5

• Sun Jun 4 10:51:31 UTC 2006

• Removed cut from call with depth limit/3 for SWI
• Fixed bug in gen layer/2 with negated predicates
• Changed call to portray/1 to aleph portray/1
• Included value of lookahead into automatic refinement in get user refinement
• Included check for LazyOnContra in prove examples for evalfn=posonly
• Ensured update gsample correctly updates counts of rand data
• Corrected bug in modes/2 to get Pred before checking for modes
• Corrected code generated for constructing automatic refinement using modes to account

correctly for multiple mode declarations for the same predicate
• Corrected copy modeterms to account for variables in mode declarations
• Added code for induce features/0
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• Changed tree code to allow specification of the dependent variable

Sun Nov 6 12:49:12 UTC 2005

• Allow minacc and noise settings when evalfn is set to user. Incorporated bug fixes
to get_max_negs reported by Daniel Fredouille.

• Bug fix reported by Vasili Vrubleuski for removal of commutative literals with SWI
• Inserted code for abduction within the induce loop
• Sun Jun 5 05:51:32 UTC 2005

• Fixed miscellaneous bugs in the code.
• Modified code to generate features correctly

• Sun Oct 10 06:59:50 BST 2004 •
• Fixed code to alter odd behaviour with cut being introduced in hypothesised clauses

by altering gen_nlitnum.

Wed Jun 30 14:38:44 BST 2004

• Fixed posonly bug by fixing typo for gsamplesize.

Mon Jun 2 15:05:24 BST 2003

• Complete rewrite of the code to remove references to internal databases.
• Preliminary support for concurrent operation on shared memory machines (using Pro-

log threads).
• Miscellaneous bug fixes in code.

Wed Jun 30 14:38:44 BST 2004

• Corrections to best_value/4 after discussions with James Cussens, Mark Reid and
Jude Shavlik.

• Added depth_bound_call to cover test in test_file/2 (reported by James Cussens).
• Changed code to ignore settings for noise and minacc when evalfn is user.
• discontinue_search now fails if evalfn is user.
• Added interactive flag to control interactive construction of clauses and trees.
• Added command induce_clauses.
• Added code for constructing model trees.
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