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ABSTRACT
A novel method for simultaneous keyphrase extraction and
generic text summarization is proposed by modeling text
documents as weighted undirected and weighted bipartite
graphs. Spectral graph clustering algorithms are used for
partitioning sentences of the documents into topical groups
with sentence link priors being exploited to enhance cluster-
ing quality. Within each topical group, saliency scores for
keyphrases and sentences are generated based on a mutual
reinforcement principle. The keyphrases and sentences are
then ranked according to their saliency scores and selected
for inclusion in the top keyphrase list and summaries of the
document. The idea of building a hierarchy of summaries
for documents capturing different levels of granularity is also
briefly discussed. Our method is illustrated using several ex-
amples from news articles, news broadcast transcripts and
web documents.
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1. INTRODUCTION
Text summarization is an increasingly pressing practical

problem due to the explosion of the amount of textual in-
formation available. For example, web search engines have
exploited the use of text summarization from the very begin-
ning: starting with the extraction of certain number of bytes
from the beginning of each document to the more sophisti-
cated query-focused summaries typified by Google’s snippets
(see also the recent work in [1]). Query-focused summaries
provide the users with the useful information for initial rel-
evance judgement so that they can quickly zero in on doc-
uments deserving further inspection. In contrast, a generic
summary in general distills the most important overall in-
formation from a document (or a set of documents), it can
be especially useful when the documents are relatively long
and contain a variety of topics. With many search engines
starting to index documents in postscript and pdf formats,
we will see increased availability of long and multi-part doc-
uments and the pressing needs for efficiently generating ef-
fective generic summaries for those documents. In addition,
there is also a great amount of news articles and broadcast
transcripts generated daily from various news agencies need-
ing effective summarization.
Automatic text summarization is an extremely active re-

search field making connections with many other research
areas such as information retrieval, natural language pro-
cessing and machine learning [5]. Informally, the goal of text
summarization is to take a textual document, extract content
from it and present the most important content to the user in
a condensed form and in a manner sensitive to the user’s or
application’s needs [13]. In this paper we concentrate on the
shallow approach of text summarization using sentence and
keyphrase extractions. Abstract generation utilizing materi-
als not present in the documents to be summarized is a more
challenging problem and will not be addressed here [1, 13,
14]. Two basic approaches to sentence extraction can be dis-
tinguished on whether they are supervised or unsupervised
in nature. Supervised approaches need human-generated
summary extracts for feature extraction and parameter es-
timation as is typified by the methods in [10, 3] where sen-
tence classifiers are trained using human-generated sentence-
summary pairs as training examples. Possible drawbacks of
the supervised approaches are domain-dependency and the
problems caused by the potential inconsistency of human-
generated summaries. In this paper we adopt the unsuper-
vised approach, we explicitly model both keyphrases and the
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sentences that contain them using weighted undirected and
weighted bipartite graphs and generate sentence extracts on
the fly without extensive training. Our method can also be
viewed as representing a more sophisticated and effective
approach to exploiting the term co-occurrence relationship
in textual documents.
Many text summarization methods are surveyed in [5, 13,

14]. We mention here several recent approaches that are
closest in spirit to our approach. In [18], documents are
modeled using undirected graphs with the vertices repre-
senting paragraphs, and edge weights representing similar-
ity between two paragraphs. Salient paragraphs are those
connected to many other paragraphs with similarity above
certain thresholds. In [6], Latent semantic indexing was
used as the bases for sentence selection of a given textual
document, exploiting the components of multiple singular
vectors. However, the singular vectors other than the one
corresponding to the largest singular value can have both
positive and negative components, making ranking sentences
by singular vector component values less meaningful. In [4],
QR decomposition with column pivoting applied to term-
sentence matrices was used for sentence selection, providing
another example of unsupervised summarization methods.
To emphasize diversity of topic coverage in a generic sum-
mary, in [15] it was proposed to use a variation of the K-
means method to cluster the sentences of a document into
different topical groups, and then apply a sentence weighting
model within each topical group for sentence selection.
The basic idea of our summarization method is to first

