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Abstract

When humans produce summaries of documents, they do not simply extract sentences and
concatenate them. Rather, they create new sentences that are grammatical, that cohere with one
another, and that capture the most salient pieces of information in the original document. Given that
large collections of text/abstract pairs are available online, it is now possible to envision algorithms
that are trained to mimic this process. In this paper, we focus on sentence compression, a simpler
version of this larger challenge. We aim to achieve two goals simultaneously: our compressions
should be grammatical, and they should retain the most important pieces of information. These two
goals can conflict. We devise both a noisy-channel and a decision-tree approach to the problem, and
we evaluate results against manual compressions and a simple baseline.  2002 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Most research in automatic summarization has focused on extraction, i.e., on identifying
the most important clauses/sentences/paragraphs in texts (see [23] for a representative
collection of papers). However, determining the most important textual segments is only
half of what a summarization system needs to do because, in most cases, the simple
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catenation of textual segments does not yield coherent outputs. Recently, a number
of researchers have started to address the problem of generating coherent summaries:
McKeown et al. [26], Barzilay et al. [3], Jing and McKeown [15], Barzilay et al. [2], and
Marcu and Gerber [25] in the context of multidocument summarization; and Mani et al.
[22] in the context of revising single document extracts.

The approaches proposed by Witbrock and Mittal [29]; Banko et al. [1]; Berger and
Mittal [5]; Jing and Hauptmann [16] are the only ones that apply a probabilistic model
trained directly on 〈Summary, Document〉 pairs. However, the Summary here restricted to
headlines, and these models have yet to scale up to generating multiple-sentence abstracts
as well as well-formed, grammatical sentences.

Our goal is also to generate coherent abstracts. However, in contrast with the above
work, we intend to eventually use 〈Abstract, Text〉 tuples, which are widely available,
in order to automatically learn how to rewrite Texts as coherent Abstracts. In the spirit
of the work in the statistical MT community, which is focused on sentence-to-sentence
translations, we also decided to focus first on a simpler problem, that of sentence
compression. We chose this problem for two reasons:

• First, the problem is complex enough to require the development of sophisticated
compression models: Determining what is important in a sentence and determining
how to convey the important information grammatically, using only a few words, is
just a scaled down version of the text summarization problem. Yet, the problem is
simple enough, since we do not have to worry yet about discourse related issues, such
as coherence, anaphors, etc.

• Second, an adequate solution to this problem has an immediate impact on several
applications. For example, due to time and space constraints, the generation of TV
captions often requires only the most important parts of sentences to be shown on a
screen [19,28]. A good sentence compression module would therefore have an impact
on the task of automatic caption generation. A sentence compression module can also
be used to provide audio scanning services for the blind [13], and faster access to the
web from PDA devices [7]. In general, since all systems aimed at producing coherent
abstracts often implement manually written sets of sentence compression rules [3,22,
26], it is likely that a good sentence compression module would impact the overall
quality of these systems as well. This becomes particularly important for text genres
that use long sentences.

Previous rule-based work addressing sentence compression includes Jing and Mckeown
[15], Mahesh [21], Carroll et al. [9], Canning et al. [8], and Chandrasekar et al. [10].

In this paper, we present two new data-driven approaches to the sentence compression
problem. Both take as input a sequence of words W = w1,w2, . . . ,wn (one sentence). An
algorithm may drop any subset of these words. The words that remain (order unchanged)
form a compression. There are 2n compressions to choose from—some are reasonable,
most are not. Our first approach develops a probabilistic noisy-channel model for sentence
compression. The second approach develops a decision-based, deterministic model.
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In Section 4, we evaluate both against manual compressions and a simple baseline.
We present these approaches, then evaluate the algorithms and discuss how they can be
extended to the problem of text compression.

2. A noisy-channel model for sentence compression

This section describes a probabilistic approach to the compression problem. In partic-
ular, we adopt the noisy channel framework that has been successful in a large number of
other NLP applications, including speech recognition [14], machine translation [6], part-
of-speech tagging [11], transliteration [17], and information retrieval [4].

