
UNIVERSIDADE DA BEIRA INTERIOR
Engenharia

Assessing and Addressing the Security of
Persistent Data in the Android Operating System

Francisco Dias Pereira Nunes Vigário

Dissertação para obtenção do Grau de Mestre em
Engenharia Informática

(2º ciclo de estudos)

Orientador: Professor Doutor Pedro Ricardo Morais Inácio

Covilhã, Outubro de 2015

ii

Dedication

"... to my parents, for all they have done to be able to finish this cycle of studies. To my
advisor, since he was key to my success. To my girlfriend, Catarina Oliveira, for all the support

and patience during this phase of my life."

iii

iv

Acknowledgments

First of all, I would like to thank my father, Orlando, and my mother, Maria de Lurdes, for all
the effort they have made during my academic path and for all the support and encouragement
they gave me. Without them, it would be impossible for me to achieve this stage of my life.

Next, I would like to acknowledge my supervisor, Professor Pedro Ricardo Morais Inácio, for the
opportunity to integrate a dynamic research group and for all the support he gave me throughout
the university years, especially during the course of my master thesis.

I am also grateful to my girlfriend, Catarina Oliveira, who was key to the success of my academic
path. I appreciate all the support, the patience in the the most difficult moments, and all the
motivation she provided me with to continue in the bad moments.

I appreciate all the help I have been given over the years from all my family, friends and class-
mates.

I am thankful to EyeSee, Lda., specially to Eng. João Redol, for partially financing this work.

Last, but not least, I would like to express my gratitude to all the colleagues of the Multimedia
Signal Processing - Covilhã (MSP-Cv) laboratory, based at Universidade da Beira Interior (UBI)
and part of the Instituto de Telecomunicações (IT). I am particularly grateful to Miguel Neto,
for all the support and knowledge he passed to me since the first day I joined the group.

v

vi

Resumo

A adoção generalizada de dispositivos móveis, e a maneira como os utilizadores interagem com
eles, levou ao desenvolvimento de novas formas de execução, distribuição e instalação de apli-
cações, abrindo também caminho para novos modelos de negócio. As aplicações móveis podem
ser compradas como uma única peça de software, ou algumas das suas características, extensões
ou conteúdos podem ser também objeto de compra. Em muitas aplicações para o Sistema Oper-
ativo Android, os itens pagos são, na maioria das vezes, obtidos através das chamadas compras
na aplicação (da expressão in-app purchases), um recurso que permite ao utilizador fazer micro
pagamentos no contexto da aplicação via Google Play Store. A receita de muitos programadores
é obtida através da venda de pequenos recursos após lançar uma versão gratuita ou paga da sua
aplicação. Por outro lado, as capacidades crescentes dos dispositivos móveis, juntamente com
a sua natureza pessoal, transforma-os em agregadores de informação privada e alvos interes-
santes para os atacantes. Além disso, os dados de controlo armazenados nos dispositivos podem
ser manipulados para alterar o fluxo de programas e aceder a funcionalidades bloqueadas ou a
conteúdo sem pagar.

Esta dissertação está focada em problemas de armazenamento seguro de dados em dispositivos
móveis, especialmente em sistemas Android. A principal contribuição é a quantificação da
suscetibilidade à manipulação e à exposição de dados em aplicações Android através de um
exaustivo estudo de muitas aplicações retiradas da loja oficial Android. Este estudo incluiu
a construção de dois conjuntos de dados com um total de 1542 aplicações (849 jogos e 693
aplicações comuns) e a análise humana de cada um deles. O método consistia em: utilizar
as aplicações num smartphone; transferi-las para um computador com um sistema operativo
Linux de seguida; analisar e modificar os seus dados (quando possível); e por fim transferi-las
de volta para o ambiente Android. Todo o procedimento aproveita a funcionalidade de backup
disponibilizada pelo sistema operativo e usa apenas ferramentas disponíveis livremente, não
sendo necessário permissões de administração no dispositivo móvel, comprovando a viabilidade
da abordagem.

No caso do conjunto de jogos, verificou-se que pelo menos 1 em cada 6 era suscetível à manip-
ulação de dados, o que significa que foi possível obter itens pagos sem qualquer pagamento. No
caso do conjunto de aplicações comuns, 1 em cada 5 é suscetível ao mesmo problema de ma-
nipulação de dados ou foi possível obter informação armazenada sensível, como palavras-passe
e números de identificação pessoal em texto limpo. As aplicações vulneráveis não incluem
mecanismos para evitar que os dados sejam vistos ou modificados, o que constituiria a melhor
forma de atenuar o problema. Com base no que foi aprendido, várias propostas generalistas
para resolver o problema são discutidos no final da dissertação.

Palavras-chave

Android, Manipulação de Dados, Integridade, Segurança em Dispositivos Móveis, Sistema Oper-
ativo Móvel, Segurança, Armazenamento

vii

viii

Resumo alargado

Introdução
Este capitulo, escrito em língua Portuguesa, vem apresentar um resumo do corpo desta dis-
sertação. Inicialmente começa-se por apontar o enquadramento deste trabalho, tal como a
descrição do problema endereçado e os objectivo propostos. As contribuições principais re-
sultantes deste programa de mestrado são posteriormente enumeradas. É descrito um pouco
do trabalho relacionado nesta área, tal como é feita a apresentação dos conjuntos de dados
levados a análise e o método utilizado durante esta análise. Os resultados obtidos da análise
dos dois conjuntos de dados são apresentados na secção seguinte. Na penúltima secção são ap-
resentado alguns esquemas para solucionar o problema encontrado neste trabalho. O capitulo
termina com as principais conclusões retiradas deste trabalho, bem como algumas direções para
trabalho futuro.

Enquadramento, Descrição do Problema e Objetivos
Os dispositivos móveis, principalmente os smartphones e tablets têm sofrido um acréscimo na
sua utilização, parte do dia a dia de muitas pessoas, tendo vindo a substituir os computadores
pessoais [MBK+12]. Com isto as maiores empresas do sector, tais como Google, Apple e Mi-
crosoft, dedicaram-se ao desenvolvimento de sistemas operativos para dispositivos móveis, tais
como o Android [Goo15a] e o iOS [App15d] e à criação de plataformas e kits de programação e à
criação de hardware dedicado, como o iPhone [App15e] ou o Nexus [Goo15c]. No que respeita
ao software para dispositivos móveis, este segue um modelo diferente do tradicional, visto que
muitos programadores preferem disponibilizar o software de forma gratuita inicialmente, sendo
que assim conseguem ter um maior número de utilizadores, recorrendo a micro-pagamentos
como fonte de rendimento. Estes micro-pagamentos são usados para desbloquear ou insta-
lar funcionalidades adicionais, que inicialmente se encontrem indisponíveis ou bloqueadas. De
forma a facilitar os utilizadores, este processo de instalação e pagamentos é efetuado através as
app stores, sendo que os maiores distribuidores de sistemas operativos para dispositivos móveis
têm as suas próprias lojas, como a Google Play [Goo15b], Apple Store [App15b] e Windows Phone
Store [Mic15]. No caso da loja do sistema operativo Android, as peças de software que possi-
bilitam a realização de micro-pagamentos dentro do software são catalogadas como possuindo
in-app purchases.

O sistema operativo Android, desenvolvido pela Google, é o sistema que, em 2015, tinha uma
maior cota de mercado, sendo que cerca de 75% dos dispositivos trazem este sistema operativo
instalado [FBL+15]. Devido a este sucesso, muitos programadores focaram as suas atenções no
desenvolvimento de aplicações para o mesmo. Reflexo disso é o aumento do número de apli-
cações disponíveis para download na Google Play. Por exemplo, entre junho e novembro de
2013, o total de aplicações disponíveis para download cresceu de 887,202 para 1,107,476, o que
corresponde a um aumento de cerca de 25% [VGN14]. O aumento das aplicações disponiveis
na Google Play tem continuado a aumentar, e à data de escrita da dissertação, já se encon-
tram disponíveis mais de 1,633,000 aplicações. Este aumento também é explicado pelo facto
de muitos programadores com poucos conhecimentos conseguirem construir as suas aplicações
através de tutoriais disponíveis na Internet.

Este programa de mestrado foi focado no problema de armazenamento inseguro de dados em

ix

dispositivos móveis com o sistema operativo Android (acima da versão 4.0.0). Em condições nor-
mais, o sistema operativo assegura que os dados internos de uma aplicação apenas são acedidos
por esta, a não ser que outras aplicações tenham permissões explicitas para tal. No entanto,
existem várias formas de contornar esta funcionalidade do sistema operativo. Uma destas for-
mas é utilizando a ferramenta de backup disponível no Android. Esta ferramenta permite que
os utilizadores realizem backup das aplicações instaladas no seu dispositivo para um computa-
dor pessoal e neste backup são incluidos os ficheiros internos da aplicação. A possibilidade de
manipular os dados de uma aplicação sobre determinadas condições (explorada neste trabalho)
é também conhecida na comunidade Android [XDA15]. Estas alterações podem ter influencia no
fluxo normal do software, visto que os programadores utilizam estes ficheiros para armazenar
dados auxiliares ao software e dados referentes ao utilizador.

O principal objetivo deste trabalho consiste em avaliar a suscetibilidade à manipulação e ex-
posição dos dados em aplicações Android, utilizando para isso a ferramenta de backup. A ideia é
avaliar o quanto é fácil tirar proveito da manipulação dos dados para obter algum ganho, anal-
isar a quantidade de informações pessoais ou confidenciais que podem ser obtidas utilizando
os meios disponíveis, quantificar em que medida estas vulnerabilidades afetam o universo de
aplicações Android e, por fim, propor soluções para o problema identificado. De modo a obter
todos os objetivos propostos, o trabalho foi dividido em cinco fases:

• A primeira fase consiste em realizar uma revisão da literatura especializada nesta área de
conhecimento;

• A segunda fase consiste em realizar várias experiências não documentadas, de modo a
construir o método a ser utilizado durante a análise das aplicações Android;

• Durante a terceira fase serão construidos dois conjunto de dados com aplicações e jogos
Android. Será construido um script para filtrar apenas as aplicações que contenham, como
característica, o facto de permitirem compras dentro da aplicação, sendo que esta seleção
é feita de forma aleatória;

• A quarta fase consiste na análise das aplicações e jogos que se encontram nos conjuntos
de dados construidos na fase anterior;

• Na quinta fase analisam-se as várias possibilidades para resolver os problemas de segurança
encontrados durante este trabalho.

Principais Contribuições
A principal contribuição deste programa de mestrado consiste na realização de um estudo de-
talhado da suscetibilidade a manipulação e exposição de dados por parte de aplicações Android.
Neste estudo foram utilizados os dois conjuntos de dados de aplicações construidos, sendo anal-
isadas um total de 1542 aplicações, para conseguir obter um resultado conciso. Esta contribuição
principal pode ser sub dividida em duas, como se segue:

1. A análise de 849 jogos para Android e a avaliação da sua susceptibilidade à manipulação
de dados foi assunto num artigo cientifico com o título Assessment of the Susceptibility
to Data Manipulation of Android Games with In-app Purchases, apresentado e aceite para

x

publicação nas atas da 30th Internacional Conference on ICT Systems Security and Privacy
Protection (IFIP SEC 2015), realizada em Hamburgo, Alemanha, entre 26 e 28 de Maio de
2015 [VNF+15]. Esta conferência neste ano teve um rácio de aceitação de 20%.

2. A segunda consistiu na análise de 693 aplicações comuns disponíveis para Android e a
avaliação da suscetibilidade para manipulação e exposição de dados, este foi assunto de
um artigo cientifico com o título On the Susceptibility to Data Manipulation and Infor-
mation Exposure of Free Android Apps with In-app Purchases, apresentado e aceite para
publicação nas atas do 7º Simpósio de Informática (INFORUM 2015), realizado na Covilhã,
Portugal, nos dias 7 e 8 de Setembro de 2015 [Fra15].

Aparte de estas principais contribuições, esta dissertação contem várias propostas de solução
para o problema de manipulação de dados através da ferramenta de backup.

Estado da Arte
O aumento dos utilizadores de dispositivos móveis tem levado ao aumento da preocupação
com a segurança destes dispositivos. Nos últimos anos, alguns investigadores da especiali-
dade têm focado grande parte do seu trabalho nesta área, sendo que a vertente que mais
tem sido investigada é a de malware para dispositivos móveis. Em 2011, Zurutuza [BZNT11]
desenvolveu uma ferramenta para detetar malware baseado no comportamento da aplicação,
à qual deu o nome de Crowdroid. Outra forma utilizada para a deteção de malware nestes
dispositivos é através da analise do manifesto da aplicação, tal como descreveu Sato no seu
trabalho [RS13]. Ainda relacionado com a deteção de malware, existem várias ferramentas on-
line [Weg15, Vie15, Joe15, Fel15] disponíveis para qualquer programador ou utilizador comum
submeter as aplicações desenvolvidas por si, ou aplicações que tenham intenção de instalar no
seus dispositivo, para que esta seja alvo de análise e se perceba se tem malware ou não. A
OWASP é uma fundação sem fins lucrativos criada em 1 de dezembro de 2011 que tem como
principal objetivo a promoção da programação segura. Em 2010 sentiram necessidade de criar
um projeto dedicado as aplicações móveis, sendo responsáveis pela criação de um top 10 de
vulnerabilidades em aplicações móveis. A vulnerabilidade explorada neste trabalho encontra-
se em segundo nesta escala, sendo que Christian Håland [Chr13] analisou, na sua dissertação
de mestrado, várias aplicações, tais como o jogo 4Pics1Word e detetou que este jogo era vul-
nerável a este tipo de vulnerabilidade, visto que permitia aumentar o dinheiro virtual alterando
os ficheiros auxiliares da aplicação.

Conjunto de Dados e Análise de Aplicações Android
O primeiro conjunto de dados construido para realizar este estudo é constituído apenas por jogos
disponíveis para download na Google Play, tendo todos como característica comum o facto de
permitirem compras dentro do jogo. Este conjunto de dados foi constituído durante os meses de
Setembro e Novembro de 2014. Para conjunto de dados foram considerados 849 jogos, divididos
por 15 diferentes categorias, sendo que a categoria com um maior número de aplicações foi a de
Ação, com 141 jogos. Outra divisão que se pode aplicar ao conjunto diz respeito à popularidade
de cada jogo, sendo que o intervalo de 1000000 a 5000000 é que mais aplicações contém (296
jogos neste intervalo).

O segundo conjunto de dados é constituído por aplicações comuns (excluindo jogos) disponíveis
para download na Google Play de forma gratuita. Todas partilham da mesma característica

xi

(i.e., de possibilitarem a compra dentro da aplicação). Este conjunto é composto por 693 apli-
cações dividido por 24 categorias. Antes da sua constituição, e contrariamente ao anterior,
foi necessário estabelecer um limite de 30 aplicações por categoria para este conjunto, para
não correr o risco de ter um número muito desfasado de aplicações por categoria. Apenas as
categorias Desporto, Compras e Bibliotecas e Demonstrações não atingiram o limite de 30 apli-
cações. Tal como no conjunto anterior, neste também foi analisada a divisão no que diz respeito
ao número de downloads, sendo o intervalo de 100 000 a 500 000 downloads aquele mais mais
aplicações continua (com 197 aplicações). No que diz respeito ao método utilizado para realizar
a análise das aplicações mencionadas nos conjuntos referidos anteriormente, esta incorpora 3
fases principais:

1. Começa-se por instalar o jogo ou a aplicação no dispositivo com sistema operativo Android.
Analisam-se quais as funcionalidades que se encontram bloqueadas e identificam-se outros
valores de interesse durante esta experimentação. Por exemplo, no caso do primeiro con-
junto, era nesta fase que se jogava um pouco o jogo até atingir um determinado valor de
moedas ou items virtuais, para obtenção de um valor de referência para procura aquando
da análise no computador.

2. A aplicação é transferida para um computador com o sistema operativo Linux, usando
o método descrito abaixo, onde os dados são inspecionados e por vezes alterados. Por
exemplo, nos jogos, tenta-se encontrar o valor de moedas obtido no jogo e altera-se esse
valor. A aplicação é de novo colocada num pacote com o fim de ser novamente enviada
para o dispositivo.