cluster sentences of a document (or a set of documents) into
topical groups and then, within each topical group, to select
the keyphrases and sentences by their saliency scores. Our
major contributions are 1) proposing the use of sentence link
priors resulted from the linear ordering of the sentences in
a document to enhance sentence clustering quality; and 2)
developing the mutual reinforcement principle for simulta-
neous keyphrase and sentence saliency score computation.
We also alluded to the possibility of building a summary
hierarchy based on a hierarchical clustering of the sentences
of a document. The rest of the paper is organized as follows:
in section 2, we develop the mutual reinforcement principle
and its connection to computing the largest singular value
triplet of the weight matrix of the term-sentence bipartite
graph. In section 3, we introduce the sentence link prior
and show how we can incorporate it into the sum-of-squares
sentence clustering objective function using spectral cluster-
ing techniques. We also discuss link strength selection using
generalized cross-validation. In section 4, we describe some
experimental results using documents from the newswires,
broadcasting transcripts and the World Wide Web. We con-
clude the paper in section 5 with pointers to future research.

2. THE MUTUAL REINFORCEMENT PRIN-
CIPLE

For each document, we generate two sets of objects: one
the set of terms T = {t1, . . . , tn} and the other the set of
sentences S = {s1, . . . , sm} in the document.

1 We build
a weighted bipartite graph from T and S in the following
way: if the term ti appears in sentence sj, we then create

1The choice is flexible, for example, terms can be words
or phrases and sentences can be replaced by paragraphs or
other text units.

an edge between ti and sj. We can also specify nonnegative
weights on the edges of the weighted bipartite graph with
wij indicating the weight on the edge (ti, sj). For exam-
ple, we can simply choose wij to be the number of times
ti appears in sj . More sophisticated weighting schemes will
be discussed later. We denote the weighted bipartite graph
by G(T, S,W ) where W = [wij ] is the m-by-n weight ma-
trix containing all the pairwise edge weights. For each term
ti and each sentence sj we wish to compute their saliency
scores u(ti) and v(sj), respectively. To this end, we state
the following mutual reinforcement principle:2

A term should have a high saliency score if it ap-
pears in many sentences with high saliency scores
while a sentence should have a high saliency score
if it contains many terms with high saliency scores.

In essence the principle dictates that the saliency score
of a term is determined by the saliency scores of the sen-
tences it appears in, and the saliency score of a sentence is
determined by the saliency scores of the terms it contains.
Mathematically, the above statement is rendered as

u(ti) ∝
∑
v(sj)∼u(ti)

wijv(sj),

v(sj) ∝
∑
u(ti)∼u(ti)

wiju(ti),

where the summations are over the neighbors of the vertices
in question, and a ∼ b indicates there is an edge between
vertices a and b, i.e., when computing a term score, the sum-
mation is over all sentences that contain the term and when
computing a sentence score, the summation is over all terms
that appear in the sentence. The symbol ∝ stands for “pro-
portional to”. Now we collect the saliency scores for terms
and sentences into two vectors u and v, respectively, the
above equation can then be written in the following matrix
format

u =
1

σ
Wv, v =

1

σ
W Tu,

where W is the weight matrix of the bipartite graph of the
document in question, W T stands for the matrix transpose
of W , and 1/σ is the proportionality constant. It is easy to
see that u and v are the left and right singular vectors of
W corresponding to the singular value σ. If we choose σ to
be the largest singular value of W , then its is guaranteed
that both u and v have nonnegative components. The cor-
responding component values of u and v give the term and
sentence saliency scores, respectively. We can rank terms
and sentences in decreasing order of their saliency scores,
and select the top t terms (with the highest saliency scores)
to add to the top term list and the top s sentences (with the
highest saliency scores) to add to the summary. Here t and
s are some user-defined values, and s can be estimated from
the compression rate of the desired summary.
Remark. For numerical computation of the largest sin-

gular value triplet {u, σ, v}, we can use a variation of the
power method adapted to the case of singular value triplets:
choose an initial value for v to be the vector of all ones. Al-
ternate between the following two steps until convergence,