In this framework, we look at a long string and imagine that (1) it was originally a short
string, and then (2) someone added some additional, optional text to it. Compression is a
matter of identifying the original short string. It is not critical whether or not the “original”
string is real or hypothetical. For example, in statistical machine translation, we look at a
French string and say, “This was originally English, but someone added ‘noise’ to it”. The
French may or may not have been translated from English originally, but by removing the
noise, we can hypothesize an English source—and thereby translate the string. In the case
of compression, the noise consists of optional text material that pads out the core signal.
For the larger case of text summarization, it may be useful to imagine a scenario in which
a news editor composes a short document, hands it to a reporter, and tells the reporter to
“flesh it out” . . . which results in the article we read in the newspaper. As summarizers, we
may not have access to the editor’s original version (which may or may not exist), but we
can guess at it—which is where probabilities come in.

As in any noisy channel application, we must solve three problems:

• Source model. We must assign to every string s a probability P(s), which gives the
chance that s is generated as an “original short string” in the above hypothetical
process. For example, we may want P(s) to be very low if s is ungrammatical.

• Channel model. We assign to every pair of strings 〈s, t〉 a probability P(t | s), which
gives the chance that when the short string s is expanded, the result is the long string
t . For example, if t is the same as s except for the extra word “not”, then we may want
P(t | s) to be very low. The word “not” is not optional, additional material.

• Decoder. When we observe a long string t , we search for the short string s that
maximizes P(s | t). This is equivalent to searching for the s that maximizes P(s) ·
P(t | s).

It is advantageous to break the problem down this way, as it decouples the somewhat
independent goals of creating a short text that (1) looks grammatical, and (2) preserves
important information. It is easier to build a channel model that focuses exclusively
on the latter, without having to worry about the former. That is, we can specify that a
certain substring may represent unimportant information, but we do not need to worry that
deleting it will result in an ungrammatical structure. We leave that to the source model,
which worries exclusively about well-formedness. In fact, we can make use of extensive
prior work in source language modeling for speech recognition, machine translation, and
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natural language generation. The same goes for actual compression (“decoding” in noisy-
channel jargon)—we can re-use generic software packages to solve problems in all these
application domains.

2.1. Statistical models

In the experiments we report here, we build very simple source and channel models. In a
departure from the above discussion and from previous work on statistical channel models,
we assign probabilities Ptree(s) and Pexpand_tree(t | s) to trees rather than strings. That is, s

and t range over trees. In decoding a new string, we first parse it into a large tree t (using
Collins’ parser [12]), and we then hypothesize and rank various small trees.

Good source trees are ones that have both (1) a normal-looking parse structure, and (2)
normal-looking word pairs. Ptree(s) is a combination of a standard probabilistic context-
free grammar (PCFG) score, which is computed over the grammar rules that yielded the
tree s, and a standard word-bigram score, which is computed over the leaves of the tree.
For example, the tree

s = S (NP John)

(VP (VB saw)

(NP Mary)))

is assigned a score based on these factors:

Ptree(s) = Pcfg(TOP → S | TOP) · Pcfg(S → NP VP | S) · Pcfg(NP → John | NP)

· Pcfg(VP → VB NP | VP) · Pcfg(VP → saw | VB)

· Pcfg(NP → Mary | NP)

· Pbigram(John | EOS) · Pbigram(saw | John) · Pbigram(Mary | saw)

· Pbigram(EOS | Mary).

(We note that the probability assignments made by this source model do not sum to one,
but it suits our purpose as it stands. Interpolating the bigram probabilities with the PCFG
probabilities would be one way to straighten up the model; there are others.)

Our stochastic channel model performs minimal operations on a small tree s to create a
larger tree t . For each internal node in s, we probabilistically choose an expansion template
based on the labels of the node and its children. For example, when processing the S node in
the tree above, we may wish to add a prepositional phrase as a third child. We do this with
probability Pexp(S → NP VP PP | S → NP VP). Or we may choose to leave it alone, with
probability Pexp(S → NP VP | S → NP VP). After we choose an expansion template, then
for each new child node introduced (if any), we grow a new subtree rooted at that node—
for example (PP (P in) (NP Pittsburgh)). Any particular subtree is grown with probability
given by its PCFG factorization, as above (no bigrams).