3. Por último, a aplicação ou o jogo é testado no dispositivo de forma a perceber se as
alterações efetuadas resultaram com sucesso.

O método que comporta a transferência e restauro da aplicação Android para um computador
é constituído por um conjunto de 10 passos. Para os efetuar é necessário que o dispositivo
esteja ligado a um computador através de um cabo Universal Serial Bus (USB). No computador
que contenha ambiente Linux é apenas necessário instalar a ferramenta Android Debug Bridge
(ADB), visto que todas as outras ferramentas necessárias para a realização deste método vêm
por defeito aquando da instalação do sistema operativo.

Avaliação da Suscetibilidade à Manipulação de Dados em Aplicações Android com
Compras Dentro da Aplicação
No capitulo 4 apresentam-se os resultados obtidos após a analise dos conjuntos referidos ante-
riormente. Foram analisados 849 jogos, sendo que 148 estavam suscetíveis à manipulação dos
dados, o que corresponde a 17,43%, utilizando o método que foi referido anteriormente. A cate-
goria mais afetada por este método é a categoria de Cultura Geral, visto que 50% dos jogos desta
categoria são suscetíveis à manipulação de dados. No entanto, esta categoria é das que contem
menos jogos a ser analisados: apenas 6. Este resultado pode ser explicado pelo facto destes
jogos funcionarem com ligação à Internet. As compras na aplicação servem para ter acesso a
informação ou ajudas para conseguir responder as questões do jogo. Nos jogos vulneráveis, esta
informação é guardada nos ficheiros internos sem mecanismos de integridade. A categoria de
Corridas e Arcada continham 28% e 26% de jogos suscetíveis à manipulação de dados, respetiva-
mente, ocupando o segundo e terceiro lugar, respetivamente. Neste tipo de jogos, as compras

xii

dentro da aplicação estão relacionadas com o dinheiro virtual utilizado no jogo. Por exemplo,
no caso dos jogos de corridas, este dinheiro é utilizado para comprar novos carros. Nos jogos
vulneráveis, o valor correspondente ao dinheiro virtual que o utilizador tem é guardado em texto
limpo em ficheiros do formato eXtensible Markup Language (XML), ficheiros de texto ou em base
de dados SQLite. Esta informação é guardada sem recurso a cifras, mecanismos de integridade
ou códigos de autenticação. De notar que as categorias Role-playing Game (RPG), Família e
Música não têm qualquer jogo com vulnerabilidade, diretamente relacionado com o facto de,
para estes jogos, os pagamentos servirem sobretudo para retirar publicidade ou descarregar
conteúdo da Internet, cujo pagamento pode ser, portanto, sempre validado.

No que respeita à análise dos jogos em relação à sua popularidade, temos os intervalos de
downloads de 5000−10000 e de 50000−100000, com 50% e 30% de jogos vulneráveis. A prin-
cipal conclusão retirada desta análise é que o número de jogos vulneráveis não está depen-
dente da sua popularidade, visto que mesmo no intervalo correspondente à maior popularidade
(100000000−500000000) havia dois suscetíveis à manipulação dos dados, o que corresponde a
aproximadamente a 15% de jogos neste intervalo.

Outra análise efetuada aquando deste estudo foi perceber que tipo de ficheiros era utilizado
para guardar os dados dos jogos vulneráveis. Concluiu-se que 76% dos jogos vulneráveis uti-
liza ficheiros XML para armazenar os dados suscetíveis à manipulação, apenas 9% dos jogos
utilizam base de dados SQLite para armazenar estes dados, os restantes 14% utilizam outro
tipos de ficheiros tais como JavaScript Object Notation (JSON) ou ficheiros de texto. Interes-
sante perceber que apenas 21 jogos não permitem realizar o seu backup, tendo a propriedade
android:allowBackup a false no ficheiro AndroidManifest.xml.

Na segunda fase do estudo foram analisadas 693 aplicações comuns e disponíveis de forma gra-
tuita na Google Play. No entanto apenas 377 dessas aplicações foram consideradas nos re-
sultados finais, correspondendo a uma redução de cerca de 54% ao conjunto de dados inicial.
Neste caso, foi inicialmente aplicado um filtro para remover as aplicações que apenas permi-
tiam remover a publicidade, as que não permitiam fazer o backup da aplicação, as que não
eram compatíveis com o dispositivo utilizado nesta análise (BQ Aquaris E5 FHD) ou as que não
tinham qualquer funcionalidade para comprar, estando assim mal catalogadas. As categorias
menos afetadas pela aplicação do filtro foram as de Cuidados Médicos e Educação, conservando
80% das aplicações existentes no conjunto de dados inicial. No lado oposto, as categorias mais
afetadas por este filtro foram as de Banda Desenhada e Desporto, onde apenas foram consider-
adas 37% das aplicações nos resultados finais. No que se refere aos intervalos de download, o
mais afetado foi o correspondente a 100-500 downloads, com apenas 9% das aplicações a serem
consideradas nos resultados finais. O intervalo que menos sofreu com o corte foi o de 50000000
− 100000000, visto que 67% das aplicações foram consideradas para a análise final. Para a
análise das aplicações resultantes, foram consideradas vulneráveis todas aquelas que estavam
suscetíveis à manipulação dos dados ou que mostravam informações sensíveis do utilizador, tais
como nome ou senha de utilizador.

A categoria de aplicações mais suscetível ao método utilizado foi a categoria de Multimédia
e Vídeo, com 46% vulneráveis. De seguida, aparece a categoria de Finanças, com 42% de apli-
cações vulneráveis. No caso da categoria Multimédia e Vídeo, este resultado pode ser explicado
pelo facto muito comum dos programadores colocarem funcionalidades premium de edição de

xiii

vídeo bloqueadas, sendo necessário pagar para as desbloquear. O controlo de acesso a estas
funcionalidades é feito via variáveis de estado cujo valor é guardado nos ficheiros auxiliares
à aplicação. No caso da categoria das Finanças, a taxa de vulnerabilidade é elevada porque
também há mais a permitir autenticação remota, e, infelizmente, a guardar dados sensíveis em
texto limpo no armazenamento local. Por exemplo, foi possível encontrar Personal Identification
Numbers (PINs), e até fazer o seu reajuste por manipulação de dados em algumas aplicações.
Nas categorias de Empresas, Bibliotecas e Demonstrações, Fotografia e Produtividade não foi
encontrada qualquer aplicação suscetível ao método aplicado.

No que diz respeito à análise considerando o número de downloads, foi o intervalo de 50000000 a
100000000 que reuniu o maior numero de aplicações vulneráveis, com cerca de 33%. De salientar
que, das aplicações vulneráveis, 70% utilizam ficheiros XML para armazenar os dados, enquanto
que os restantes 30% utilizam base de dados SQLite. Das aplicações analisadas, 87 permitiam
ao utilizador fazer autenticação (login) na aplicação e, destas, 23 guardavam as credenciais de
acesso em texto limpo, o que corresponde a cerca de 26%.

Mecanismos para Prevenção de Manipulação de Dados em Sistemas Android
A funcionalidade de debug que foi integrada no sistema operativo Android veio de certa forma
facilitar a vida dos programadores, visto que com esta ferramenta conseguem fazer debug das
aplicações que estão a desenvolver diretamente no dispositivo. Esta permite a instalação de
aplicações, entre outras funcionalidades, utilizando a linha de comandos. Esta permite também
realizar o backup de aplicações que se encontrem instaladas no dispositivo, e para isso basta
que este esteja conectado via USB com um computador e utilizar o ADB.

Na fase final deste mestrado tentou-se encontrar uma resolução para o problema estudado. Para
isso desenharam-se 4 soluções, descritas com mais detalhe no capitulo 5. A primeira solução
é baseada na alteração da ferramenta de backup de modo a incorporar mecanismos de integri-
dade. Sendo assim, ao fazer o backup de uma aplicação para um computador, era calculado
um Message Authentication Code (MAC) ou uma assinatura digital e, aquando do restauro da
mesma aplicação, era de novo calculado o valor e apenas permitido o restauro da aplicação
em caso válido. A segunda abordagem é semelhante à primeira, sendo apenas adicionado o
armazenamento das chaves utilizadas para o calculo do MAC ou da assinatura digital num servi-
dor remoto, sendo estas transferidas para o servidor através de um canal criptograficamente
seguro. Esta solução iria permitir o backup de uma aplicação num determinado dispositivo e o
restauro noutro dispositivo diferente, pressupondo uma ligação à Internet. A terceira solução
utiliza a arquitectura dos processadores Acorn Risc Machine (ARM) proposta em 2009 chamada
ARM TrustZone. Esta arquitectura simula dois mundos, em que um é designado por mundo se-
guro. Seria, de resto, neste mundo seguro que seria calculado o MAC ou a assinatura digital,
garantindo assim que os respetivos valores eram calculados de forma segura. A quarta opção
é semelhante à anterior, diferindo apenas no facto do resultado das operações efetuadas no
mundo seguro serem enviadas para um servidor remoto através de um canal seguro.

Outra possível solução para o problema endereçado neste programa de mestrado é a integração
de primitivas criptográficas nas próprias aplicações, visto que só assim se consegue resolver o
problema em dispositivos em modo root. No entanto, este cuidado já tem de partir do lado
do programador que, ao realizar a aplicação, tem de se preocupar com a segurança da mesma
e dos seus utilizadores. Caso o programador utilize bases de dados para guardar os dados da

xiv

aplicação, este já tem um conjunto de extensões que lhe facilitam na proteção dos dados, tais
como SQLite Encryption, wxSQLite [Zet15], entre outros.

Conclusão e Trabalho Futuro
Os objetivos deste trabalho foram concluídos com sucesso, particularmente através da consti-
tuição e análise dedicada de um vasto conjunto de jogos e aplicações móveis. Para realizar a
análise, foram criados dois conjuntos de dados, sendo estes constituídos por aplicações ou jogos
retirados da Google Play de forma gratuita. Todos tinham uma característica comum: o facto
de permitirem compras dentro da aplicação ou jogo. No conjunto dos dois conjuntos de dados
foram consideradas 1542 aplicações ou jogos. No conjunto constituído por jogos, a categoria
mais abrangente foi a de Acção constituída por 141 jogos. No que diz respeito ao número de
downloads, o intervalo com o maior número de jogos foi 1000000 − 5000000, com 296 jogos.
No conjunto constituído por aplicações comuns, foi estabelecido um teto máximo de aplicações
por categoria de forma a não ter uma discrepância no número de aplicações entre categorias.
Este limite foi de 30 aplicações por categoria. Foram consideradas 24 categorias presentes na
Google Play para esta parte do estudo, sendo que o intervalo de downloads com maior número
de aplicações foi o de 100000 a 500000.

No que diz respeito à analise dos jogos, o resultado mostrou que aproximadamente 17,5% dos jo-
gos se encontravam suscetíveis ao método utilizado, o que corresponde a 148 jogos vulneráveis,
num universo de 849 considerados. De notar também que os jogos vulneráveis utilizam maiori-
tariamente ficheiros XML para armazenar os dados utilizados pelo jogo. Na análise ao segundo
conjunto de dados foi concluído que cerca de 20% das 377 aplicações consideradas no estudo
final eram suscetíveis ao método utilizado. Neste conjunto, 87 das aplicações permitiam que
o utilizador fizesse login na aplicação, tendo-se constatado que um subconjunto de 23 apli-
cações guardavam as credenciais do utilizador em texto limpo, nos ficheiros da aplicação. Por
fim, foram apresentadas algumas alterações à ferramenta nativa de backup como forma de
resolução parcial dos problemas encontrados.

No que diz respeito às linhas de trabalho futuro, é dito que seria interessante desenhar um
método semelhante ao apresentado neste trabalho para diferentes sistemas operativos móveis,
tais como iOS ou Windows Mobile, e perceber de que forma se comportam perante a mesma
abordagem. Outra linha de trabalho seria aumentar o numero de aplicações analisadas, espe-
cialmente para aplicações em compras na aplicação, já que seria interessante perceber o seu
comportamento também e se a qualidade em termos de segurança é motivada pelo retorno
monetário no programador. Uma maior automatização do método seria também interessante,
visto que assim se podia realizar a análise a um maior número de aplicações, e até mesmo criar
uma ferramenta para os programadores testarem as suas aplicações antes de as submeterem
para a Google Play. Por último, seria interessante implementar uma das soluções apresentadas
no capitulo 5 de modo a adicionar uma proteção extra para as aplicações móveis em Android.

xv

xvi

Abstract

The widespread adoption of mobile devices and the way users interact with them led to the de-
velopment of new ways of implementing, distributing and installing applications, paving the way
for new business models also. Mobile applications can be bought as a single piece of software,
or some of its features, extensions or contents may be the subject of purchases. In many mobile
applications for the Android Operating System (OS), paid items are most of the times delivered
via in-app purchases, a feature that enables a user to make micro-payments within the appli-
cation context via Google Play store. The revenue of many developers is obtained by selling
small features after releasing a free or paid version of their application. On the other hand,
the increasing capabilities of mobile devices, along with their personal nature, turns them into
aggregators of private information and interesting targets for attackers. Additionally, control
data stored in the devices may be manipulated to change the flow of programs and potentially
access blocked features or content without paying.

This dissertation is focused on secure data storage problems in mobile devices, particularly on
Android systems. Its main contribution is the quantification of the susceptibility to data manip-
ulation and exposure of Android applications through an exhaustive study of many applications
downloaded from the official Android store. This study included the construction of two data
sets with a total number of 1542 applications (849 games and 693 common applications) and the
human analyses of each one of them: the applications were first used in a smartphone, then
transfered to a computer with a Linux OS, their data was analyzed and modified (when possi-
ble), the transfered back to the Android environment. The entire procedure takes advantage
of the backup utility provided by the OS and using only freely and readily available tools, and
does not require administrative permissions on the mobile device. proving the feasibility of the
approach.

In the case of the games data set, it was found that at least 1 in each 6 was susceptible to data
manipulation, meaning that it was possible to obtain paid items without any payment. In the
case of the common applications data set, 1 in each 5 was either susceptible to the same data
manipulation problem or were storing sensitive data like passwords and Personal Identification
Numbers (PINs) in plaintext. Vulnerable applications do not include mechanisms to prevent the
data from being eavesdropped or modified, which would be the preferred way of attenuating
the problem. Based on lessons learned, several proposals to solve the problem from a general
perspective are discussed towards the end of the dissertation.