1. Compute and normalize

u =Wv, u = u/‖u‖,

2Similar ideas have also been used to find the hub and au-
thority web pages in a link graph [9].
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2. Compute and normalize

v =W Tu, v = v/‖v‖,

where the vector norm ‖ · ‖ can be chosen to the Euclidean
norm, and σ can be computed as σ = uTWv upon conver-
gence. For a detailed analysis of the singular value decom-
position for related types of matrices, the reader is referred
to [19].
Remark. The above general weighted bipartite graph

model can be extended further by adding vertex weights to
the terms and/or sentences. Both types of weights can in-
corporate certain kind of prior information, for example, the
weight of a sentence vertex can be increased if it contains
certain bonus words; we can also modify the weight of a sen-
tence vertex based on its position in the document. In gen-
eral, let DT and DS be two diagonal matrices the diagonal
elements of which represent the weights of the term vertices
and sentence vertices, respectively. Then instead of finding
the largest singular value triplet of the edge weight matrix
W , we compute the largest singular value triplet {u, σ, v}
of the scaled matrix DTWDS. A specific sentence vertex
weighting scheme will be discussed later.

3. CLUSTERING SENTENCES INTO TOP-
ICAL GROUPS

The saliency score computation discussed in Section 2 can
be more effective if it is applied within each topical group
of a document (or a set of documents). To this end we
discuss effective algorithms for sentence clustering with the
purpose to reveal the latent topical structure of textual doc-
uments. The idea of using sentences clustering has also been
recently used in [18, 15]. For sentence clustering we first
build an undirected weighted graph with vertices represent-
ing the sentences of a document and two sentences si and
sj are linked by an edge if there are terms shared by the
two sentences, we also specify an edge weight wij for the
edge (si, sj), in general wij indicates the similarity between
the two sentences si and sj, and there are many different
ways for their specification. We denote the resulting graph
as G(S,WS), where S is the set of sentences andWS = [wij ]
gives the edge weights. It is quite easy to verify thatWS has
the same sparsity pattern as W TW , where W is the weight
matrix for the bipartite graph introduced in Section 2.

3.1 Incorporating sentence link priors
Documents consist of sentences arranged in a linear or-

der, and near-by sentences in terms of this intrinsic linear
order tend to be about the same topic. The fact that topical
groups within a document are usually made of sections of
consecutive sentences is a strong prior that needs to be fully
exploited during the sentence clustering process. The prior
which we call sentence link prior will be especially helpful
when dealing with broadcasting transcripts where there are
no syntactic cues such as paragraph heading/ending to in-
dicate topic boundaries. To ease discussion, we call si and
sj are near-by to each other if si is followed by sj in the
linear order of the document (or sj is followed by si, since
the graph we consider is undirected anyway).
The weighted undirected graph framework we are using

for sentence clustering naturally lends itself to incorporat-
ing the sentence link prior. In general, pairs of vertices (sen-
tences) with large similarity weight tend to be clustered into

the same group. A simple approach to taking advantage of
this goes as follows: we strengthen the similarity weight be-
tween near-by sentences, i.e., we modify the weights for all
the near-by sentence pairs,

ŵij =

{
wij + α if si and sj are near-by

wij otherwise

We call α the sentence link strength, and the modified weight
matrix is denoted by WS(α). There are n− 1 modifications
in total for a document with n sentences. There is also the
possibility of strengthen the similarity of pairs of sentences
that are two (or more) edges away from each other. Notice
that incorporating sentence link prior is different from the
requirement in text segmentation: we do allow several sec-
tions of consecutive sentences to form a single topical group.
The parameter α can be considered as a regularization pa-

rameter, and we use the idea of generalized cross-validation
(GCV) for choosing a good α [12]. For a fixed α, we apply
the spectral clustering technique discussed in the next sec-
tion toW (α) to obtain a set of sentence clusters Π∗(α). For
any sentence clustering Π we define γ(Π) to be the number
of consecutive sentence segments it generates which is then
used as a measure of model complexity for the clustering
Π. The idea is to simultaneously minimize the clustering
cost function and the model complexity. To this end, we
compute a function of α defined as

GCV(α) = (n− k − J(W,Π∗(α))) /γ(Π∗(α)), (1)

where k is the desirable number of sentence clusters, W is
the weight matrix for the term-sentence bipartite graph and
Π∗(α) is the set of clusters obtained by applying spectral
clustering to the modified weight matrix W (α). We then
select the α that maximizes the above function as the esti-
mated optimal α value.