This is a simple, narrow view of text expansion. This channel model only allows the
insertion of new subtrees; it does not allow any sort of tree re-organization. A phrase like
(NP (JJ Roman) (NN history)) cannot be expanded into (NP (NP (DT the) (NN history))
(PP (P of) (NP Rome))). To view it from the other side, imagine that we are faced with some
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large tree t , and that we want to list out all small “source” trees s such that P(t | s) > 0.
Then we are only allowed to delete sets of constituents in t .

2.2. Example

In this section, we show how to tell whether one potential compression is more likely
than another, according to the statistical models described above. Suppose we observe the
tree t in Fig. 1, which spans the string abcde. Consider the compression s1, which is
shown in the same figure.

We compute the factors Ptree(s1) and Pexpand_tree(t | s1). Breaking this down further,
the source PCFG that describe Ptree(s1), are:

Pcfg(TOP → G | TOP) Pcfg(G → H A | G) Pcfg(A → C D | A)

Pcfg(H → a | H) Pcfg(C → b | C) Pcfg(D → e | D).

The source word-bigram factors are:

Pbigram(a | EOS) Pbigram(b | a) Pbigram(e | b) Pbigram(EOS | e).

The channel expansion-template factors that make up part of Pexpand_tree(t | s1) are:

Pexp(G → H A | G → H A) Pexp(A → C B D | A → C D) .

And finally, the “new tree growth” channel PCFG factors for the expansion are:

Pcfg(B → Q R | B) Pcfg(Q → Z | Q) Pcfg(Z → c | Z) Pcfg(R → d | R).

A different compression will be scored with a different set of factors. For example,
consider a compression of t that leaves t completely untouched. In that case, the source
costs Ptree(t) are:

Fig. 1. Examples of parse trees.
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Pcfg(TOP → G | TOP) Pcfg(H → a | H) Pbigram(a | EOS)
Pcfg(G → H A | G) Pcfg(C → b | C) Pbigram(b | a)

Pcfg(A → C B D | A) Pcfg(Z → c | Z) Pbigram(c | b)

Pcfg(B → Q R | B) Pcfg(R → d | R) Pbigram(d | c)

Pcfg(Q → Z | Q) Pcfg(D → e | D) Pbigram(e | d)

Pbigram(EOS | e).

The channel costs Pexpand_tree(t | t) are:

Pexp(G → H A | G → H A) Pexp(A → C B D | A → C B D)

Pexp(B → Q R | B → Q R) Pexp(Q → Z | Q → Z)

(in other words, leave every node unchanged).
Now we can simply compare

Pcompress_tree(s1 | t) = Ptree(s1) · Pexpand_tree(t | s1))/Ptree(t)

versus

Pcompress_tree(t | t) = Ptree(t) · Pexpand_tree(t | t))/Ptree(t)

and select the more likely one. Note that the denominator Ptree(t) and all the new-tree-
growth PCFG factors cancel out. The quantities that differ between the two proposed
compressions are boxed above. Therefore, s1 will be preferred over t if and only if:

Pcfg(A → C D | A) · Pexp(A → C B D | A → C D) · Pbigram(e | b)

> Pcfg(A → C B D | A) · Pexp(A → C B D | A → C B D)

· Pexp(B → Q R | B → Q R) · Pexp(Q → Z | Q → Z)

· Pbigram(c | b) · Pbigram(d | c) · Pbigram(e | d).

2.3. Training corpus

In order to train our system, we used the Ziff–Davis corpus, a collection of newspaper
articles announcing computer products. Many of the articles in the corpus are paired
with human written abstracts. We automatically extracted from the corpus a set of 1067
sentence pairs. Each pair consisted of a sentence t = t1, t2, . . . , tn that occurred in the article
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The documentation is typical of Epson quality: excellent.
Documentation is excellent.