Keywords

Android, Data Manipulation, Integrity, Mobile Security, Mobile Operating System, Security, Stor-
age

xvii

xviii

Contents

1 Introduction 1
1.1 Motivation and Scope . 1

1.2 Problems Statement and Objectives . 2

1.3 Adopted Approach for Addressing the Problem 3

1.4 Main Contributions . 4

1.5 Dissertation Overview . 4

2 Related Work and Background 7
2.1 Introduction . 7

2.2 Related Work . 7

2.2.1 Android OS Security . 7

2.2.2 Android OS Malware . 8

2.2.3 OWASP Top 10 Mobile . 9

2.2.4 Insecure Data Storage . 11

2.3 Android Debug Bridge . 12

2.4 Conclusions . 13

3 Data Sets and Analysis of Android Applications 15
3.1 Introduction . 15

3.2 Android Games Data Set . 15

3.3 Android Applications Data Set . 16

3.4 Method for Analyzing Android Applications . 17

3.5 Conclusions . 21

4 Assessment of the Susceptibility to Data Manipulation of Android Applications with
In-app Purchases 23
4.1 Introduction . 23

4.2 Analyzing Android Games with In-App Purchases 23

4.3 Analyzing Android Applications with In-App Purchases 26

4.4 Discussion on the Severity of the Findings . 29

4.5 Conclusions . 31

5 Mechanisms for Preventing Data Manipulation in Android Systems 33
5.1 Introduction . 33

5.2 Mandatory Message Authentication Code . 33

5.2.1 Current Functioning of the Backup utility 33

5.2.2 Approach #1 − Software Modification to the Backup Utility 34

5.2.3 Approach #2 − Software Modification to Backup Utility with Networking
and Server for Storing MACs or Digital Dignatures 35

5.2.4 Approach #3 − Software Modification to Backup Utility and a TCB 36

5.2.5 Approach #4 − Software Modification to the Backup Utility and a TCB with
Networking and Server for Storing MACs or Digital Signatures 38

5.3 Usage of Encryption Primitives . 38

5.4 Conclusions . 40

xix

6 Conclusions and Future Work 41
6.1 Main Conclusions . 41
6.2 Directions for Future Work . 43

Bibliografia 45

xx

List of Figures

2.1 The OWASP Top 10 Mobile Risks.(adapted from [OWA15]) 9

3.1 Some screen options that appear during the method. 19

4.1 Total number of games versus the number of games susceptible to data manipu-
lation per category. 24

4.2 Total number of games versus the number of games susceptible to data manipu-
lation, segregated by popularity. 25

4.3 Type of file used to save application data in the Android internal storage in vul-
nerable games. 26

4.4 Number of downloaded applications vs. number of applications fulfilling the con-
ditions to analysis, divided per category. 27

4.5 Number of downloaded applications vs. number of applications fulfilling the con-
ditions to analysis, divided per popularity. 28

4.6 Number of applications susceptible to data exposure or manipulation vs. number
of analyzed applications, divided by category. 29

4.7 Number of applications susceptible to data manipulation vs. number of analyzed
applications, divided by popularity. 30

4.8 Type of file used to save application data in the Android internal storage in vul-
nerable applications. 30

5.1 Scheme of the functioning of the Android OS backup utility. 34
5.2 Solution #1 − Inclusion of cryptographically secure integrity mechanisms in the

backup utility. 35
5.3 Solution #2 − Adding Internet connectivity when backing up applications and stor-

ing integrity codes and keys remotely. 35
5.4 High level diagram showing the difference between the traditional and the ARM

SoC architectures. 37
5.5 Solution #3 − Backup utility interacts with a trustlet for the purpose of generating

and verifying integrity codes. 37
5.6 Solution #4 − Backup utility interacts with a trustlet for the purpose of generating

and verifying integrity codes and uses a remote server to store integrity codes and
keys. 38

xxi

xxii

List of Tables

3.1 Number of analyzed games by category. 16
3.2 Number of games in the data set per number of downloads. 16
3.3 Number of downloaded applications for the second data set by category. 17
3.4 Number of applications in the second data set per number of downloads. 18

xxiii

xxiv

Acronyms
ADB Android Debug Bridge

AES Advanced Encryption Standard

APK Android Application Package

API Application Programming Interface

ARM Acorn Risc Machine

ASCII American Standard Code for Information Interchange

CCM Counter with CBC-MAC

CLI Command-line Interface

DoS Denial-of-Service

GUID Globally Unique Identifier

HTTP Hypertext Transfer Protocol

ID Identifiers

IMEI International Mobile Station Equipment Identity

IT Instituto de Telecomunicações

JCA Java Cryptography Architecture

JSON JavaScript Object Notation

MAC Message Authentication Code

MITM Man-In-The-Middle

MMS Multimedia Messaging Service

Ms.C. Master of Science

MSP-Cv Multimedia Signal Processing - Covilhã

NS Non-Secure

OFB Output Feedback

OS Operating System

OWASP Open Web Application Security Project

PC Personal Computer

PIN Personal Identification Number

RC4 Rivest Cipher 4

REE Rich Execution Environment

RPG Role-playing Game

xxv

RSA Rivest Shami Adleman

SDK Software Development Kit

SEE SQLite Encryption Extension

SHA256 Secure Hash Algorithm 256

SMS Short Message Service

SOAP Simple Object Access Protocol

SoC System-on-Chip

SSL Secure Sockets Layer

TCB Trusted Computing Base

TEE Trusted Execution Environment

TLS Transport Layer Security

UBI Universidade da Beira Interior

UID Unique Identification Number

USB Universal Serial Bus

XML eXtensible Markup Language

XSS Cross-site Scripting

xxvi

Chapter 1

Introduction

This dissertation describes the work performed to obtain the master's degree in Computer Sci-
ence and Engineering from the University of Beira Interior. This chapter describes the motivation
and scope of the dissertation, contains the problem statement and defines the objectives, enu-
merates the main contributions and describes adopted approach for solving the problem, and
presents the overall organization of the document.

1.1 Motivation and Scope
In the last decade, mobile devices, specially smartphones and tablets, became part of the ev-
eryday life of many people, many times replacing Personal Computers (PCs) [MBK+12]. Sensing
the potential of such market, and effectively contributing to its success afterwards, Google,
Apple and Microsoft developed mobile Operating Systems (OSs) (such as Android [Goo15a] and
iOS [App15d]) and programming platforms and kits, assembled dedicated hardware (e.g.,
iPhone [App15e] or Nexus [Goo15c]) and worked on different business models and strategies
to obtain revenue and deliver contents into such platforms. In terms of software or function-
ality delivery, these models are fundamentally different from the classical ones. The potential
to get to a larger number of users led to the adoption of the micro-transactions in this area,
meaning that applications became cheaper (they are simpler than desktop or server applica-
tions also) and that it is possible to buy only a limited number of functionalities or content at
a time, more easily. The process of installing and paying was simplified via the so-called app
stores, which congregate both functionalities (and others) in user-friendly manner. The major
vendors and OS developers maintain some of those stores, namely Google Play [Goo15b], Apple
Store [App15b] and Windows Phone Store [Mic15]. It is also possible to buy items within the mo-
bile applications, a functionality called in-app purchase in the case of Android applications, with
Software Development Kits (SDKs), such as the one of Android, easing the process of integrating
the functionality in the development phase.

In 2015, Android was the OS installed in the majority of smartphones and tablets worldwide, and
Google Play was holding 75% of the total market [FBL+15]. There are several reasons for this
success. One of the most important is the fact that Android is open source and based on Linux,
which enables mobile devices manufacturers to more easily reach the market after assembling
a given device, since they do not need to develop the overlying software, provided that the
hardware is compatible with Linux and specific drivers.

The success of the app stores, along with the flexible business models, have been motivating
developers. To obtain revenue, they can follow two main businesses strategies: either selling
the application at an initial price; or deliver it free of charge, and ask for money in exchange
of additional content of functionalities. Paid applications may also offer the option for users to
buy contents or new features. Notice that a third option for obtaining revenue, based on placing

1

advertisements in free or paid applications, is also available. Nonetheless, in many cases, it is
possible to remove them via an in-app purchase, falling into the previous categories.

Contrary to what happens in the Apple Store, where applications undergo a review process
before publication [App15c], Android applications are available for users do download soon
after being submitted to Google Play, without much reanalysis [And15d]. The developer license
costs $25 [And15e]. This also contributes to the success of the store, though it is on the origin
of security issues, dictating a fast growing pace. Between June and November of 2013, the
total number of available applications increased from 887,202 to 1,107,476, representing an
increase of more than 25% in the number of applications. In the same period, the number of
downloads increased by 37% , which also reflects the increase of users of this system [VGN14].
Currently, there are more than 1,633,000 applications available for the Android OS [App15a].
Unfortunately, the ease of developing for mobile platforms, namely for Android, is also having
consequences in terms of the quality of the applications. Many developers are able to build
and deploy an applications with little knowledge after following tutorials on the Internet, which
may lead to lack of security for the data the applications handle.

Given their personal nature, mobile devices are hubs for private and confidential data. Also
because of that, mobile OSs integrate security features that isolate their several components,
namely applications, storage and sensors. Nonetheless, their widespread adoption combined
with the motivation of potentially obtaining private data or financial gains, makes of these
devices interesting targets for attackers or even typical users. It is known that many users try
to circumvent payment mechanisms in computer systems, searching the web for software cracks
or pirated copies of the applications. It is thus increasingly important to study the security of
mobile devices.

This dissertation reflects a work performed in the scope of a master's program in the area of
Computer Science and Engineering. It falls in the intersection of the (mobile) OSs and computer
security fields, focusing on the security of the data stored in mobile devices within the context
provided above. Under the 2012 version of the Association for Computing Machinery (ACM)
Computing Classification System, a de facto standard for computer science, the scope of the
master's program, reflected in this dissertation, falls within the categories named:

• Security and privacy∼Software security engineering

• Security and privacy∼Mobile and wireless security

• Software and application security

• Database and storage security

1.2 Problems Statement and Objectives
This master's program addresses the problem of insecure data storage in mobile devices with
the Android OS (up to version 4.0). Generally speaking, it deals with the problem of having
developers overlooking storage related security aspects, only relying on the OS mechanisms to
assure them. While, under normal conditions, the Android OS assures that no application can
access or modify data from other applications, unless explicitly permitted, there are several

2

ways of circumventing such controls. Some of them imply gaining privileged permissions over
the OS, and potentially voiding the the warranty of the device, others derive from legitimate
functionalities. One example of such functionalities is the one provided by the backup utility,
which comes native with Android. It provide users with means for backing up their applications
(along with their internal data) to a personal computer. The possibility to manipulate the data
under such conditions is known in the Android community [XDA15], and has probably been used
to construct cracks for games and applications [Whi15]. Since internal data is used to store
private information from users and often to control the flow of the software (e.g., save files),
this constitutes an interesting problem.

The main objective of this work is therefore to assess the susceptibility to data manipulation
and exposure of Android applications, namely by exploiting the backup utility. This objective
can be further decomposed into the following:

• Assessing how easy it is to take advantage of data manipulation to obtain some gain, e.g.,
getting access to paid features or content without purchasing them;

• Analyze how much private or confidential information can be obtained using the afore-
mentioned means;

• Quantifying to which extent the vulnerabilities affect the universe of Android applications;

• Propose solutions for the identified problem.

1.3 Adopted Approach for Addressing the Problem
In order to achieve the aforementioned objectives, the research work of this master's program
was divided into the following five phases:

1. The first phase consisted reviewing part of the specialized literature in this area of knowl-
edge, in order to get acquainted with the problem under analysis and with the concepts
and tools supporting the subsequent phases of the project;

2. The second phase included several non-documented experiments to get used to the method
used to perform the analysis of the Android applications. This method is based on the
native Android backup utility. This part of the work comprised studying the several details
specific to the utility, as well as getting to know the other tools used in the process.
Moreover, it included setting up an initial version of the environment used to conduct the
experiments of phase four. The method used to analyze each application is explained with
more detail in Chapter 3.

3. The third phase was devoted to the construction of two large data sets with Android ap-
plications. This part of the work was composed by the tasks of identifying the target ap-
plications, analyzing the download procedure from Google Play, building scripts for down-
loading (to local storage) and gathering meta-data for the applications, and reviewing the
data sets and meta-data for mistakes or consistency problems. The usage of large data
sets was useful to conservatively quantify the severity of the insecure storage problems
analyzed in the scope of this work;

3

4. The fourth phase consisted in the application of the method, adapted during the second
phase, to the two data sets built in the third phase. The results obtained during the
procedure were also analyzed and documented at this stage;

5. The fifth phase comprised the analysis of several possible general solutions to the security
problems addressed in the work, elaborating on lessons learned during previous phases
and emphasizing some of the inherent limitations.

1.4 Main Contributions
The main contribution of this master's program was the detailed study of the susceptibility of
Android applications to data manipulation and exposure. The usage of two large data sets of
applications (a total of 1542 applications) permitted obtaining a concise, yet conservative, idea
of the extent of the addressed problems in the Android universe. To the best of the knowledge
of the author, there is no other work following the same approach and studying such a large
number of applications at the time of writing this dissertation. The main contribution can be
divided into two smaller ones, as follows:

1. The thorough analysis of 849 Android games and the assessment of their susceptibility
to data manipulation, which was the subject of the paper entitled Assessment of the
Susceptibility to Data Manipulation of Android Games with In-app Purchases, presented
and accepted for publication in the proceedings of the 30th International Conference on
ICT Systems Security and Privacy Protection (IFIP SEC 2015), held in Hamburg, Germany,
between the 26th and the 28th of May, 2015 [VNF+15]. The acceptance ration of the
conference this year was of 20%;

2. The thorough analysis of 693 Android applications and the assessment of their susceptibility
to data exposure and manipulation, which was the subject of the paper entitled On the
Susceptibility to Data Manipulation and Information Exposure of Free Android Apps with
In-app Purchases, presented and accepted for publication in the proceedings of the 7th
Simpósio de Informática (INForum 2015), held in Covilhã, Portugal, between the 7th and
the 8th of September, 2015 [Fra15].

Apart from the aforementioned contributions, this dissertation contains several proposals for
solving the problem of data manipulation via backup utility. These proposals are discussed from
the feasibility and security points of view in Chapter 5.

1.5 Dissertation Overview
The overall organization of the dissertation reflects the several phases of this work. The main
body of this document is divided in 6 chapters, summarily described as follows:

• Chapter 1 − Introduction − on which this section is included, approaches the main topics
of this Master of Science (Ms.C.) dissertation by presenting the motivation and scope of this
work. The adopted approach for solving the problem is outlined also in this chapter, prior
to the enumeration of its main contributions and some outcomes in terms of publications.

• Chapter 2− Related Work and Background− discusses works that are close to the one de-

4

scribed herein or that were important during the course of this work. It also provides some
background on the Android OS and on concepts important to the understanding of other
parts of the document. It discusses malware for Android and the Open Web Application
Security Project (OWASP) top 10 mobile threats.

• Chapter 3 − Data Sets and Analysis of Android Applications − describes the datasets
used for studying the susceptibility of Android apps to data manipulation or to data expo-
sure. Apart from the two main datasets (one comprised of Android games and the other
consisting of normal applications), which are characterized regarding popularity and cat-
egory, the method used to analyze data exposure or manipulate the app behavior is also
described in there.

• Chapter 4 − Assessment of the Susceptibility to Data Manipulation of Android Appli-
cations with In-app Purchases − discusses the most interesting findings obtained after
applying the method to the two datasets considered in the scope of this work. Specifi-
cally, it quantifies how many apps were susceptible to data manipulation and elaborates
on the data exposure problem for the apps under analysis.

• Chapter 5 − Mechanisms for Preventing Data Manipulation in Android Systems − pro-
poses solutions to the problems identified in the previous sections, enumerating their
advantages and disadvantages, sometimes considering the possibility of using hardware
based mechanisms to cope with the security requirements.

• Chapter 6 − Conclusions and Future Work − finalizes this dissertation by presenting the
major conclusions of this work and identifying some lines for future work.

5

6

Chapter 2

Related Work and Background

2.1 Introduction
A the time of writing of this dissertation, the interest in the security of mobile applications was
trending, mostly due to the fact that mobile devices and applications are being increasingly used
to to store and process private data. One of the main focuses on this area has been malware,
since attackers have also begun putting more effort in the development of malicious software
for such devices. Nonetheless, research in other topics has also been increasing, notably after
the appearance of the OWASP mobile security project. This chapter provides an overview on
related works, contextualizing the main problem addressed in this dissertation. Section 2.2.1
starts with a brief discussion on the Android OS security. The malware topic is the subject of
section 2.2.2, while Section 2.2.3 focuses on the security risks identified by the OWASP project
for Android. The discussion then converges to a more detailed discussion of one of the risks in
particular, namely the one of Insecure Data Storage. Finally, section 2.3 describes one of the
tools that was central to this work.

2.2 Related Work
This section starts with a discussion on research work for vulnerabilities found on the Android
OS kernel, to then focus on the Malware threat. Later on, the discussion will be dedicated to
the OWASP risks, namely on the one that contextualizes better this work.

2.2.1 Android OS Security
The Android OS is based on Linux and is especially prepared to run on devices with screentouch.
As with the Linux kernel, Android also contains vulnerabilities that have not been detected. Hei
et al., [HDL13] found two vulnerabilities in OS Kernel in 2013. These researchers examined the
source code of the GT-P7500_OpenSource.zip and GT-P7510_OpenSource.zip packages. They
found two vulnerabilities in the nvhost_ioctl_ctrl_module_regrdwr functions implemented in
the dev.c file, namely in nvhost_write_module_regs and nvhost_read_module_regs. Privilege
escalation type of vulnerability is the first on mentioned in the document. Authors found that
the functions resort to offsets to find the Unique Identification Number (UID) in the system, but
that these offsets were not dully verified to be within the expected bounds. By manipulating
system variables, it would be possible to set the UID to 0, which is root, after which full control
of the device was possible. They reported a successful exploitation of the vulnerability in a
Samsung Galaxy 10.1. A Denial-of-Service (DoS) was the second type of vulnerability pointed
out by the authors which, according to them, is very easy to exploit using, e.g., nvfuzz.c. This
vulnerability would enable an attacker to crash the device due to buffer overflow problems in
another function handling system variables. They reported the vulnerabilities and the solution
was incorporated in later versions (this was discovered in Honeycomb) of the OS.