3.2 Building a summary hierarchy
Summaries can actually capture the essential information

of textual documents at different levels of granularity. This
issue is closely related to the compression rate and cover-
age/diversity of summaries [13]. However, the point of view
of hierarchical sentence clustering seems to provide a rather
natural and fruitful way of tackling the issue. We start
with a sentence cluster hierarchy with the lower-level clus-
ters (nodes) representing finer structures of the document.
Summarization is then done at each node of the hierarchy
using all the sentences that belong to this node. Two basic
variations exist when carry out summarization at a non-root
node of the hierarchy.

• The terms used in summarization remain the same for
all the nodes;

• The terms used in summarization at a particular node
do not include the top terms (i.e., those terms hav-
ing high saliency scores) from the summarization of
its parent nodes.

The idea for the second approach is that we only retain
terms that can distinguish finer structures of the document.
Another possibility is to use the first approach in the above
for all the leave nodes of the hierarchy, and at the next higher
level carry out a summary of summaries until the root-node
is reached. Currently, we have only limited experiences with
the ideas proposed above, and we will not elaborate on the
issues further.
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3.3 Sum-of-squares cost function for sentence
clustering and spectral relaxation

We start with the weight matrixW for the bipartite graph
G(T, S,W ). Here each sentence is represented by a column
of W = [w1, . . . , wn] which we will call the sentence vector.
A partition Π of the sentence vectors can be written in the
following form

WE = [W1, . . . ,Wk], Wi = [w
(i)
1 , . . . , w

(i)
ni ], (2)

where E is a permutation matrix, and Wi is m-by-ni, i.e.,
the ith sentence cluster contains the sentence vectors in Wi.
For a given partition Π, the associated sum-of-squares cost
function is defined as [7]

J(W,Π) =

k∑
i=1

ni∑
s=1

‖w(i)s −mi‖
2, mi =

ni∑
s=1

w(i)s /ni, (3)

i.e., mi is the centroid of the sentence vectors in cluster i,
and ni is the number of sentences in cluster i.
The traditional K-means algorithm is iterative in nature

and in each iteration, the following is performed [7]:

1) For each sentence vector w, find the center mi that is
closest to w, and associate w with this center.

2) Compute a new set of centers by taking, for each cen-
ter, the center of mass of sentence vectors associated
with this center.

It can be proved that the above algorithm is equivalent to
finding a local minimum of J(W,Π) with respect to Π us-
ing coordinate descent. Despite the popularity of K-means
clustering algorithm, one of its major drawbacks is that the
coordinate descent search method is prone to local minima
giving rise to some clusters with very few data points. More-
over, it is also not easy to incorporate the sentence link prior
into the above sum-of-squares cost function in order to im-
prove sentence clustering quality. Much research has been
done on computing refined initial centroids and adding ex-
plicit constraints to the sum-of-squares cost function for K-
means clustering so that the search can converge to a better
local minimum [2]. It was shown, however, that an equiva-
lent formulation of the sum-of-squares minimization can be
derived as a matrix trace maximization problem with special
constraints; relaxing the constraints leads to a trace max-
imization problem that possesses optimal global solutions
[20]. This formulation also makes K-means method easily
adaptable to utilizing the sentence link priors discused in
the above subsection.
Here we give a brief presentation of the spectral relax-

ation approach for K-means clustering. Let e be a vector of
appropriate dimension with all elements equal to one, it is
easy to see that the centroids can be written as

mi =Wie/ni.

Now let

X = diag(e/
√
n1, . . . , e/

√
nk).

It was shown in [20] that the sum-of-squares cost function
can be written as

J(W,Π) = trace(W TW )− trace(XTW TWX),

and its minimization is equivalent to

max{ trace(XTW TWX) | X = diag(e/
√
n1, . . . , e/

√
nk)}.