All of our design goals were achieved and the delivered performance matches the speed of the
underlying device.
All design goals were achieved.

Reach’s E-mail product, MailMan, is a message-management system designed initially for VINES
LANs that will eventually be operating system-independent.
MailMan will eventually be operating system-independent.

Although the modules themselves may be physically and/or electrically incompatible, the cable-
specific jacks on them provide industry-standard connections.
Cable-specific jacks provide industry-standard connections.

Beyond that basic level, the operations of the three products vary widely.
The operations of the three products vary widely.

Ingres/Star prices start at $2,100.
Ingres/Star prices start at $2,100.

Fig. 2. Examples from our parallel corpus.

and a possibly compressed version of it s = s1, s2, . . . , sm, which occurred in the human
written abstract. Fig. 2 shows a few sentence pairs extracted from the corpus, selected to
demonstrate various types of compression by dropping words.

The possibly compressed sentence s uses the same words as the long sentence t ; also,
the words in the two sentences occurred in the same order. Fig. 2 shows a few sentence pairs
extracted from the corpus, where the common words between the long and compressed
version of the sentences are displayed in italics.

We decided to use a corpus of examples such as those shown in Fig. 2 because it
is consistent with two desiderata specific to summarization work: (i) the human-written
Abstract sentences are grammatical; (ii) the Abstract sentences represent in a compressed
form the salient points of the original newspaper Sentences. We decided to keep in the
corpus uncompressed sentences as well, since we want to learn not only how to compress
a sentence, but also when to do it.

While the Ziff–Davis corpus is domain-specific, results appear to generalize, as what
the model learns is mainly at the syntactic level.

2.4. Learning model parameters

We collect expansion-template probabilities from our parallel corpus. We first parse
both sides of the parallel corpus, and then we identify corresponding syntactic nodes. For
example, the parse tree for one sentence may begin

(S (NP . . . )
(VP . . . )
(PP . . . ))
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while the parse tree for its compressed version may begin

(S (NP . . . )

(VP . . . )).

If these two S nodes are deemed to correspond, then we chalk up one joint event (S → NP
VP, S → NP VP PP); afterwards we normalize so that Pexp(S → NP VP PP | S → NP VP)
competes with other ways to expanding an S → NP VP node. Here are sample parameter
values from actual training:

Pexp(NP → DT NN | NP → DT NN) = 0.8678

Pexp(NP → DT JJ NN | NP → DT NN) = 0.0287

Pexp(NP → DT NNP NN | NP → DT NN) = 0.0230

Pexp(NP → DT JJS NN | NP → DT NN) = 0.0115

Pexp(NP → DT NNP CD NN | NP → DT NN) = 0.0057

etc.

Not all nodes have corresponding partners; some non-correspondences are due to
incorrect parses, while others are due to legitimate reformulations that are beyond the
scope of our simple channel model. We use standard methods to estimate source PCFG and
word-bigram probabilities (from the Penn Treebank and unannotated Wall Street Journal,
respectively).

2.5. Decoding

There are vast numbers of potential compressions of a large tree t , but we can pack them
all efficiently into a shared-forest structure. For each node of t that has n children, we

• generate 2n − 1 new nodes, one for each non-empty subset of the children, and
• pack those nodes so that they are referred to as a whole.

For example, consider the large tree t in Fig. 1. All compressions can be represented with
the following rules, which encode the forest shown in Fig. 3.

G → H A B → R A → B C H → a

G → H Q → Z A → C C → b

G → A A → C B D A → B Z → c

B → Q R A → C B A → D R → d

B → Q A → C D D → e.

We can also assign a source PCFG and expansion-template probability to each node in
the forest. For example, to the B → Q node, we can assign the expansion probability

Pexp(B → Q | B) · Pexp(B → Q R | B → Q).
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Fig. 3. A compact representation of all compressions of tree t in Fig. 1.