7

The aforementioned work shows that there are vulnerabilities in all layers of the mobile OSs,
with some of them introduced after adapting existing kernels (e.g., the previous vulnerabilities
affect the Android kernel only). Many of these vulnerabilities, namely buffer overflow related,
are exploited in the wild to root or jailbreak these OSs.

2.2.2 Android OS Malware
Within the mobile security area, malware is one of the topics receiving more attention since
2011. Unfortunately, the popularity of mobile devices, their widespread adoption and the rela-
tively ease way of implementing and deploying applications has been driving malware develop-
ers into this environment also. Research has been focused on developing solutions for detecting
malicious software.

In 2011, Zurutuza et al. [BZNT11] developed a new system for detecting malware for Android.
Their approach, which they called Crowdroid, is based on behavior. The system consisted of
an application that needs to be installed on the smartphone of users, available to download
from Google Play at the time. This application would look for and pick up system calls made by
the other applications that were being used by the user, and obtain their behavior. The sensor
application would then send the collected data to a remote server to be further processed. The
entire process is divided into three main phases: (i) data acquisition; (ii) data manipulation; and
(iii) malware analysis and detection. The first phase was responsible for obtaining and sending
the data to the remote server, and takes place on the device. The second phase consists on the
pre-processing and uniformization of the data for processing, and it is performed on the remote
server already. The final phase is performed on the server also, and concerns the malware
detection after processing the system calls.

Sato et al. [RS13] proposed another approach for the detection of malware in Android resort-
ing to the analysis of the Manifest file [And15c] present in all applications. This file contains
information regarding the application, such as permissions, the libraries, target platform, the
definition of the main activity and other custom authorizations, along with key information for
the correct functioning of the application. The approach consisted in several methods and it
begins with an analysis of the AndroidManifest.xml. After extraction of the information of
interest, the produced data is compared with a previously prepared list of keywords with the
objective of calculating a malignancy score. The following formula is used for this purpose:

P = M−B
E ,

where P is the value that will be used to classify the application (malignancy score), M is
the number of malicious strings, B represents the number of benign strings, and finally E de-
notes the total number of items taken into consideration. For example, authors of this work
state that permissions such as READ_PHONE_STATE and INTERNET are amongst the most popular in
malicious software. As such, they may have a contribute to detecting such software. Other au-
thors [WMW+12] have been adapting machine learning algorithms such as K-Nearest Neighbours,
Bayesian networks among others, to the classification of mobile applications also.

Also regarding malware analysis for Android, it is possible to mention several freely available
online platforms for reviewing applications before publication [Weg15, Vie15, Joe15, Fel15].
Most of these platforms accept the .apk file and output a detailed report shortly after. They

8

resort to several techniques, namely static analysis of the code. These platforms can be used by
developers to realize which kind of vulnerabilities the applications possess or may be affected
by. Because the input file is an .apk, end users can also use these platforms before installing
applications.

2.2.3 OWASP Top 10 Mobile
OWASP is a non-profit foundation that was brought online on December 1, 2001. It is an open
community that aims to create methodologies, documentation, articles, tools, among other
things, always with the objective of the practice of safe programming, so as to contribute to
an ecosystem of reliable applications. It is mostly known for the efforts in producing lists of
risks for some types of applications, notably Web applications. Nonetheless, with the increased
usage of mobile devices led to the creation of a sub-project specially focused on this type
of applications in 2010. Figure 2.1 shows the list of the top 10 risks encountered in mobile
applications according to OWASP.

Figure 2.1: The OWASP Top 10 Mobile Risks.(adapted from [OWA15])

The list of the top 10 risks for mobile applications according to OWASP [OWA15] can be briefly
described as follows (M2 is discussed in the subsequent section):

• M1 - Weak Server Side Controls − the major risk in the list concerns the possibility of
having weak access controls and Application Programming Interfaces (APIs) in the server
side of a given mobile application. Many applications are nowadays designed with two
components, one of which is working in a remote server. Alternatively, the remote server
is only used to store data. Problems in these servers may give access to private or confi-
dential data, or provide means to disseminate malware. Server side problems may also be
exploited to rapidly disseminating code, e.g., via Cross-site Scripting (XSS) in applications
running a webkit.

• M3 - Insufficient Transport Layer Protection− If a mobile application uses a server/client
architecture, it is important that communications are properly secured. The best way to
do so is by applying encryption and integrity mechanisms to the channel using high-quality
cryptographic mechanisms and established protocols. It prevents eavesdropping the chan-
nel for sensitive information such as passwords and usernames. Nonetheless, according to
OWASP, mobile applications do not frequently protect network traffic. They sometimes
use the Secure Sockets Layer (SSL)/Transport Layer Security (TLS), but only during authen-

9

tication, and not in other phases of communication. Sometimes also, developers integrate
TLS in an incorrect manner, due to limited knowledge on the area.

In his master's thesis [Jam14], James King analyzed various security topics mentioned by
OWASP. He studied the FourGoats application within the context of Insufficient Trans-
port Layer Protection and was able to successfully intercept packets flowing between the
application and the server using the Burp Proxy v1.5. In this application, logging into
the service was sending the authentication data via a POST message, unencrypted and
non-authenticated, clearly showing the severity of the problem. The message could be
eavesdropped and modified without detection.

In the dissertation entitled An Application Security Assessment of Popular Free Android
Applications, Christian Haland [Chr13] stated he found two applications with this type of
vulnerability. The QuizBattle game, which required one to register in order to get into the
game, was using only Hypertext Transfer Protocol (HTTP) to convey such data to the server.
The other application was used to remove or share names of photos on Instagram, which
actually used TLS 1.0 to communicate with the API available in http://instagram.com/
api/v1/ for authentication purposes, but the remaining part of the communication was
performed using HTTP only. The application was thus susceptible to session highjaking.

In [FHM+12], Fahl et al. described a study to understand how the SSL/TLS was used to
protect data over the network for communications of Android applications. The poor
integration of this protocol or lack thereof leads to attack situations, namely to Man-
In-The-Middle (MITM). For this study, these authors developed the MalloDroid, a small
application that can used to find broken SSL certificate validation procedures in Android
applications. In their work, along with the developed tool, a total of 13,500 applications
available for free download in Google Play were also analyzed. They concluded that about
8% of those applications were vulnerable to MITM attacks.

• M4 - Unintended Data Leakage − This type of vulnerability occurs when the programmer
keeps sensitive application data improperly on the mobile device, in locations that are
easy to access for other applications. This type of vulnerability may lead to sensitive
information extraction. This type of problemmay motivate the development of specialized
malicious applications for ex-filtration of data from mobile devices.

• M5 - Poor Authorization and Authentication − Some applications use device related in-
formation as a means of authentication sending it to remote servers. An example of such
informations is the International Mobile Station Equipment Identity (IMEI). For this type of
vulnerability, James King [Jam14] analyzed the Herd Financial application that uses the
device hardware Identifiers (ID) to authenticate at the user login. Curiously, the device ID
was transmitted to the server in clear text. In the case an attacker can get his hands on a
valid device ID, and after realizing that it may be used to authenticate the application on
the server, he can use it to authenticate maliciously on the server, thus gaining access to
legitimate user data.

• M6 - Broken Cryptography − The risk at position six of the top 10 is related with the
fact that, when used, cryptography mechanisms are either weak or badly integrated. The

10

http://instagram.com/api/v1/
http://instagram.com/api/v1/

design of the security part of the application is bad in many situations. For example,
encryption keys are stored hardcoded in the code, even when high grade ciphers are being
used, leaving the data exposed to attackers that obtain the code and reverse engineer it.

• M7 - Client Side Injection − This risk concerns the possibility of having malicious code
being injected and running on the mobile device or remote server via an application. Typ-
ically, such code is injected through forms of data that are not properly sanitized. The in-
jected malicious code aims commonly at stealing sensitive information such as passwords,
cookies, personal information and so on.

• M8 - Security Decisions Via Untrusted Inputs − Vulnerabilities falling into this category
concern techniques used by developers to distinguish users or providing different function-
alities. For example, sometimes, hidden values are used to represent users with different
levels or permission, and these values may be somehow manipulation with devious in-
tentions. For example, an attacker can intercept calls to a web service and change the
sensitive parameters. This process can lead to improper behavior on the part of the ap-
plication or even to change the permissions to a higher level, thus giving access to areas
or data that he or she should not have access to.

• M9 - Improper Session Handling − In order to facilitate communication between the ap-
plication and the server, mobile applications use session tokens to keep state through
protocols such as HTTP or Simple Object Access Protocol (SOAP). If authentication is suc-
cessful, the server issues a session cookie for the application. Incorrect session handling
occurs when the access token is shared unintentionally with an attacker during a commu-
nication with the server.

• M10 - Lack of Binary Protections − this risk is associated with the fact that no proper
protections are added to the compiled form of the applications, which may result in expos-
ing the application and the user to a wide variety of attacks. For example, most Android
applications can be reversed engineered; the code and the structure of the project can be
studied, eventually modified, recompiled and redistributed.

2.2.4 Insecure Data Storage
The risk identified by Insecure Data Storage in the OWASP top 10 mobile project has a more
lengthy discussion in this chapter because this work was focused precisely on this aspect. This
category includes those methods that may be used to somehow compromise the data stored
in the internal file system of the device. The tentative to compromise data may come from
(malicious) users or from malware with internal or external access to the device. It is widely
known that easy access to the entire file system is provided after rooting or jailbreaking and
Android OS or iOS, respectively. Yet, it is commonly assumed that, under normal circumstances,
no application can access the internal storage spaced of the others, and developers assume that
they can store sensitive data such as usernames, passwords or application data in the internal
memory, leaving aside concerns to encrypt of assure the integrity of the data [And15g].

Christian Håland [Chr13], in his dissertation, examined various applications amongst the most
popular of the store at the time. One of the analysis he made was in relation to the data
storage insecurity. In his study he considered the problem of the rooted devices giving access to

11

sensitive data, which he defined as data being stored on the mobile device without encryption.
The author analyzed the 4Pics1Word game, a games that went viral in the beginning of 2013.
This game was about finding a word to define a set of images. To build the word, a set of 12
characters was provided, and virtual money could be used in-game to remove characters out of
these 12, thus making the solution easier to find. These coins could be bought with real money.
After an analysis of the application files, he realized that the application was keeping sensitive
data in clear text, such as current photo ID, current level and number of coins owned by the
user. With a simple change in the right file, he was thus able to increase the number of coins,
becoming effective after restarting the game. 4Bilder1Feil was another game that the author
analyzed. It was similar to the previous one and it was found susceptible to the same problem,
since the application stores the total number of lives in clear text. After changing this number
with a common text editor and restarting, the game would immediately assume the new value.
Lastly, the same author analyzed the Wordfeud Free, which is a game similar to the traditional
Scrabble. The game offers the possibility to connect two players via Internet to play in pairs.
For that, it requires login with a Facebook account and, after analysis, the author found that
the password was stored in clear text in the game files.

The FourGoats application was analyzed by James King [Jam14] within the scope of his master's,
with focus on the insecure data storage topic. The author also stated that the attack could only
be carried out if the device was rooted, since it required access and manipulation of internal
application files. The application considered by the author allowed the user to log into the
application, and it was thus possible that the application was storing the login details for later
login, given that a Remember Me option was available. According to the author, this application
saves the user credentials (username, password) in clear text in a SQLite file.

A researcher from Palo Alto Networks, C. Xiao, conducted a study on a set of 12.351 applications
to find out how many of them were not allowing backup via the native utility. The results of the
research were delivered in the form of a presentation with the title Insecure Internal Storage
in Android, which was presented in the Taiwan Conference (HITCON) [Cla15]. He concluded
that only 556 were not allowing backup, corresponding to only about 6% of the dataset. As the
backup of an application for a computer is one way to get access to internal files, this could
be a protection for this type of vulnerability. This study was mostly supported by automated
means to download and reverse engineer the Android applications, and subsequently finding
the android:allowBackup property in the AndroidManifest.xml. This study did not included a
manual or in-depth analysis of those applications, contrarily to what was done here .

2.3 Android Debug Bridge
The Android Debug Bridge (ADB) [And15b] is a command-line tool, typically included with the An-
droid SDK, providing means to communicate with phisically connected or virtual devices running
the aforementioned OS. It is comprised by three main components:

• The Client, which is the tool facing the developer and can be invoked in a Command-line
Interface (CLI) environment via the adb command. This program is capable of interpreting
several sub-commands, such as shell and logcat;

• The Server, which runs also on the developer machine and listens to commands sent via

12

the client. It runs as a backgroud process. If it is not running when invoked by adb, it is
automatically started. It is responsible for communicating with adb daemons running on
connected devices (see below);

• The Daemon, which is a process running on Android devices, waiting for connections from
the ADB Server when debugging is permitted.

In order to use ADB, one needs to either connect a physical device through network or Universal
Serial Bus (USB), or set up and spawn an Android virtual machine. It is also required to enable USB
debugging on the target OS, e.g., via Developer Options. Normally, the Developer Options are
hidden in the Android OS, but it can be easily unlocked by finding the Build Number in Settings
−→ About phone and pressing it seven times. The Developer Options will then be reachable
via Settings. Starting from the Android 4.2.2 version, the successful connection to the OS is
only possible after explicitly (via dialogue box) accepting an Rivest Shami Adleman (RSA) key of
the Server from the Android OS side. This particular step was added by the Android developers
to prevent the feature from being used in an abusive manner without permission of the device
owner.

ADB comprises a valuable asset for developers, providing straightforward means to easily install
applications and debug them during execution. It also enables (to a certain extent) navigating
the the file system of a device, amongst other features. Nonetheless, as a means to easily reach
the mobile system, it also opened another attack vector.

Hwang et al. [HLKR15] presented a series of attacks that can be exploited through the ADB
tool. The authors divided these attacks into several categories. For example, they mention
the Private Data Leakage category, in which Message Tracking is possible. Typically, an Android
application needs permissions to handle or see Short Message Services (SMSs) or Multimedia Mes-
saging Service s (MMSs) but, since the system broadcasts the message after arrival, it is possible
to obtain them via ADB (even without permissions) via the dumpsys utility, which aggregates all
the information regarding notifications. One can even access messages from different users.
Containment between applications can also be bypassed in some cases. For example, using the
ADB run-as utility, an attacker (or the developer) can change its UID and Globally Unique Iden-
tifier (GUID) and acceses the files for particular applications at a time, thereby gaining access
to private data. This category is referred to as Private Database Access. Another category is the
one of Behavior Interference, in which they include the possibility to change the screen size to
render it useless to the user of the device, forcing him or her to reboot the OS. This DoS effect
can be achieved via the ADB wm utility. This command-line tool was of critical importance for
the work described herein.

2.4 Conclusions
The interest in mobile security topics has been increasing, motivated by the growing market and
also by the specific details surrounding the involved technology. This chapter provided some
context on that subject, focusing on some works that have some resemblances with the one
described herein. Nonetheless, none of the previous works tested throughly a big number of
applications from Google Play in the same manner. In here, the applications are downloaded
and tested in a computer, one by one, though a script was build to help systematizing part of

13

the procedure. The closest work concerns a study to find how many applications would allow
backing up to a PC, but it was limited to downloading and finding the allowBackup tag in the
AndroidManifest.xml file. The work described in this dissertation gives a better idea of the
severity of this problem. The fact that OWASP currently considers that the Insecure Data Storage
is the second major risk for mobile applications also justifies this study.

At the end of the chapter, a brief explanation of the ADB tool was included. The discussion can
now flow into the details concerning the method used to assess if applications are storing values
in an insecure manner, in which ADB plays a major role.