Ignoring the special structure of X and let it be an arbi-
trary orthonormal matrix, we obtain a relaxed matrix trace
maximization problem

max
XTX=Ik

trace(XTW TWX). (4)

An extension of the Rayleigh-Ritz characterization of eigen-
values of symmetric matrices shows that the above maxi-
mum is achieved by the first k largest eigenvectors of the
Gram matrix W TW [8, Section 4.3.18]. As a by-product,
we also have the following inequality

min
Π
J(W,Π) ≥ trace(W TW )− max

XTX=Ik

trace(XTW TWX)

=

min{m,n}∑
i=k+1

σ2i (W ),

where σi(W ) is the i largest singular value of W . This
gives a lower bound for the minimum of the sum-of-squares
cost function. The spectral relaxation formulation of the
K-means algorithm also makes it easy to consider more gen-
eral kernel functions: instead of using wTi wj we can com-
pute the Gram matrix using any Mercer kernel K(x, x′) to
obtain [K(wi, wj)]

n
i,j=1. In particular, we can replaceW

TW
by WS(α) after incorporating the link strength α. The as-
signment of the cluster labels to each sentence is done by
using QR decomposition with pivoting (see below).
The sentence clustering algorithm based on the modified

weight matrix WS(α) is now summarized as follows:

• Compute the k eigenvectors Vk = [v1, . . . , vk] ofWS(α)
corresponding to the largest k eigenvalues.

• Compute the pivoted QR decomposition of V Tk as

(Vk)
TP = QR = Q[R11, R12],

where Q is a k-by-k orthogonal matrix, R11 is a k-
by-k upper triangular matrix, and P is a permutation
matrix.

• Compute

R̂ = R−111 [R11, R12]P
T = [Ik, R

−1
11 R12]P

T .

Then the cluster membership of each sentence is de-
termined by the row index of the largest element in
absolute value of the corresponding column of R̂. This
gives rise to the clustering Π∗(α) used in (1).

4. EXPERIMENTAL RESULTS
Evaluation for generic text summarization is a very chal-

lenging task: although it can be done against a set of docu-
ments with manual summarizations, human-generated sen-
tence extracts do, however, tend to differ significantly espe-
cially for longer documents [6, 13]. Another approach is to
evaluate extrinsically the summarization algorithms based
on, for example, their performance on document retrieval or
text categorization. Here we will provide some preliminary
quantitative and qualitative assessment of our summariza-
tion algorithm. We collected a set of ten documents con-
sisting of news articles, news broadcast transcripts and web
pages.

• News articles
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Document optimal α accuracy estimated α accuracy sentence # cluster #

sf 7.94 82.17% 7.94 82.17% 157 7
pge 63 69.23% 12.59 57.95 % 195 6
flg 19.95 68.07% 125.89 66.87 % 166 7
heart 7.94 87.23% 7.97 87.23% 47 3
enron 39.8 75.86% 14.59 74.71% 87 6
cnn 31.62 71.79% 79.43 64.69% 507 16
cnn1 2.2 73.96% 50.11 69.81% 265 10
cnn2 25.1 64.89% 125.89 60.11 % 544 12
cnn3 1.99 72.52% 12.59 65.32% 223 10
dna 3.16 74.68% 7.94 70.89% 79 8

Table 1: Clustering accuracy with optimal and estimated α

sf: story.news.yahoo.com/news?tmpl=story&u=
/nyt/20020121/ts_nyt/conduct_of_war_is_

redefined_by_success_of_special_forces

pge: www0.mercurycenter.com/local/center
/dereg1201.htm

flg: www0.mercurycenter.com/local/center

/fal122301.htm

enron: story.news.yahoo.com/news?tmpl=
story&cid=68&u=/nyt/20020120/ts_nyt/
multiple_safeguards_failed_to_detect
_problems_at_enron

• CNN broadcast transcripts

cnn : moneyline

cnn1: newsroom
cnn2: Wolf Blitzer repots
cnn3: science and technology week

• Web pages

dna:
www.pbs.org/wgbh/nova/neanderthals/mtdna.html
heart:
www.pbs.org/wgbh/nova/heart/treating.html

We manually divide each document into topical groups:
for web pages and news articles we rely on the section struc-
ture of the documents, and for news broadcast transcripts
we rely on the contents of the documents. We notice that
the clustering is usually not unique, some clusters can be
merged into a bigger cluster and some clusters can be split
into several smaller ones to capture the finer structure of
the documents. The number of sentences and the number of
clusters for each document are listed in the Table 1. (Other
items of the table will be discussed later.)
We first illustrate quantitatively the difference in sentence

clustering resulting from using the sentence link prior. In
processing the documents, we deleted words appearing in a
stop word list and applied Porter’s stemming [16]. We used
the following sentence similarity measure to construct the
weight matrix WS: each sentence is represented by a sen-
tence vector using the weight matrixW of the term-sentence
bipartite graph introduced in section 2, i.e., columns of W
correspond to the sentences of the document in question.