We smooth the expansion probabilities to 10−6, but we do not smooth the source PCFG
probabilities for compressed nodes. We only consider compressing a node in ways that are
locally grammatical according to the Penn Treebank—e.g., if the rule A → C B has never
been observed, then it will not appear in the forest.

At this point, we want to extract a set of high-scoring trees from the forest, taking into
account both expansion-template probabilities and word-bigram probabilities. Fortunately,
we have such a generic extractor on hand [18]. This extractor was designed for a
hybrid symbolic-statistical natural language generation system called Nitrogen. In that
application, a rule-based component converts an abstract semantic representation into a
vast number of potential English renderings. These renderings are packed into a forest,
from which the most promising sentences are extracted using statistical scoring. At present,
this scoring is based on word-ngrams, but current research aims at extending the scores
to account for subcategorization and long-distance syntactic relationships, as between a
verb and its direct object. A more sophisticated extractor will also help determine which
prepositional phrases may be safely deleted.

For our purposes, the extractor selects the trees with the best combination of word-
bigram and expansion-template scores. It returns a list of such trees, one for each possible
compression length. For example, for the sentence Beyond that basic level, the operations
of the three products vary, we obtain the following “best” compressions, with negative log-
probabilities shown in parentheses (smaller = more likely):

Beyond that basic level, the operations of the three products vary widely (1514588)
Beyond that level, the operations of the three products vary widely (1430374)
Beyond that basic level, the operations of the three products vary (1333437)
Beyond that level, the operations of the three products vary (1249223)
Beyond that basic level, the operations of the products vary (1181377)
The operations of the three products vary widely (939912)
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The operations of the products vary widely (872066)
The operations of the products vary (748761)
The operations of products vary (690915)
Operations of products vary (809158)
The operations vary (522402)
Operations vary (662642)

2.6. Length selection

It is useful to have multiple answers to choose from, as one user may seek a 20%
compression, while another seeks a 60% compression. Or, if the compression is going to
be subsequently translated into another language, we may want to multiply in translation
probabilities before deciding on a particular length.

However, for purposes of evaluation, we want our system to be able to select a single
compression. If we rely on the log-probabilities as shown above, we will almost always
choose the shortest compression. While the goal of summarization is to produce compact
text, more compact is not necessarily better, as the loss of information may be too great.
(Note above, however, how the three-word compression scores better than the two-word
compression, as the models are not entirely happy removing the article “the”.) To create
a more fair competition, we divide the log-probability by the length of the compression,
rewarding longer strings. This is commonly done in speech recognition (??).

If we plot this normalized score against compression length, we usually observe a
(bumpy) U-shaped curve, as illustrated in Fig. 4. In a typical more difficult case, a 25-
word sentence may be optimally compressed by a 17-word version. Of course, if a user
requires a shorter compression than that, she may select another region of the curve and
look for a local minimum.

3. A decision-based model for sentence compression

In this section, we describe a decision-based, history model of sentence compression.
Decision-based models have been successful in parsing and interpretation applications
Magerman [20]; Zelle and Mooney [30], and we explore their use in summarization here.
As in the noisy-channel approach, we again assume that we are given as input a parse
tree t . Our goal is to “rewrite” t into a smaller tree s, which corresponds to a compressed
version of the original sentence subsumed by t . Suppose we observe in our corpus the
trees t and s2 in Fig. 1. In this model, we ask ourselves how we may go about rewriting t

into s2. One possible solution is to decompose the rewriting operation into a sequence of
shift-reduce-drop actions that are specific to an extended shift-reduce parsing paradigm.

In the model we propose, the rewriting process starts with an empty Stack and an
Input List that contains the sequence of words subsumed by the large tree t . Each word
in the input list is labeled with the name of all syntactic constituents in t that start with
it (see Fig. 5). At each step, the rewriting module applies an operation that is aimed at
reconstructing the smaller tree s2. In the context of our sentence-compression module, we
need four types of operations:
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Fig. 4. Adjusted log-probabilities for top-scoring compressions at various lengths (lower is better).