14

Chapter 3

Data Sets and Analysis of Android Applications

3.1 Introduction
Conducting a study on the security of the storage of Android applications with the characteristics
enunciated in the introduction required building up data sets of such applications. In the scope
of this work, two different and mutually excluded data sets were constructed: the first one was
comprised of Android Games only, while the other contained many common Android applications
(excluding games). Both data sets were build by humanly selecting some of the games and
applications from the Google Play store and by letting a program, written in Java, collect and
fill in the metadata of the applications in a MySQL database. Though mutually excluded, all
applications had the in-app purchases characteristic as a common feature.

This chapter describes both data sets and the method used to analyze the susceptibility of the
applications to data exposure or manipulation. The Android Games data set is described in
section 3.2, while the Common Applications data set is explained in section 3.3. The method
used to transfer, study and manipulate each game or applications is discussed with more detail
in section 3.4.

3.2 Android Games Data Set
The first data set assembled in the scope of this work was just composed by games available in
the Google Play Store [Goo15b]. All applications that were considered in this work were coming
from the official store, mostly because this is the source of most installations worldwide. This
data set was built and analyzed during the months of September and November of 2014. It is
comprised by 849 games, which can be divided into different categories, as they are organized
in the games section of Google Play. Table 3.1 shows the number of games falling into each one
of the categories that were considered in this analysis.

Table 3.2 provides a different, equally important, perspective over the data set, namely in
terms of the popularity of the games. It segregates the several games into 11 different ranges
concerning their respective number of downloads. Table 3.2 shows that the data set gathers
popular and less popular games. The procedure to collect games made no distinction regarding
the number of downloads on purpose, as the study was aiming to assess if the vulnerabilities
were present in any kind of mobile applications, and not restricted to a particular subset (e.g.,
to the most popular ones). Regardless of that, it is easy to verify that there are less games with
downloads up to 100000, mostly because unpopular games are short-lived in such stores. The
largest slide of the data set is comprised by games with 1 to 5 billion downloads, corresponding
to approximately 35% of the entire data set. Nearly 71% had more than 1 billion downloads.

By not focusing on specific groups or characteristics of the applications (apart from the in-app

15

Table 3.1: Number of analyzed games by category.

Category Number of Games

Action 141
Arcade 138
Puzzle 99
Casual 91
Strategy 91
Sports 58
Racing 50

Simulation 39
Adventure 37
Role Playing 35

Card 34
Word 16
Family 13
Trivia 6
Music 1
Total 849

Table 3.2: Number of games in the data set per number of downloads.

Number of Downloads Number of Games-per-Interval

100 000 000 - 500 000 000 13
50 000 000 - 100 000 000 16
10 000 000 - 50 000 000 111
5 000 000 - 10 000 000 110
1 000 000 - 5 000 000 296
500 000 - 1 000 000 106
100 000 - 500 000 157
50 000 - 100 000 23
10 000 - 50 000 11
5 000 - 10 000 4
1 000 - 5 000 2

purchase feature), and unlike prior studies on Android OS security, e.g., [FCH+11, FGW11,
EOM09, BKvOS10], which considered applications with greater popularity in Google Play (or
Android Market, as it was previously designated), it is possible to later try to potentially relate
the popularity of applications with Insecure Data Storage problems.

3.3 Android Applications Data Set
The analysis of Android games was stipulated as the starting point for this project, which could
later be expanded to other types of applications available on Google Play. The second data
set created in the scope of this project was initially comprised of 693 applications with the
in-app purchases characteristic, excluding games and Live Wallpapers and Widgets (see be-
low). Similarly to what was done for the previously described data set, its construction, namely
the process of selecting and downloading the Android Application Packages (APKs) and storing
metadata concerning each application in a MySQL database, was done by hand and resorting
to a program written in Java. The 693 applications were then revised one by one during the
assessment of the susceptibility to data manipulation, and some of them had to be left out of
the final analysis due to reasons discussed in chapter 4. As shown in the Table 3.3, 24 of the 26
existing categories in the application section of Google Play were considered for this study. The

16

categories Live Wallpaper and Widgets were not considered because they contain applications
that are already included in other categories, while the other categories have no intersections.

Table 3.3: Number of downloaded applications for the second data set by category.

Category Number of Applications

Books & Reference 30
Business 30
Comics 30

Communication 30
Education 30

Entertainment 30
Finance 30

Health & Fitness 30
Libraries & Demo 11

Lifestyle 30
Media & Video 30

Medical 30
Music & Audio 30

News & Magazines 30
Personalization 30
Photography 30
Productivity 30
Shopping 23
Social 30
Sports 30
Tools 29

Transportation 30
Travel & Local 30

Weather 30
Total 693

Since the number of applications in Google Play is growing and is larger than the number of
games, it was deliberately decided to limit the number of downloaded applications for each
category to 30. The main reason behind this decision was to keep the assessment manageable
(part of the study was performed manually). This is also noticeable in table 3.3. It was not
possible to get 30 applications for all categories, because in some of them there were not
enough applications with the in-app purchases feature. As with the previous data set, an effort
was made so as to not favor popular applications during the selection procedure. Table 3.4,
depicting the number of applications per download interval, shows that most of the data set is
comprised by applications in the range starting at 10000 and ending at 50000000 downloads, but
also that all intervals have at least 1 hit. This is mostly due to the morphology of the Google
Play applications, since it is more frequent to find them in the intermediary intervals than in
the bottom or top ones.

3.4 Method for Analyzing Android Applications
The overall method behind this work has 3 major phases: (i) collecting applications and games;
(ii) analyzing each one of the software pieces in the data sets; and (iii), summarizing the results.
This section is focused on phase 2. It contains the detailed description of the method used to
analyze each one of the games and applications in the data sets, which was adapted from

17

Table 3.4: Number of applications in the second data set per number of downloads.

Number of Downloads Number of Applications-per-Interval

100 000 000 - 500 000 000 4
50 000 000 - 100 000 000 9
10 000 000 - 50 000 000 42
5 000 000 - 10 000 000 40
1 000 000 - 5 000 000 120
500 000 - 1 000 000 71
100 000 - 500 000 197
50 000 - 100 000 61
10 000 - 50 000 89
5 000 - 10 000 17
1 000 - 5 000 23
500 - 1 000 6
100 - 500 11
50 - 100 2
10 - 50 1

the procedure in [XDA15]. From the description, it will become clearer that this process was
almost entirely manual, though some tools helped in some of the steps. From a broad and naive
perspective, the aforementioned method can be decomposed in 3 major parts also:

1. Initially, the application or game was installed in a smartphone with the Android OS. Their
features were then tested. For example, blocked or available features were enumerated.
Values of interest, which could somehow determine the flow of the application, were also
identified. In the case of games, the values of interest could be the number of coins of
the avatar or the current number of the level. Sometimes, the game (or application) was
used up to a given point of interest, as the point at which it was necessary to buy some
item via in-app purchases.

2. The application was then transferred to a desktop computer running a Linux OS, using the
procedure described below, where the data files were inspected and sometimes modi-
fied. For example, if a file with the (previously mentioned) number of coins was found,
it would be appropriately manipulated to contain a different value. The application was
then packaged and transferred back to the Android environment.

3. Finally, the application or game was tested to see if the manipulation was successful in
some noticeable way.

One of the most concerning details of this study is that no special privileges are needed in any
of the OSs used. The method required the usage of an Android smartphone (though a virtualized
device could also be used) and a computer with a specific software installed. In this case, a
non-rooted BQ Aquaris E5 FHD with the 4.4.2 Android version was used, but any smartphone
or tablet with an Android OS version greater than 4.0.0 would suffice, since it was this version
that introduced the backup utility [And15f]. The backup utility is crucial for the method, as
it provides the means to transfer the application to the computer and back. The Android OS
needed to have the debug mode enabled.

18

(a) RSA computer key. (b) Backup Utility.

Figure 3.1: Some screen options that appear during the method.

For the transference of the applications to the computer, a USB cable and connection was used.
The communications were managed using the ADB tool [And15b], which needs to be previously
installed in the computer. It is part of the Android SDK. The ADB tool interacts via command line,
and lets the user communicate with a emulator instance or Android connected device in a simple
manner. On the desktop computer, apart from the ADB tool, tools such as pax, tar, OpenSSL, dd
and grep need to be available also. Typically, OpenSSL is used to perform cryptographic tasks
but, in this case, it was used to compress and decompress packages resorting to the zlib library.
The pax tool is used to read and write files, as well as copying directory hierarchies. dd and tar
are responsible for converting files to the tar format and extracting their contents, respectively.
Finally, grep is used for searching patterns in files using regular expressions. Most of these tools
are included in common Linux distributions. Ubuntu 14.04 was the OS in the desktop computer.

The transference, manipulation and analysis, and restoring of the Android applications can be
comprehensively decomposed in the 10 steps detailed below. Most of those steps can be carried
out in a traditional Linux shell, resorting to the aforementioned tools:

1. The first step consists in connecting the device to the computer via USB. As the debug
mode is active, when the connection is performed, the security parameters of Android OS
ask the user to allow the computer to use the smarthphone in debug mode, showing also
the RSA public key of the computer, as shown in figure 3.1a. The OK button should be
pressed, otherwise the method will not work.

2. The app is then backed up to the computer with a command similar to
> adb backup -f data.ab -apk PATH

The PATH parameter represents the game path on the smartphone internal storage and
should be replaced by the real game path. This command will trigger a new activity on
the smarthphone (illustrated on the right side of figure 3.1b), that asks the user about the
authorization to perform the backup operation for that application. The user should select
the option with label Back up my data in order to conclude the backup process successfully.
After successful execution of this command, a compressed and non-encrypted file (in this
case referred to as data.ab) is generated. This file contains a header with 24 bytes, along
with the files that composed the application.

19

3. The third step is where the header of the data.ab file is removed and the remaining part
is converted into a tar file. This will enable the consequent extraction of the compressed
files. The commands for performing both tasks are similar to
> dd if=data.ab bs=1 skip=24 |openssl zlib -d > data.tar

4. The fourth step consists into getting a perfect (i.e., ordered) list of the files that are inside
of the file generated in the previous step. This a important step, since in the restore
process, the files of the application need to be assembled in the same order in which they
were backed up, or an error will be issued by the utility stating that the package has been
changed. This task can be performed using the following command in the shell
> tar -tf data.tar > data.list

5. In the fifth step the data.tar file is decompressed. This operation allows access to all
files in a readable format. The extracted files are under a newly created folder with the
name of the respective application. This is achieved via
> dd if=data.ab bs=1 skip=24 |openssl zlib -d |tar -xvf -

6. With access to all files of the application, it is possible to analyze and modify data files. In
the scope of this work, the most interesting files were the ones potentially holding sensitive
data like credentials or the ones whose contents impact the flow of the applications. Most
of the times, the grep tool was used to find values of interest in files, with commands
similar to
> grep -R "xxx" app/PATH/
This command searches for the string xxx in all files contained in the app/PATH/ folder
or sub-folders (-R option). Having identified the files, they were modified using the most
appropriate means (e.g., a text editor was used to edit XML files, while SQLite was used
to manipulate SQLite3 databases).

7. The seventh step delineates the beginning of the restoring process. It follows the process
of the backup and modification steps in a reverse order. In the first place, is neces-
sary to compress all files in the same order they were uncompressed. This information
was saved in the data.list file (see fourth step). The command to perform this task is
> cat data.list |pax -wd > newdata.tar
The successful execution of the command generates a new tar file (newdata.tar), con-
taining all files in the order defined in data.list.

8. It is then needed to re-insert the header removed in step three. This header is fixed and
known for decrypted Android backups and can be replicated via
> echo -e "ANDROID BACKUP\n1\n1\nnone" > backup.ab
The previous command creates the file backup.ab with the string ANDROID BACKUP. The file
generated in this step is the file that will be restored to the smarthphone in the last step.

9. The ninth step is where the header is concatenated with compressed application file. This
may be achieved via
> openssl zlib -in newdata.tar >> backup.ab
Notice that this command compresses newdata.tar and concatenates the result at the end
of the backup.ab file.

20

10. Finally, the application is restored via
> adb restore backup.ab
The Android device needs to be connected to the computer (and recognized by the system)
for the command to succeed. A message will be spawned in the Android device asking for
permission to restore the application.

When looking for information exposure problems (e.g., credentials), following the method up
to the sixth step was enough. When assessing the susceptibility to data manipulation, it was
necessary to carry out the entire method and then test the application in the Android environ-
ment. For example, in the case of games, it was necessary to see if the inflicted modifications
did not render it useless (corrupted) and if they enabled cheating the game or access paid
functionalities.

3.5 Conclusions
This chapter is focused on two phases of the method that was used to evaluate if the data files
of Android applications could be manipulated to change their behavior. It presented details
that characterize the two data sets that were build. One of the data sets is comprised of
games only, while the second one contains typical applications. The first is comprised of 849
software pieces and the second contained, initially, 693 applications. The applications were
mostly chosen manually and then fed to program for gathering their information. An effort was
made not to favor any particular Google Play category or download range, though the higher
number of applications in some ranges translated into more of those in the data sets.

The method used to transfer and analyze the applications in a desktop computer does not require
administrator privileges on the Android device, exploiting the native Backup utility provided by
the mobile OS. It uses only open source and readily available tools, emphasizing that any user
with some background or following tutorials can perform it to access potentially private data or
access paid features. Having described the data sets and this method, it is possible to proceed
to the discussion of the results in the following chapter.

21

22

Chapter 4

Assessment of the Susceptibility to Data
Manipulation of Android Applications with In-app
Purchases

4.1 Introduction
This chapter presents the results obtained after applying the method described in the previous
chapter to the applications and games of the data sets. It is thus divided into two main sections,
each devoted to the discussion of the results for each one of the data sets: section 4.2 is focused
on Android games, while section 4.3 is dedicated to typical Android applications. Near the end
of the chapter, section 4.4 elaborates on the pertinence of the results in terms of the threat
they represent.

4.2 Analyzing Android Games with In-App Purchases
The study reported in this section concerns the data set of 849 free (to download) games with
the in-app purchase characteristic. From those 849, a total of 148 were susceptible to data
manipulation performed using the method described in section 3.4, which corresponds to 17,43%
of the tested games. It can be said that this number is significant, specially if one takes into
account that the procedure that was employed was not that sophisticated. Malicious users with
more free time and motivation, focused in one application only, would easily bring this number
up. At least 1 in each 6 games of Google Play are vulnerable and it is easy to build scripts that
automate the method used in the scope of this work for any given application (discussed with
more detail below).

Figure 4.1 provides a perspective over the relationship between the number of games that were
found to be susceptible to data manipulation with the total number of games in the data set for
each category considered in Google Play. The Trivia category is the one with a larger number
of vulnerable games, with 50% found to be susceptible to data manipulation. Nonetheless, it
should be also mentioned that this is the categories with fewer games (only 6 games). Usually,
this type of game is prepared to work both online and offline. As such, many come with all
the features (paid or free) implemented, though the paid ones may be blocked via some pro-
gramming logic. In-app purchases are typically used to provide access to information or tricks
that helps answering certain questions of the game. In the vulnerable games, the data control-
ling the purchased add-ons was stored in plaintext files without any integrity mechanism. The
next two most vulnerable categories are the ones of Racing and Arcade, with 28% and 26% of
the games are susceptible to data manipulation, respectively. In these games, the paid add-on
functionality is either associated with the virtual money (used within the game) or with faster
ways to progress in the game, namely buying certain virtual items. These results are directly
related with the fact that the values that represent the virtual items are easily found in the data
files, namely in plaintext eXtensible Markup Language (XML) or text files, or in SQLite databases.

23

 0

 20

 40

 60

 80

 100

 120

 140

 160

Ac
ti
on

Ad
ve

nt
ur

e

Ar
ca

de
Ca

rd

Ca
su

al

Fa
m
ily

M
us

ic

Pu
zz

le

Ra
ci
ng

Ro
le
 P

la
yi
ng

Si
m
ul
at

io
n

Sp
or

ts

St
ra

te
gy

Tr
iv
ia

W
or

d

N
u
m

b
e
r

o
f

G
a
m

e
s

Categories

Number of Games Analyzed
Number of Games Vulnerables

Figure 4.1: Total number of games versus the number of games susceptible to data manipulation per
category.

They are stored without encryption, integrity or authentication codes.