The weight matrix WS = (wij) for the sentence graph is
computed with wij equal to the dot-product between the
sentence vectors of sentences si and sj. The sentence vec-
tors are weighted with tf.idf weighting and normalized to
have Euclidean length one.
To measure the quality of sentence clustering, we use a

variation of the confusion matrix which is frequently used
for measuring classifier accuracy. We assume the manually
generated section number gives the true cluster label of each
sentence. We then compute the accuracy of our clustering
algorithm against the section labels. In particular, for a k
cluster case, we compute a k-by-k confusion matrix C = [cij ]
with cij the number of sentences in cluster i that belong to
section j. It is actually quite subtle to compute the accuracy
using the confusion matrix because we do not know which
cluster matches which section. An optimal way is to solve
the following maximization problem

max{ trace(CP ) | P is a permutation matrix},

and divide the maximum by the total number of sentences to
obtain the clustering accuracy. This is equivalent to finding
a perfect matching of a complete weighted bipartite graph
which can be solved using Kuhn-Munkres algorithm [11]. In
our computation, we used a greedy algorithm to compute a
sub-optimal solution.

As an illustration, for a sequence of α values, we ap-
plied the spectral clustering algorithm to the weight matrix
WS(α) of the document dna, and in Figure 1 we plot the
clustering accuracy against α. In the same figure, we also
contrast the results of sentence clustering with and with-
out link priors, the one without link priors tend to be more
fragmented. Based on the results for the ten documents, a
general conclusion seems to be that the clustering algorithm
matches the section structure of the document poorly when
there is no near-by sentence constraints (i.e., α = 0). With
too large an α value, sentence similarities are overwhelmed
by link strength, the results are also poor. Our generalized
cross-validation method seems to be quite effective at select-
ing a good α that produces clustering quality close to that
given by the optimal α. In Table 1, we list the optimal α
and the corresponding sentence clustering accuracy for each
document. We also list the estimated α using GCV(α) dis-
cussed in section 3.1 and the corresponding sentence cluster-
ing accuracy. In general, clustering accuracy is a relatively
flat function of α, and the estimated α even though may dif-
fer considerably from the optimal α still produces clustering
accuracy that matchs well the best clustering accuracy, as
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Figure 1: (Left) sentence clustering accuracy versus sentence link strength α. Sentence cluster distribution
with link prior (middle) and without link prior (right)
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Figure 2: Clustering accuracy vs. α (circles); GCV(α) vs. α (diamonds)

can be seen from Figure 2.
For the computation of keyphrase and sentence saliency

scores, we considered sentence vertex weights when applying
the mutual reinforcement principle. Specifically, for the i-th
sentence we apply the weight

log2(number of terms in sentence + 1)

log2(i+ total number of sentences)
.

The idea is to mitigate the influence of long sentences by
scaling each sentence by a factor proportional to the length
of the sentence in terms of number of words; at the same
time sentences close to the beginning of the document get a
small boost based on their positions in the document.
For a detailed illustration we use document dna which

consists of a story lead plus seven sections with sections
headings given below

1. Tracing Ancestry with MtDNA (title) (1–6)

2. Nuclear DNA vs mitochondrial DNA (7–15)

3. Inheriting mtDNA (16–25)

4. Defining mitochondrial ancestors (26–37)

5. Finding mitochondrial ancestors (38–52)

6. Dating mitochondrial ancestors (53–63)

7. Neanderthals and mtDNA (63–70)

8. Final note (71–79)

There are 79 sentences in total, and we number the sentences
consecutively starting from 1. The numbers in parentheses
in the above indicate sentence sequence range in each sec-
tion.
In Table 2, for α = 3.5, we look at the clusters generated