Fig. 5. Example of incremental tree compression.
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• SHIFT operations transfer the first word from the input list into the stack.
• REDUCE operations pop the k syntactic trees located at the top of the stack; combine

them into a new tree; and push the new tree on the top of the stack. Reduce operations
are used to derive the structure of the syntactic tree of the short sentence.

• DROP operations are used to delete from the input list subsequences of words that
correspond to syntactic constituents. A DROP X operations deletes from the input list
all words that are spanned by constituent X in t .

• ASSIGNTYPE operations are used to change the label of trees at the top of the stack.
These actions assign POS tags to the words in the compressed sentence, which may be
different from the POS tags in the original sentence.

The decision-based model is more flexible than the channel model because it enables the
derivation of trees whose skeleton can differ quite drastically from that of the tree given
as input. For example, using the channel model, we are unable to obtain tree s2 from t .
However, the four operations listed above enable us to rewrite a tree t into any tree s, as
long as an in-order traversal of the leaves of s produces a sequence of words that occur in
the same order as the words in the tree t .1 For example, the tree s2 can be obtained from
tree t by following this sequence of actions, whose effects are shown in Fig. 5: SHIFT;
ASSIGNTYPE H; SHIFT; ASSIGNTYPE K; REDUCE 2 F; DROP B; SHIFT; ASSIGNTYPE

D; REDUCE 2 G.
To save space, we show SHIFT and ASSIGNTYPE operations on the same line; however,

the reader should understand that they correspond to two distinct actions. As one can see,
the ASSIGNTYPE K operation rewrites the POS tag of the word b; the REDUCE operations
modify the skeleton of the tree given as input. To increase readability, the input list is shown
in a format that resembles as closely as possible the graphical representation of the trees in
Fig. 1.

3.1. Learning the parameters of the decision-based model

We associate with each configuration of our shift-reduce-drop, rewriting model a
learning case. The cases are generated automatically by a program that derives sequences
of actions that map each of the large trees in our corpus into smaller trees. The rewriting
procedure simulates a bottom-up reconstruction of the smaller trees.

Overall, the 1067 pairs of long and short sentences yielded 46383 learning cases. Each
case was labeled with one action name from a set of 210 possible actions: There are 37
distinct ASSIGNTYPE actions, one for each POS tag. There are 63 distinct DROP actions,
one for each type of syntactic constituent that can be deleted during compression. There
are 109 distinct REDUCE actions, one for each type of reduce operation that is applied
during the reconstruction of the compressed sentence. And there is one SHIFT operation.
Given a tree t and an arbitrary configuration of the stack and input list, the purpose of
the decision-based classifier is to learn what action to choose from the set of 210 possible
actions.

1 Marcu et al. [24] discuss a decision-based model of tree rewriting that permits leaves to be re-ordered as
well.
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To each learning example, we associated a set of 99 features from the following two
classes:

Operational features reflect the number of trees in the stack, the input list, and the
types of the last five operations. They also encode information that denote the
syntactic category of the root nodes of the partial trees built up to a certain time.
Examples of such features are: numberTreesInStack, wasPreviousOperationShift,
syntacticLabelOfTreeAtTheTopOfStack, etc.

Original-tree-specific features denote the syntactic constituents that start with the first
unit in the input list. Examples of such features are: inputListStartsWithA_CC,
inputListStartsWithA_PP, etc.

The decision-based compression module uses the C4.5 program [27] in order to learn
decision trees that specify how large syntactic trees can be compressed into shorter trees.
A ten-fold cross-validation evaluation of the action classifier yielded an accuracy of
87.16% (± 0.14), i.e., 87.16% of the time the system is faced with an action choice (SHIFT,
REDUCE, . . . ), it makes the same choice as in the human-generated data.

A majority baseline classifier that chooses the action SHIFT has an accuracy of 28.72%.