The categories of Role Playing, Family and Music had no vulnerable games. These results are
explained by the fact that, for these types of game, the in-app purchases are used to remove ad-
vertising, or for example buy the whole game or expansions (new levels, characters or weapons).
Sometimes, applications allow the user to make purchases within the application but require
additional files (or a new version of the game) to be downloaded. As such, the features are
neither installed (but blocked) with the free version of the application, nor potentially inter-
esting data files are available for manipulation before payment. Usually, purchases requiring
the device to communicate with the remote server are less susceptible to this type of attack
because, in such cases, it is not about changing the flow or status information of the application
anymore. The games in the Role Playing category are typically the ones that change more dur-
ing the lifetime of the game (e.g., new characters are added at different levels, downloaded
on-demand). These changes are also leveraged to improve security or solving reported flaws
(i.e., a patch is delivered more regularly to such games). This behavior contrasts with the one
of games in the Arcade category, in which changes are rare after their initial release.

The categories with less susceptible applications to data manipulation are the ones of Cards and
Strategy, with 2.9% and 6.5% of vulnerable games in the data sets, respectively. These values
can be explained by the fact that games belonging to these categories are designed to work
online and the user data is typically stored remotely. The data is checked (local and remote
copies of files are compared) frequently and manipulated values are detected and overwritten.
For example, it was noticed that some games allowed changing some values in the PC, but they
were then restored when the connection was reestablished.

A different view over the results is provided in Figure 4.2. In this case, the number of vulnerable
games is plotted against the respective download interval. The total number of games of the
data set in each interval is also depicted, for comparison purposes.

The intervals containing more games susceptible to data manipulation are the ones of 5000−10000

24

 0

 50

 100

 150

 200

 250

 300

10
00

00
00

0
-
50

00
00

00
0

50
00

00
00

 -
 1
00

00
00

00

10
00

00
00

 -
 5
00

00
00

0

50
00

00
0
-
10

00
00

00

10
00

00
0
-
50

00
00

0

50
00

0
-
10

00
00

0

10
00

00
 -
 5
00

00
0

50
00

0
-
10

00
00

10
00

0
-
50

00
0

50
00

 -
 1
00

00

10
00

 -
 5
00

0

N
u
m

b
e
r

o
f

G
a
m

e
s

Number of Downloads

Number of Games Analyzed
Number of Games Vulnerables

Figure 4.2: Total number of games versus the number of games susceptible to data manipulation,
segregated by popularity.

and 50000−100000, with 50% and 30% of vulnerable games. The interval delimited by 5000 and
10000 had only 4 games in the data set and the statistic is thus not significant (2 out of the 4
were vulnerable). There were 27 games in the second interval, 7 of them were found vulnera-
ble. The most important conclusion taken from this part of the work is that the Susceptibility
to data manipulation does not seems to be related with the popularity of the game, since the
number of vulnerable games is larger in intervals with more samples and vice-versa, with larger
fluctuations in scarcer intervals. In the interval corresponding to the highest level of popularity
(100000000−500000000), there were 2 vulnerable games in a total of 13, adding up to approxi-
mately 15%. Curiously, the data set had 16 games in the preceding range (50000000−100000000)
and none was found vulnerable. The interval with more samples in the data set was the one
delimited by 1000000 and 5000000, containing a total of 296 games. 46 of these games were
found vulnerable, which corresponds to approximately 15%.

Figure 4.3 shows the types of file that are used to store application data in the internal storage
of the Android OS for the analyzed games that were found vulnerable. From the pie chart, it
is possible to conclude that, in 76% of them, the data is saved in XML files, while only 9% use
SQLite. The remaining 14% use other file types, such as JavaScript Object Notation (JSON) or
text files. This distribution was expected since XML comprises a simple and standard format for
storing data and, in Android, one of the suggested storage options for saving application data
is known as Shared Preferences, which is used to save values from primitive JAVA types in XML
format via the SharedPreferences class of the SDK. From these results, it is possible to also
conclude that data manipulation can be done in different file formats. Data stored in SQLite
databases is also stored in American Standard Code for Information Interchange (ASCII) (except
if encoded using application logic) which also enables one to easily find patterns in the files
using tools like grep.

Interestingly, only 21 games of the data set (which represents approximately 2.5%) had the
android:allowBackup property set to false in the AndroidManifest.xml. Setting such property
to false constitutes one way of protecting the application against data manipulation in non-
rooted OSs, since legitimate users can no longer back it up to a computer. Unless specifically
set in the manifest, this property is set to true by default. The results show that only a few

25

76 %

10 %

14 %

XML File Database Other type of file

Figure 4.3: Type of file used to save application data in the Android internal storage in vulnerable games.

developers set it up intentionally. On the other hand, if the OS is rooted, manipulation can still
occur without requiring transferring the backup.

Finally, it should be mentioned that there were 27 games cataloged with the in-app purchases
characteristic that did not really possess any functionality for purchases within the application.
This is probably due to erroneous selections from the developers when uploading to the store. In
another 3.9% of the data set (i.e., 27 games), the in-app purchase feature was used as a means
to remove advertisements or to buy their respective full version, which are of less importance
to this study. Normally, purchasing the full version requires downloading additional files and,
as such, the game is not vulnerable in the sense considered in this work.

4.3 Analyzing Android Applications with In-App Purchases
The study described above was performed prior to the one discussed in this section. Because
of that, the procedure for building and analyzing Android applications (excluding games) was
different. On the one hand, it was more compartmentalized in the sense that the applications
were first identified and only later downloaded and superficially analyzed; on the other hand,
filters were applied to the data set before the more detailed analysis via transference to the
computer. Initially, 693 applications from 24 categories of the Google Play store were iden-
tified. Their links were then fed to the Java program responsible for downloading them and
collecting their metadata. All applications in which the in-app purchases were used to remove
advertisements or having the android:allowBackup set to false in the AndroidManifest.xml
were then excluded from further analysis. Applications that were not compatible with the An-
droid device in which their features were tested (the BQ Aquaris E5 FHD) or those that really had
no functionality to buy anything (despite the in-app purchase characteristic) were also left out.
Actually, the applications referred in last were of less interest for this study, mostly because
they are typically extremely simple applications with little value to users. De decision to apply
these filters were mostly based on lessons learned from the initial work on Android games. After
applying these filters, the data set was reduced to 377 applications, corresponding to 54% of
the original set. Figure 4.4 provides an idea on how these filters affected the data set for each
category.

The chart in Figure 4.4 clearly shows that the Medical and Education categories were the cate-

26

 0

 5

 10

 15

 20

 25

 30

 35

 40

B
oo

ks
 R

ef
er

en
ce

B
us

in
es

s

C
om

ic
s

C
om

m
un

ic
at

io
n

Edu
ca

tio
n

Ent
er

ta
in

m
en

t

Fin
an

ce

H
ea

lth
 F

itn
es

s

Lib
ra

rie
s

D
em

o

Life
st
yl

e

M
ed

ia
 V

id
eo

M
ed

ic
al

M
us

ic
 A

ud
io

N
ew

s
M

ag
az

in
es

Per
so

na
liz

at
io

n

Pho
to

gr
ap

hy

Pro
du

ct
iv

ity

Sho
pp

in
g

Soc
ia

l

Spo
rts

Too
ls

Tra
ns

po
rta

tio
n

Tra
ve

l
Loc

al

W
ea

th
er

N
u
m

b
er

 o
f

A
p
p
li

ca
ti

o
n
s

Categories

Number of Applications in Data set
Number of Applicationss Analyzed

Figure 4.4: Number of downloaded applications vs. number of applications fulfilling the conditions to
analysis, divided per category.

gories that had more applications to be analyzed, both with 80% of applications to be considered
in the manual analysis phase. This categories have typically more complex applications and the
in-app purchases are more commonly used to add functionality, rather than for advertising re-
moval. On the opposite side one can find the categories of Comics and Sports, with only about
37% of applications considered for further analysis. The cut in the Comics category is explained
by the fact that the respective applications are commonly used to download and read comics
for free, with developers resorting to advertising as the source of income or, alternatively, to
their removal via purchases. The reasons behind the cut for the Sports category are similar.
The respective applications are mostly used to relay sport related news to users, namely game
results free of charge, using advertising as the source of income. The remaining 20 categories
suffered cuts close to the average (i.e., 54%).

The impact of the filters in the data set in terms of popularity is depicted in Figure 4.5. Consid-
ering only percentages, the interval corresponding to 10−50 downloads had the highest rate of
not excluded applications (100% of the applications in the initial data set made it through the
next phase). Nonetheless, this number is not very significant since there were only one applica-
tion in the group. The intervals corresponding to 50000000−100000000 and 5000000−10000000
downloads come immediately after, with 67% and 62% non-filtered out applications, respec-
tively.These results led to the conclusion that popular applications are often more complex
where the functionality of in-app purchases is more frequently used to obtain items and ex-
tra features rather than for removing advertisements. In the opposite side, the intervals of
500−1000 and 100−500 had the highest exclusion rates, where only 33% and 9% of the appli-
cations were kept, respectively. These findings also corroborate the statement that popularity
and more elaborated ways of using purchases in applications are related.

Having described the conditions that narrowed down the data set, the results obtained after
aplying the method discussed in Section 3.4 are now included. These results are provided in two

27

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

10
0

00
0

00
0

- 5
00

 0
00

 0
00

50
 0

00
 0

00
 -

10
0

00
0

00
0

10
 0

00
 0

00
 -

50
 0

00
 0

00

5
00

0
00

0
- 1

0
00

0
00

0

1
00

0
00

0
- 5

 0
00

 0
00

50
0

00
0

- 1
 0

00
 0

00

10
0

00
0

- 5
00

 0
00

50
 0

00
 -

10
0

00
0

10
 0

00
 -

50
 0

00

5
00

0
- 1

0
00

0

1
00

0
- 5

 0
00

50
0

- 1
 0

00

10
0

- 5
00

50
 -

10
0

10
 -

50

N
u
m

b
er

 o
f

A
p
p
li

ca
ti

o
n
s

Number of Downloads

Number of Applications in Data set
Number of Applications Analyzed

Figure 4.5: Number of downloaded applications vs. number of applications fulfilling the conditions to
analysis, divided per popularity.

main perspectives, similarly to what was previously done for the Android games. The study of
these applications was more profound than the aforementioned one, because it included search-
ing for data exposure problems too. In this case, all applications that were either susceptible
to data manipulation or whose sensitive information was exposed were considere vulnerable.
Data exposure refers to having sensitive information such as credentials (e.g., username and
passwords) stored in plaintext in the data files.

Figure 4.6 shows the number of applications susceptible to data manipulation or exposure against
the respective number of applications in the subset. The values are segregated by category. The
category with a greater number of vulnerable applications is the one of Media & Video, with ap-
proximately 46% of vulnerable applications (six out of 13). The Finance category follows closely
with approximately 42% of vulnerable applications (eight out of 19). Applications in the Media &
Video are comprised by editors and readers. In the case of editors, it is common for developers
to pack the entire features of a fully fledged editor into the free version of the application,
which are initially blocked using application logic and values. These features can be unblocked
using in-app purchases, which explains these results. The prominent percentage obtained for
the Finance category is more due to data exposure, as the respective applications frequently
include a login functionality, and store the credentials in auxiliary files without applying proven
security mechanisms. Many times, developers assume that the application is protected by the
OS and that it is not possible to access its files outside the application environment, which is not
enough. Moreover, it was possible to verify that many of these applications were using Personal
Identification Numbers (PINs) to somehow control the access to their features, and that the PIN
was not only stored in plaintext in the data files, as it could also be manipulated to a desired
value without detection.

It is worth mentioning that there were four categories in which no vulnerable applications were
found, namely Business, Libraries & Demo, Photography and Productivity. In most of their

28

 0

 5

 10

 15

 20

 25

B
oo

ks
 R

ef
er

en
ce

B
us

in
es

s

C
om

ic
s

C
om

m
un

ic
at

io
n

Edu
ca

tio
n

Ent
er

ta
in

m
en

t

Fin
an

ce

H
ea

lth
 F

itn
es

s

Lib
ra

rie
s

D
em

o

Life
st
yl

e

M
ed

ia
 V

id
eo

M
ed

ic
al

M
us

ic
 A

ud
io

N
ew

s
M

ag
az

in
es

Per
so

na
liz

at
io

n

Pho
to

gr
ap

hy

Pro
du

ct
iv

ity

Sho
pp

in
g

Soc
ia

l

Spo
rts

Too
ls

Tra
ns

po
rta

tio
n

Tra
ve

l
Loc

al

W
ea

th
er

N
u
m

b
er

 o
f

A
p
p
li

ca
ti

o
n
s

Categories

Number of Applications Analyzed
Number of Applications Vulnerable

Figure 4.6: Number of applications susceptible to data exposure or manipulation vs. number of analyzed
applications, divided by category.

respective applications, the in-app purchaseswere either used to remove advertisements (hence
not making it to the final analysis), or the paid features or expansions require downloading
entirely new files, leaving no room for data manipulation a priori.

The relation between popularity and susceptibility to data manipulation or exposure is illus-
trated in Figure 4.7. From its analysis, it can be concluded that the interval with more vulnera-
ble applications is the one delimited by 50000000 and 100000000, with approximately 33% failing
in the utilized method. This range corresponds to very popular applications. There are five in-
tervals with no vulnerable applications, namely the four first ranges and the one containing the
applications with more than 5000000000 downloads. These intervals were only represented by
one or two applications in the data subset, due to reasons already discussed before.

Focusing solely on the vulnerable applications, Figure 4.8 puts the preferred formats to store the
data into perspective. The pie chart shows that approximately 70% of the vulnerable applications
(52 out of 74) were using XML files to store data and credentials, a number similar to the one
obtained for games and depicted in Figure 4.3. The remaining 30% were using SQLite databases.

In the subset of applications considered for analysis, there were 87 with a built-in login func-
tionality. From these, 23 of them were storing the credentials (e.g., usernames, passwords
or PINs) in plaintext files, corresponding to 26%. Moreover, in this second data set, there
were more applications not allowing backup via the android:allowBackup property in the
AndroidManifest.xml than in the games data set.

4.4 Discussion on the Severity of the Findings
The percentage of Android applications and games susceptible to data manipulation is significant
if several aggravating factors are taken into account:

29

 0

 20

 40

 60

 80

 100

 120

10
0

00
0

00
0-

 5
00

 0
00

 0
00

50
 0

00
 0

00
- 1

00
 0

00
 0

00

10
 0

00
 0

00
- 5

0
00

0
00

0

5
00

0
00

0-
 1

0
00

0
00

0

1
00

0
00

0-
 5

 0
00

 0
00

50
0

00
0-

 1
 0

00
 0

00

10
0

00
0-

 5
00

 0
00

50
 0

00
- 1

00
 0

00

10
 0

00
- 5

0
00

0

5
00

0-
 1

0
00

0

1
00

0-
 5

 0
00

50
0-

 1
 0

00

10
0

- 5
00

50
 -

10
0

10
 -

50

N
u
m

b
er

 o
f

A
p
p
li

ca
ti

o
n
s

Number of Downloads

Number of Applications Analyzed
Number of Applications Vulnerable

Figure 4.7: Number of applications susceptible to data manipulation vs. number of analyzed
applications, divided by popularity.

70,3 %

29,7 %

XML File Database

Figure 4.8: Type of file used to save application data in the Android internal storage in vulnerable
applications.

1. First, it should be emphasized that the method employed was very general and not ap-
plication specific. Potentially more prominent numbers would have been achieved if the
analysis was more tailor-suited and if there was more time for each individual analysis.

2. The vulnerability (or the major entry point for exploring it) derives from a native OS mech-
anism and utility, which is actually useful to end users. The main purpose of the backup
utility is beneficial and should not be removed. Furthermore, no administrator privileges
are required on the Android OS to transfer, analyze or manipulate the applications.

3. It is already possible to find programs and scripts in the wild that effectively exploit the
method for specific games, such as My Talking Tom.

30

4. In the worst case scenario, it was found that 1 in each 6 applications or roughly 1 in each 5
games were prone to data manipulation using only well known and freely available tools.
Apart from the activation of the debug mode in the Android OS, the connection of the USB
cable and the acceptance of the connection, the entire procedure can be performed from
a shell, and can be easily automated via scripts.