by listing the top five terms and the top one sentence in
each topical groups. We also list the sentence numbers in
the each topical group in parentheses.
The clustering result matches the section structure quite

well except for cluster 8 which actually consists of two sen-
tence sequences. Taking a closer look at the sentences in
cluster 8, we found that sentences 1 to 4 discuss issues re-
lated the common ancestor “Eve”, and section 4 with section
heading Defining mitochondrial ancestors is about the same
topic. So here sentence similarities win over sentence link
strength. We have also applied the mutual reinforcement
principle to all the sentences in the document dna, and the
first few keywords and sentences extracted are related to the
main topic of document. Similar analysis has also been ap-
plied to the other nine documents with quite similar results,
the details of which will not be reported here due to the lack
of space (see http://www.cse.psu.edu/ zha/sum.html ).

5. CONCLUSIONS
In this paper we presented a novel method for simulta-

neous extraction of keyphrases and sentences from textual
documents. We explore the sentence link priors embedded
in the linear ordering of a document to enhance the quality
of clustering sentences of documents into topical groups. We
also develop the mutual reinforcement principle to compute
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Cluster 1 (71–79)

mtdna matern recent recombin alter

In fact, recent studies show that paternal
mtDNA can on rare occasions enter an egg during
fertilization and alter the maternal mtDNA
through recombination.

Cluster 2 (47–52)

group tree similar famili comput

Later, with the help of a computer program,
they put together a sort of family tree,
grouping those with the most similar DNA
together, then grouping the groups, and then
grouping the groups of groups.

Cluster 3 (53–61)

ancestor mutat mtdna rate live

For instance, if they took the mutation rate to

be one in every 1,000 years and knew that there
was a difference of 10 mutations between the
mtDNA of people living today and the mtDNA of an
ancestor who lived long ago, then they could
infer that the ancestor lived 10,000 years ago.

Cluster 4 (62–70)

modern neanderth mtdna european anthropologist

This was an unwelcome finding for

anthropologists who believe that there was
some interbreeding between Neanderthals and
early modern humans living in Europe (which
might have helped to explain why modern
Europeans possess some Neanderthal-like
features);

Cluster 5 (36–46)

mtdna live mutat inherit long

Even though everyone on Earth living today has

inherited his or her mtDNA from one person who
lived long ago, our mtDNA is not exactly alike.

Cluster 6 (16–24)

egg nuclear cell mtdna mothers

Whenever an egg cell is fertilized, nuclear

chromosomes from a sperm cell enter the egg and
combine with the egg’s nuclear DNA, producing a
mixture of both parents’ genetic code.

Cluster 7 (16–24)

human mtdna live scientist includ

In recent years, scientists have used mtDNA to
trace the evolution and migration of human
species,including when the common ancestor to
modern humans and Neanderthals lived -- though

there has been considerable debate over the
validity and value of the findings.

Cluster 8 (1–4, 26–35)

ancestor live common ev mtdna

It also does not mean that the mtDNA originated
with this "Eve"; she and her contemporaries also
had their own "most recent common ancestor
though matrilineal descent," a woman who lived

even further into the past who passed on her
mtDNA to everyone living during "Eve’s" time.

Table 2: Clustering and sentence extract results for document dna. For each cluster we list five top words
and one sentence.
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keyphrase and sentence saliency scores within each topical
groups. We have also illustrated our method using a vari-
ety of documents with different characteristics. Many issues
need further investigation: 1) more research needs to be
done for the determination of optimal link strength α; 2)
other possible ways for sentence clustering. One promis-
ing approach is to use a two-stage method: first segment
the sentences and then cluster the segments into topical
groups; 3) the issues of replacing the use of simple terms
by noun phrases, this will impact how the weight matrix W
and WS will be constructed, and in general the construction
of sentence similarity using various resources beyond lexi-
cal match. We have experimented with using Ramshaw and
Marcus noun phrase chuncker for extracting noun phrases
[17]; 4) more extensive and systematic experimentation of
the method for both single and multiple documents [5]; and
5) extension to translingual summarization [21].
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