3.1.1. Examples of learned compression rules
Given our training data, the decision-based classifier learned automatically rules such

as those shown in Fig. 6. Rule 1 enables the deletion of WH prepositional phrases in the
context in which they follow other constituents that the program decided to delete. Rule 2
enables the deletion of WHNP constituents. Since this deletion is carried out only when
the stack contains only one NP constituent, it follows that this rule is applied only in
conjunction with complex nounphrases that occur at the beginning of sentences. Rule 3
enables the deletion of adjectival phrases.

Rule 1: IF previous operation was not “Reduce” AND

previous operation was not “Shift” AND

previous operation was not “AssignType” AND

the input list starts with a syntactic constituent of type WHPP
THEN drop from the input list the words subsumed by WHPP.

Rule 2: IF there is only one tree in the stack AND

previous operation was “Reduce” AND

the syntactic label of the tree in the stack is NP-A AND

the input list starts with a syntactic constituent of type WHNP
THEN drop from the input list the words subsumed by WHNP.

Rule 3: IF previous operation was “Drop” AND

the input list starts with a syntactic constituent of type ADJP AND

the input list does not start with a syntactic constituent of type NP
THEN drop from the input list the words subsumed by ADJP.

Fig. 6. Examples of rules that were learned automatically by the c4.5 program.
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3.2. Employing the decision-based model

To compress sentences, we apply the shift-reduce-drop model in a deterministic fashion.
We parse the sentence to be compressed [12] and we initialize the input list with the words
in the sentence and the syntactic constituents that “begin” at each word, as shown in
Fig. 5. We then incrementally inquire the learned classifier what action to perform, and
we simulate the execution of that action. The procedure ends when the input list is empty
and when the stack contains only one tree. An inorder traversal of the leaves of this tree
produces the compressed version of the sentence given as input.

Since the model is deterministic, it produces only one output. The advantage is that
the compression is very fast: it takes only a few milliseconds per sentence, not counting
parsing. The disadvantage is that it does not produce a range of compressions, from which
another system may subsequently choose. It is straightforward though to extend the model
within a probabilistic framework by applying, for example, the techniques used by [20].

4. Evaluation

To evaluate our compression algorithms, we randomly selected 32 sentence pairs from
our parallel corpus, which we will refer to as the Test Corpus. We used the other 1035
sentence pairs for training. Fig. 7 shows three sentences from the Test Corpus, together
with the compressions produced by humans, our compression algorithms, and a baseline
algorithm that produces compressions with highest word-bigram scores. The examples are

Original: Beyond the basic level, the operations of the three products vary widely.
Baseline: Beyond the basic level, the operations of the three products vary widely.
Noisy-channel: The operations of the three products vary widely.
Decision-based: The operations of the three products vary widely.
Humans: The operations of the three products vary widely.

Original: Arborscan is reliable and worked accurately in testing, but it produces
very large dxf files.

Baseline: Arborscan and worked in, but it very large dxf.
Noisy-channel: Arborscan is reliable and worked accurately in testing, but it produces

very large dxf files.
Decision-based: Arborscan is reliable and worked accurately in testing very large dxf files.
Humans: Arborscan produces very large dxf files.

Original: Many debugging features, including user-defined break points and
variable-watching and message-watching windows, have been added.

Baseline: Debugging, user-defined and variable-watching and message-watching,
have been.

Noisy-channel: Many debugging features, including user-defined points and
variable-watching and message-watching windows, have been added.

Decision-based: Many debugging features.
Humans: Many debugging features have been added.

Fig. 7. Selected compression examples.
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chosen so as to reflect good, average, and bad performance cases. The first sentence is
compressed in the same manner by humans and our algorithms (the baseline algorithm
chooses though not to compress this sentence). For the second example, the output of
the Decision-based algorithm is grammatical, but the semantics is negatively affected. The
noisy-channel algorithm deletes only the word “break”, which affects the correctness of the
output less. In the last example, the noisy-channel model is again more conservative and
decides not to drop any constituents. In contrast, the decision-based algorithm compresses
the input substantially, but it fails to produce a grammatical output.