5. Many users leave the smartphone unlocked over desks, being easy to quickly connect a USB
cable and download the applications to steal private information such as PINs or passwords.

6. Finally, several design and implementation artifacts, discovered during the course of this
work, provide a clear indication that the problem can only be worst. There was one
application storing information from other users (such as e-mail addresses and usernames)
locally, while another one enabled impersonating an arbitrary user just by manipulating
the username after a successful authentication. These problems are not only due to an
over confidence on the security provided by the OS, but also to an insufficient knowledge
of the platform by the developers.

4.5 Conclusions
This chapter summarizes the main results and findings obtained during the intermediate and
lengthier part of this Ms.C. program. It also brings the focus to the severity of the problem at
hands. The analysis of the susceptibility to data manipulation and exposure of Android applica-
tions and games was performed for those with the in-app purchases characteristic, for which the
costs of being cracked are more significant and that may effectively motivate attackers. Unfor-
tunately, within the Android universe, the method to alter application data can be automated,
and performed by people with only little expertize and using open source tools.

Results show that the data of 1 in every 6 games and 1 in every 5 applications can be modified to
obtain functionality or virtual items that would otherwise need to be paid for. Many applications
(e.g., from the Finance category) are storing PINs or passwords in plaintext in XML or SQLite,
which are easily researchable using regular expressions, since the values are represented in
ASCII.

While some developers are setting the backup option off for their applications, the solution
should instead include the integration of adequate and well established security mechanisms,
such as encryption and integrity checks. These mechanisms should be integrated depending on
the requirements of the applications. The problem is not simple to solve and the next chapter
elaborates on possible general solutions.

31

32

Chapter 5

Mechanisms for Preventing Data Manipulation in
Android Systems

5.1 Introduction
This chapter discusses several potential solutions to the previously identified problem. The
solutions are dividided into two main groups: the ones may be integrated on the OS itself, which
are more generic; and the ones that may be natively integrated in the mobile application. While
the former does not require the developers to be concerned (as much) with the security problem,
the second enables fine-grained control over security requirements, namely data confidentiality
and integrity. The later requires developers to know more about security mechanisms and their
correct integration in applications.

This chapter starts from the presentation of the current way of functioning of the backup proce-
dure in section 5.2, to then discuss local and remote software based solutions for the backup util-
ity in sections 5.2.2 and 5.2.3, respectively. Proposals for enhancing each of these solutions us-
ing Acorn Risc Machine (ARM) TrustZone technology are then discussed in sections 5.2.4 and 5.2.5.
Lastly, several resources that developers may use to secure their applications are descried in
section 5.3.

5.2 Mandatory Message Authentication Code
The USB debugging functionality was integrated in the Android OS with the intention of making
the life of developers a lot easier. It enable them to perform debugging directly on the devices
instead of simulators. In many cases, it is in fact faster to compile, prepare the package and
install the mobile application on a physical device connected to the development computer,
than to use an emulated one. Additionally, there are functionalities that are not that easily
simulated in a virtual environment, namely interaction with user and sensor related. Combined
with ADB, USB debugging comprises a powerful tool. They allow installing applications, send
commands to the device, navigate in the Android system with the traditional Linux commands,
perform backups, amongst other features and via command line. Unfortunately, USB debugging
also paved the way for some vulnerabilities and constitutes a way to easily install applications
from unknown sources. It is also via USB debugging that the backup of Android applications (using
the native OS utility) is possible. The next subsection will thus briefly describe its functioning.

5.2.1 Current Functioning of the Backup utility
Figure 5.1 contains a high level scheme that represents the functioning of the Android backup
utility. It shows that, in order to perform a backup, it is necessary to have the phone connected
via USB to the computer (actually, it would be possible to avoid the usage of the USB cable if a
solution line WiFi ADB [Goo15d] was used, though debugging has to be active either way). The
scheme shows that the backup utility is part of the OS. The output of this utility is an archive

33

that contains the data of 1 or more applications. The archive contains files whose access is not
permitted in the non-rooted OS environment.

Figure 5.1: Scheme of the functioning of the Android OS backup utility.

The objective of the backup utility is to provide legitimate users with means to backup their
applications, which may be useful in many situations, including for when he or she needs to
switch paid applications to a new phone. Due to its purpose, the entire contents and data of an
application needs to be included in the backup archive, giving rise to the problem exploited in
this work. The utility provides the option to set a password for protecting the resulting file, by
encrypting it with a derived key. If the field is left empty, no encryption is applied.

5.2.2 Approach #1 − Software Modification to the Backup Utility
The simpler (and perhaps most logical) approach to solve the problem is to integrate a suitable
(mandatory) integrity mechanism in the backup utility. Figure 5.2 shows where this solution
would be positioned using a scheme similar to the previous one.

This solution is the simpler because it consists solely in the integration of programming logic
that produces an integrity code when a backup is to be created, and checks that integrity
during restoration. The most suitable integrity mechanisms for this situation would be either
a Message Authentication Code (MAC) or a digital signature. This first approach assumes that
the integrity code (MAC or digital signature) is added to the backup archive and sent to the
storage device with it (storing the integrity codes on the device would not favor portability).
These solution (as well as the others), do does not pose any burden in terms of computational
or storage overhead.

There are two problems with this approach: (i) the keys used to generate or verify the integrity
code need to exist on the device, or there should be a publicly known mechanism that enables
deriving them from user input; (ii) if the keys are only on the device, it is difficult to backup
from one device to another. A mechanism to transfer the keys would be needed. Nonetheless,
this mechanism would increase the difficulty of malicious attempts.

34

Figure 5.2: Solution #1 − Inclusion of cryptographically secure integrity mechanisms in the backup utility.

5.2.3 Approach #2 − Software Modification to Backup Utility with Networking
and Server for Storing MACs or Digital Dignatures

It is possible to address the two problems mentioned in the final part of the previous section by
adding a third party to store keys and integrity codes. A scheme for this approach is depicted
in Figure 5.3.

Figure 5.3: Solution #2 − Adding Internet connectivity when backing up applications and storing integrity
codes and keys remotely.

In this approach, the ability to communicate with the Internet is added as a module to the Backup

35

utility also, providing that it already contains the necessary programming logic to generate
and verify the integrity codes of the backups. The utility asks the server for the integrity key
(e.g., private key from a public-key cryptosystem) when the backup procedure starts. It then
generates the archive and the integrity code with indexing information. The code is then sent
to the remote server and the key is safely erased from the internal memory of the device. The
archive is stored at the user chosen location. When restoring, the utility receives the archive
and asks the server for the respective key (in the case of a public-key cryptosystem, the public
key may already be in the device) and integrity code. The process should only be successful if
the integrity is verified.

The scheme highlights that the integrity keys and codes need to be transmitted using a crypto-
graphically secure channel, which adds overhead to the whole process. Ideally, when using this
scheme, the secret keys (e.g., symmetric key for MAC or the private key of a digital signature
scheme) would only be transfered to the device when required, instead of being stored perma-
nently there. This would diminish their exposure and the risk of being illegitimately obtained.
To successfully modify an application, an attacker would have to either (i) compromise the re-
mote server, (ii) produce a collision, or compromise the keys. The best moment to compromise
the keys would be when they are ate the device for backing up or restoring activities.

This solution would solve the problem of transferring applications to different devices. Nonethe-
less, in order for it to function properly, it requires always Internet connectivity.

5.2.4 Approach #3 − Software Modification to Backup Utility and a TCB
The ARM processor architecture is the most used technology in smartphones and tablets. In
2009, those responsible for this architecture implemented the ARM TrustZone, which is a hard-
ware security technology incorporated into recent ARM processors since ARMv6, including ARM
Cortex A8, A9 and A15 processors. It provides a security extension named ARM System-on-
Chip (SoC) [Fur00], that enables having several systems allocated in only one chip.

ARM SoC is based on the idea of two execution worlds, as shown in Figure 5.4. One world is called
the Normal World, or Rich Execution Environment (REE), while the other is called the Secure
World, or Trusted Execution Environment (TEE). These two worlds are separated by hardware
mechanisms, and have different levels of privileges. This division ensures that instructions
occurring in the normal world do not have access to the secure world, yet the secure world has
access to the normal world providing some conditions are met. The system uses processor bit,
kown as Non-Secure (NS)-bit to decided the world where code will be executed.

The approach described in this section leverages the previously presented technology to address
the problem of having the keys or the backup utility compromised. Its high level scheme is
included in Figure 5.5 and its functioning is similar to the one presented in Section 5.2.2. In
this case, the backup utility continues to run in the normal world, but the routine to calculate
or verify the integrity code runs in the secure world. Since the approach assumes that the
integrity code generalization and check is mandatory, it is also assumed that the integrity of
the backup utility is verified, so that the mechanism is not circumvented. It is also assumed
that the integrity keys can only be accessed from the secure world.

This solution is more secure in the sense that the keys are more difficult to compromise. This

36

Figure 5.4: High level diagram showing the difference between the traditional and the ARM SoC
architectures.

Figure 5.5: Solution #3 − Backup utility interacts with a trustlet for the purpose of generating and
verifying integrity codes.

approach does not require access to the Internet, which brings the portability problem into
focus again. In this case, this problem can be translated into a key distribution problem. If it
were to happen, transmission of keys for different devices would have to be done live, using
trustlets running in secure worlds between the two devices. Otherwise (offline), the keys would
have to be stored out of the device at some point, even if protected, which could lead to their
compromise.

37

5.2.5 Approach #4 − Software Modification to the Backup Utility and a TCB
with Networking and Server for Storing MACs or Digital Signatures

The last approach presented herein combines the two previous ones and the high level scheme of
its functioning is depicted in Figure 5.6. In this case, the backup utility interacts with a trustlet,
which runs in a secure world and is responsible for communicating also with a remote server for
storing integrity keys and codes. The trustlet assures that the cryptographically secure channel
is established, functioning as a wormhole.

Figure 5.6: Solution #4 − Backup utility interacts with a trustlet for the purpose of generating and
verifying integrity codes and uses a remote server to store integrity codes and keys.

The major drawback of this approach is that it assumes Internet connectivity. This assumption
may be relaxed for the moment in which a backup is being performed, since the integrity code
and keys may be momentarily stored locally, and sent to the remote server afterwards. Restora-
tion will not be possible before that data is updated to the remote server. It is assumed that the
Internet connectivity is available during the restoring procedure, as the application should only
be installed back on the device if the validity is checked. The assumption of having Internet
connectivity may hinder the usage of the utility, since some users may not have it available
when needed.

5.3 Usage of Encryption Primitives
The previous solutions do not address the information exposure nor solve the problem of data
manipulation in rooted devices. The later problem is the most difficult to handle, because with
such administrative privileges, the application does not need to leave the primary environment
to be analyzed or modified.

38

While the description of the previous approaches was focused on the integrity problem, it could
be easily extended to the confidentiality issue to. The author opted to leave it like that for
the sake of the explanation. Integrating appropriate encryption and decryption mechanisms in
the backup utility or in a trustlet, after the backup and before restoring, respectively, would
effectively solve the data exposure problem, providing that the decryption keys could not be
compromised. The four approaches would have to assume that encryption keys were generated
(or pre-distributed) for the backup process to proceed. In the case of having a remote server
and Internet connection involved, the discussion would mention that those keys would have to
be sent and retrieved securely too.

Addressing the possibility of the device to be rooted could be done, at least to some extent,
via integration of cryptographic primitives in the mobile applications. This would require de-
velopers to know the mechanisms and how to use them. Unfortunately, depending on how the
mechanisms are integrated and the available resources (e.g., the existence of a secure world in
the device), this process may either result in a secure application or in an added difficulty for
attacker.

In terms of software resources, and since applications for the Android OS are developed in
JAVA programming language, developers may resort to the classes of the Java Cryptography
Architecture (JCA), which is very complete and documented. It includes the implementation
of primitives such as Advanced Encryption Standard (AES) and RSA (via the Cipher class), and
Secure Hash Algorithm 256 (SHA256) (via the Digest class), amongst many others. In terms of
storage in databases, and since SQLite is the native engine provided with Android, developers
have many options to choose from too, namely:

• SQLite Encryption Extension (SEE), an official extension to SQLite, created by its de-
velopers, which offers support for four different ciphers, namely, Rivest Cipher 4 (RC4),
AES-128 in Output Feedback (OFB) mode, AES-128 in Counter with CBC-MAC (CCM) mode
and AES-256 in OFB mode;

• wxSQLite3 [Ulr15], which is a wrapper for the SQLite3 developed in C++ programming
language. It is designed to be used in programs based on the wxWidgets library. Since
version 1.9.8 that supports the AES-256 encryption algorithm;

• SQLCipher [Zet15], an open source library that was developed by Zetetic LLC. It had its
first release in November 2008, being an update published in 2011 with support for Android
OS. This library makes available the secure and transparent 256-bit AES encryption of
SQLite database files, meaning that the library acts as a middleware, and all instructions
and code are implemented as before;

• SQLiteCrypt [Han15], a small library implemented in C programming language, which also
handles the interactions with the database for the application in a transparent manner.
The data is secured using the AES-256 encryption algorithm;

• BotanSqlite3 [ran15], a module to be used with SQLite3, encrypts the entire database
using algorithms supported by Botan; and

39

• SQLiteCrypto [and15a], which was developed by andbrain.com with the purpose of pro-
viding means to encrypt SQLite databases transparently to the end user.

The SEE, SQLiteCrypt and SQLiteCrypto require the purchase of a license.

5.4 Conclusions
The discussion in this chapter leads to the conclusion that the problem addressed in this master's
program is not easy to solve. On the one hand, the backup utility seems like a legitimate
feature to provide to users; on the other hand, since all the data is local and in (physical)
possession of the owner of the device, it may be difficult to secure. Solutions based on a safe
processing environment comprise the best ones and adding a trusted remote server for storing
keys and integrity codes (and potentially the backups) solve the problem of portability and key
management. Actually, it was previously shown that mobile applications whose state is store
remotely are not easily affected by data manipulation attempts. More recently, Google has also
started offering online backups of applications.

Dealing with the possibility of having the device rooted requires further measures. Integrating
security mechanisms in their applications, namely encryption and integrity related primitives for
the data stored in the device, will increase the amount of work an attacker would have to employ
to modify or obtain data, if not rendering it impossible. Additionally, the attacker would have
to potentially study each application with more detail, instead of using a more generic method
such as the one used in the scope of this work. There are several resources readily available
resources for accomplishing that, some of them with little development overhead.

40

Chapter 6

Conclusions and Future Work

This chapter is divided into two sections. The first section presents the main conclusions of
the work done during this master's program, while the second section contains suggestions for
future work.

6.1 Main Conclusions
The number of mobile users has been increasing significantly, along with the number of mobile
devices, platforms and applications. The number of security issues in the mobile world has also
been following this trend, justifying the research on this topic. Chapter 2 discusses a small part
of that research, an highlights that one of the subtopics receiving more attention is the one
concerning malware. The pertinence is such that OWASP, previously known for the work on
Web security, has created a community to discuss issues related to security on mobile devices.
Similarly to what has done for Web applications, OWASP has created a list of the top 10 security
flaws for mobile applications. Weak server side controls, which refers to flawed APIs at the
servers with which the application communicates with, is at the top of the list, immediately
followed by the Insecure Data Storage flaw, which is the general category of security problems
in which this work is focused in. It was discussed that there are several papers published in
this topic, but most of them are based in the assumption that the device is rooted. The closest
work to the one presented here was focused on assessing how many applications of Google Play
were accepting backups, with results from an automated script showing that up to 94% of the
software in that store was allowing it.