We presented each original sentence in the Test Corpus to four judges, together with four
compressions of it: the human generated compression, the outputs of the noisy-channel
and decision-based algorithms, and the output of the baseline algorithm. The judges were
told that all outputs were generated automatically. The order of the outputs was scrambled
randomly across test cases.

To avoid confounding, the judges participated in two experiments. In the first
experiment, they were asked to determine on a scale from 1 to 5 how well the systems
did with respect to selecting the most important words in the original sentence. In the
second experiment, they were asked to determine on a scale from 1 to 5 how grammatical
the outputs were.

We also investigated how sensitive our algorithms are with respect to the training data
by carrying out the same experiments on sentences of a different genre. To this end, we
took the first sentence of the first 26 articles made available in 1999 on the scientific cmplg
archive. We created a second test corpus, which we will refer to as the Cmplg Corpus,
by generating by ourselves compressed grammatical versions of these sentences. (Training
was done on the Ziff–Davis corpus, as before.) Since some of the sentences in this corpus
were extremely long, the baseline algorithm could not produce compressed versions.

The results in Table 1 show compression rates, and mean and standard deviation results
across all judges, for each algorithm and corpus. The results show that the decision-based
algorithm is the most aggressive: on average, it compresses sentences to about half of their
original size. The compressed sentences produced by both algorithms are more “grammati-
cal” and contain more important words than the sentences produced by the baseline. T -test
experiments showed these differences to be statistically significant at p < 0.01 both for
individual judges and for average scores across all judges. T -tests showed no significant
statistical differences between the two algorithms. As Table 1 shows, the performance of

Table 1
Experimental results

Corpus Avg. orig. Baseline Noisy-channel Decision-based Humans
sent. length

Test 21 words Compression 63.70% 70.37% 57.19% 53.33%
Grammaticality 1.78 ± 1.19 4.34 ± 1.02 4.30 ± 1.33 4.92 ± 0.18
Importance 2.17 ± 0.89 3.38 ± 0.67 3.54 ± 1.00 4.24 ± 0.52

Cmplg 26 words Compression – 65.68% 54.25% 65.68%
Grammaticality – 4.22 ± 0.99 3.72 ± 1.53 4.97 ± 0.08
Importance – 3.42 ± 0.97 3.24 ± 0.68 4.32 ± 0.54
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the compression algorithms is much closer to human performance than baseline perfor-
mance; yet, humans perform statistically better than our algorithms at p < 0.01.

When applied to sentences of a different genre, the performance of the noisy-channel
compression algorithm degrades smoothly, while the performance of the decision-based
algorithm drops sharply. This is due to a few sentences in the Cmplg Corpus that the
decision-based algorithm over-compressed to only two or three words. We suspect that
this problem can be fixed if the decision-based compression module is extended in the
style of Magerman [20], by computing probabilities across the sequences of decisions that
correspond to a compressed sentence. Likewise, there are substantial gains to be had in
noisy-channel modeling—we see clearly in the data many statistical dependencies and
processes that are not captured in our simple initial models. More grammatical output will
come from taking account of subcategory and head-modifier statistics (in addition to simple
word-bigrams), and an expanded channel model will allow for more tree manipulation
possibilities. Work on extending the algorithms presented in this paper to compressing
multiple sentences is currently underway.

5. Conclusions

We have described sentence compression, a summarization task that requires reasoning
about fluency and the relative importance of different pieces of text. We have presented
corpus-based methods for attacking this problem, one using the noisy-channel framework,
and other using a decision-based model. While previous corpus-based work in summariza-
tion has focused on keyword extraction, this work shows that it is feasible to construct new
whole sentences by analyzing existing, manually produced, compressions.

In addition to having many useful applications, we view sentence compression as a
stepping stone towards building high-quality, document-level summarization systems. We
believe that corpus-based approaches of the kind described in this paper provide the best
way to scale up to the full problem of text compression, as vast amounts of data are widely
available in the form of document/abstract pairs. The next steps along this path will be to
devise models of the human summarizer that fit this data and can be trained on it.
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