This work required building two datasets, presented in chapter 3. One of datasets consisted only
of games and the other one of common mobile applications, all publicized as having the in-app
purchases functionality. A total of 1542 games or applications were analyzed. In the games
dataset, the category with more samples was the one of Action games, with 141 samples. In
terms of download range, the most represented interval was the one delimited by 1000000 and
5000000, with 296 games. As for the common applications dataset, it was necessary to first
define a maximum number of downloads for each category available in Google Play. On the one
hand, applications from all categories were necessary, one the other, this universe is larger than
the one of games. The maximum was set to 30 and, from the different 24 categories in Google
Play, only 3 did not have the amount of required applications. In this dataset, the download
interval congregating the largest amount of applications was the one going from 100000 to
500000. The initial phase of this work was human made, but later it was semi-automated via
the implementation of programs in JAVA. The author believes that the amount of applications
used in this study is sufficient to have confidence in the final results, which fulfills one of the
objectives of this master's program. The method used to analyze each one of the applications or
games, also described in the same chapter, had three major phases, none of which comprising
the requirement to root devices or installing closed-source or paid software. The method can

41

be performed with minimal computer skills, which also favors the feasibility of the approach
and of this study.

In the case of the Android games with in-app purchases, the results of the assessment show that
approximately 17.5% of the entire dataset was susceptible to data manipulation, corresponding
to 148 matches in 849 games or, in other words, 1 in each 6 games was found vulnerable.
Amongst other details, the approach enabled changing levels or cheat in terms of number of
virtual coins, items or premium features. These numbers are conservative, because the method
was not that specialized for each one of the applications. The author believes that a motivated
attacker will achieve even better results after delving deeper into the functioning of a target
application and getting to know better its files. The same analysis showed that XML files were
the preferred type for storing data, followed by text files and SQLite databases, in this order.
In the case of games, this problem is not so harmful to users as it is for developers, since the
micro-payments may be part of their income. The security problem seems to be transversal to
all categories and download intervals.

The analysis of the second dataset was focused on assessing susceptibility to data exposure too
(apart from data manipulation). The initial screening of the applications led to shrinking the
size of the dataset to the most interesting ones (e.g., the ones in which the in-app purchases
were only used to remove advertisements were not considered). The final dataset had 377
applications, and it was found that at least 1 in every 5 were susceptible to at least one of
the aforementioned problems. These results were conservative by the same reasons mentioned
before. One of the most interesting findings was that, from the 87 applications containing
login screens (or similar login functionality), 23 were storing credentials (e.g., passwords and
PINs) in plaintext. In some cases, it was possible to reset credentials by deleting files. The
security problems in these applications are damaging to both parties. The developer looses
money and credibility (some of the applications may be used for financial transactions); and the
user may have its credentials compromised. For example, there may be desktop OS malware
whose purpose is to scan for connected Android devices, and try to backup the application to
read its contents. The malware may pack all the necessary tools, including ADB.

Solving the problems studied in the scope of this work is not easy. In the opinion of the author
of this dissertation, removing the backup utility (or the possibility to perform the backup of
applications) is not a solution because the main functionality provided is legitimate and useful
in some situations. It would not solve the information exfiltration problem in rooted devices
either. Chapter 5 contains a discussion on some possible solutions to the data manipulation and
exposure problem when the backup utility is used. All solutions presume that the backup utility
is modified so as to include mandatory (and potentially transparent) integrity and confidentiality
mechanisms. The usage of a remote server combined with secure processing devices is the best
solution. Either way, securing data and applications should be performed via the integration of
security into the applications, which requires developers to learn more about information and
system security.

Lastly, it can be concluded that all of the objectives defined for this master's program were
achieved.

42

6.2 Directions for Future Work
One of the most direct future lines of work includes studying the susceptibility to data ma-
nipulation and exposure for other mobile OSs, namely for iOS. This work will certainly require
assessing if a method similar to the one used in the scope of this work can be used to analyze
iOS applications and games. It would be interesting to see if the iOS or Windows Mobile OSs
were more careful, in terms of integration of security mechanisms, or if the OSs have additional
protections to minimize the problems discussed herein.

Expanding the datasets comprises another line of work. It would be interesting to also test free
applications without in-app purchases, to see if the financial gain motivates the developers to
construct more secure applications or not. Additionally, and this is more of a wish because of
its nature, it would be good to also analyze paid applications and games.

The automation of the method described in this work will also be a subject of research in the
future. The backup utility was included in most recent version of the Android OS at the time
of writing this dissertation and it is foreseen that this tool will not be removed in the future,
due to its primary purpose. As such, it is pertinent to search for ways to automate the method.
Nonetheless, this task is hard because different developers may use different methods to store
data and even small changes may compromise the procedure. For example, it was noticed that
similar virtual values were stored using different names in databases and files (e.g., coins can
be stored in variables or columns named coins, points or money). Achieving a fully automated
procedure would perhaps enable the implementation of an analysis tools that developers could
use to test their application before submitting it to Google Play.

The comparison of these results with the ones of tools designed for the Insecure Data Storage of
OWASP has been also considered along the way. The idea is to see if the available vulnerabil-
ity assessment tools identify the same applications that were vulnerable to data manipulation
according to the procedure used in this work.

Last but not least, the implementation of prototypes for some of the solutions outlined in Chap-
ter 5 would be an important line of future work. With this idea in mind, the source code of
the backup utility was already studied superficially in the final phase of the master's program,
though the modification (solution #1) was not produced yet.

43

44

Bibliography

[and15a] andbarin. SQLiteCrypto 1.0.1 full Code Source API | andbrain.com [online]. 2015.
Available from: www.andbrain.com/product/sqlitecrypto/ [cited 8 September
2015]. 39

[And15b] Android Developers. Android Debug Bridge | Android Developers [online]. 2015.
Available from: http://developer.android.com/tools/help/adb.html [cited 23
September 2015]. 12, 18

[And15c] Android Developers. App Manifest | Android Developers [online]. 2015.
Available from: http://developer.android.com/guide/topics/manifest/
manifest-intro.html [cited 23 September 2015]. 8

[And15d] Android Developers. Dashboards | Android Developers [online]. 2015.
Available from: http://developer.android.com/tools/publishing/publishing_
overview.html [cited 04 August 2015]. 2

[And15e] Android Developers. Dashboards | Android Developers [online]. 2015. Avail-
able from: http://developer.android.com/distribute/googleplay/start.html
[cited 04 August 2015]. 2

[And15f] Android Developers. Dashboards | Android Developers [online]. 2015. Available
from: https://developer.android.com/about/dashboards/index.html [cited 13
April 2015]. 18

[And15g] Android Developers. Security Tips | Android Developers [online]. 2015. Available
from: http://developer.android.com/training/articles/security-tips.html
[cited 23 September 2015]. 11

[App15a] AppBrain. Number of available Android applications - AppBrain [online]. 2015. Avail-
able from: www.appbrain.com/stats/number-of-android-apps [cited 13 April
2015]. 2

[App15b] Apple. Official apple store [online]. 2015. Available from: http://store.apple.
com/us [cited 13 April 2015]. ix, 1

[App15c] Apple Inc. App Review - App Store - Apple Developer [online]. 2015. Available from:
https://developer.apple.com/app-store/review/ [cited 04 August 2015]. 2

[App15d] Apple Inc. iOS 9 - Apple [online]. 2015. Available from: http://www.apple.com/
ios/ [cited 23 September 2015]. ix, 1

[App15e] Apple Inc. iPhone - Apple [online]. 2015. Available from: www.apple.com/iphone/
[cited 23 September 2015]. ix, 1

45

www.andbrain.com/product/sqlitecrypto/
http://developer.android.com/tools/help/adb.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/tools/publishing/publishing_overview.html
http://developer.android.com/tools/publishing/publishing_overview.html
http://developer.android.com/distribute/googleplay/start.html
https://developer.android.com/about/dashboards/index.html
http://developer.android.com/training/articles/security-tips.html
www.appbrain.com/stats/number-of-android-apps
http://store.apple.com/us
http://store.apple.com/us
https://developer.apple.com/app-store/review/
http://www.apple.com/ios/
http://www.apple.com/ios/
www.apple.com/iphone/

[BKvOS10] David Barrera, H. Güneş Kayacik, Paul C. van Oorschot, and Anil Somayaji. A method-
ology for empirical analysis of permission-based security models and its application
to android. In Proceedings of the 17th ACM Conference on Computer and Commu-
nications Security, CCS '10, pages 73--84, New York, NY, USA, 2010. ACM. Available
from: http://doi.acm.org/10.1145/1866307.1866317. 16

[BZNT11] Iker Burguera, Urko Zurutuza, and Simin Nadjm-Tehrani. Crowdroid: Behavior-based
malware detection system for android. In Proceedings of the 1st ACM Workshop on
Security and Privacy in Smartphones and Mobile Devices, SPSM '11, pages 15--26,
New York, NY, USA, 2011. ACM. Available from: http://doi.acm.org/10.1145/
2046614.2046619. xi, 8

[Chr13] Christian Håland. An Application Security Assessment of Popular Free Android Ap-
plications. Master's thesis, Norwegian University of Science and Technology, 2013.
xi, 10, 11

[Cla15] Claud Xiao and Ryan Olson. Insecure Internal Storage in Android -
Palo Alto Networks BlogPalo Alto Networks Blog [online]. 2015. Avail-
able from: http://researchcenter.paloaltonetworks.com/2014/08/
insecure-internal-storage-android/ [cited 23 September 2015]. 12

[EOM09] William Enck, Machigar Ongtang, and Patrick McDaniel. On lightweight mobile phone
application certification. In Proceedings of the 16th ACM Conference on Computer
and Communications Security, CCS '09, pages 235--245, New York, NY, USA, 2009.
ACM. Available from: http://doi.acm.org/10.1145/1653662.1653691. 16

[FBL+15] P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M.S. Gaur, M. Conti, and M. Rajarajan.
Android security: A survey of issues, malware penetration, and defenses. Commu-
nications Surveys Tutorials, IEEE, 17(2):998--1022, Secondquarter 2015. ix, 1

[FCH+11] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner. An-
droid permissions demystified. In Proceedings of the 18th ACM Conference on Com-
puter and Communications Security, CCS '11, pages 627--638, New York, NY, USA,
2011. ACM. Available from: http://doi.acm.org/10.1145/2046707.2046779. 16

[Fel15] Felix Matenaar, Patrick Schulz, Mark Schloesser, Andreas Galauner. dexter [online].
2015. Available from: http://dexter.dexlabs.org/ [cited 23 September 2015].
xi, 8

[FGW11] Adrienne Porter Felt, Kate Greenwood, and David Wagner. The effectiveness of ap-
plication permissions. In Proceedings of the 2Nd USENIX Conference on Web Applica-
tion Development, WebApps'11, pages 7--7, Berkeley, CA, USA, 2011. USENIX Asso-
ciation. Available from: http://dl.acm.org/citation.cfm?id=2002168.2002175.
16

[FHM+12] Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgärtner, Bernd Freisleben,
and Matthew Smith. Why eve and mallory love android: An analysis of android ssl

46

http://doi.acm.org/10.1145/1866307.1866317
http://doi.acm.org/10.1145/2046614.2046619
http://doi.acm.org/10.1145/2046614.2046619
http://researchcenter.paloaltonetworks.com/2014/08/insecure-internal-storage-android/
http://researchcenter.paloaltonetworks.com/2014/08/insecure-internal-storage-android/
http://doi.acm.org/10.1145/1653662.1653691
http://doi.acm.org/10.1145/2046707.2046779
http://dexter.dexlabs.org/
http://dl.acm.org/citation.cfm?id=2002168.2002175

(in)security. In Proceedings of the 2012 ACM Conference on Computer and Commu-
nications Security, CCS '12, pages 50--61, New York, NY, USA, 2012. ACM. Available
from: http://doi.acm.org/10.1145/2382196.2382205. 10

[Fra15] Francisco Vigário, Miguel Neto, Musa G. Samaila, Mário M. Freire and Pedro R. M.
Inácio. On the susceptibility to data manipulation and information exposure of
free android apps with in-app purchases. In Inforum 2015, editor, Atas do Info-
rum 2015, Inforum 2015. INFORUM, 09 2015. Available from: http://inforum.org.
pt/INForum2015/programa. xi, 4

[Fur00] Steve Furber. ARM System-on-Chip Architecture. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA, 2nd edition, 2000. 36

[Goo15a] Google. Android [online]. 2015. Available from: https://www.android.com/ [cited
23 September 2015]. ix, 1

[Goo15b] Google. Google Play [online]. 2015. Available from: https://play.google.com/
store [cited 13 April 2015]. ix, 1, 15

[Goo15c] Google. Nexus – Google [online]. 2015. Available from: www.google.pt/nexus/
[cited 23 September 2015]. ix, 1

[Goo15d] Google Play. WiFi ADB - Debug Over Air - Android Apps on Google Play [online].
2015. Available from: https://play.google.com/store/apps/details?id=com.
ttxapps.wifiadb&hl=en [cited 14 September 2015]. 33

[Han15] Hanoi. Transparent SQLite database encryption [online]. 2015. Available from:
http://sqlite-crypt.com/ [cited 8 September 2015]. 39

[HDL13] Xiali Hei, Xiaojiang Du, and Shan Lin. Two vulnerabilities in android OS kernel.
In Proceedings of IEEE International Conference on Communications, ICC 2013,
Budapest, Hungary, June 9-13, 2013, pages 6123--6127, 2013. Available from:
http://dx.doi.org/10.1109/ICC.2013.6655583. 7

[HLKR15] Sungjae Hwang, Sungho Lee, Yongdae Kim, and Sukyoung Ryu. Bittersweet adb:
Attacks and defenses. In Proceedings of the 10th ACM Symposium on Information,
Computer and Communications Security, ASIA CCS '15, pages 579--584, New York,
NY, USA, 2015. ACM. Available from: http://doi.acm.org/10.1145/2714576.
2714638. 13

[Jam14] James King. Android Application Security with OWASP Mobile Top 10 2014. Master's
thesis, Luleå University of Technology, 2014. 10, 12

[Joe15] Joe Security LLC. Automated Malware Analysis - APK Analyzer [online]. 2015. Avail-
able from: www.apk-analyzer.net [cited 23 September 2015]. xi, 8

[MBK+12] Ildar Muslukhov, Yazan Boshmaf, Cynthia Kuo, Jonathan Lester, and Konstantin
Beznosov. Understanding users' requirements for data protection in smartphones.

47

http://doi.acm.org/10.1145/2382196.2382205
http://inforum.org.pt/INForum2015/programa
http://inforum.org.pt/INForum2015/programa
https://www.android.com/
https://play.google.com/store
https://play.google.com/store
www.google.pt/nexus/
https://play.google.com/store/apps/details?id=com.ttxapps.wifiadb&hl=en
https://play.google.com/store/apps/details?id=com.ttxapps.wifiadb&hl=en
http://sqlite-crypt.com/
http://dx.doi.org/10.1109/ICC.2013.6655583
http://doi.acm.org/10.1145/2714576.2714638
http://doi.acm.org/10.1145/2714576.2714638
www.apk-analyzer.net

In Proceedings of the 2012 IEEE 28th International Conference on Data Engineering
Workshops, ICDEW '12, pages 228--235, Washington, DC, USA, 2012. IEEE Computer
Society. Available from: http://dx.doi.org/10.1109/ICDEW.2012.83. ix, 1

[Mic15] Microsoft. Windows Phone Apps+Games Store [online]. 2015. Available from: www.
windowsphone.com [cited 13 April 2015]. ix, 1

[OWA15] OWASP. Projects/OWASP Mobile Security Project - Top Ten Mobile Risks - OWASP
[online]. 2015. Available from: https://www.owasp.org/index.php/Projects/
OWASP_Mobile_Security_Project_-_Top_Ten_Mobile_Risks [cited 23 September
2015]. 9

[ran15] randombit. Botan: Crypto and TLS for C++11 - Botan [online]. 2015. Available from:
http://botan.randombit.net/ [cited 8 September 2015]. 39

[RS13] Shigeki Goto Ryo Sato, Daiki Chiba. Detecting android malware by analyzing manifest
files. In Proceedings of the Asia-Pacific Advanced Network 2013 v. 36, p. 23-31,
2013. Available from: http://dx.doi.org/10.7125/APAN.36.4. xi, 8

[Ulr15] Ulrich Telle. wxSQLite3: wxSQLite3 [online]. 2015. Available from: http://wxcode.
sourceforge.net/docs/wxsqlite3/index.html [cited 8 September 2015]. 39

[VGN14] Nicolas Viennot, Edward Garcia, and Jason Nieh. A measurement study of google
play. In The 2014 ACM International Conference on Measurement and Modeling of
Computer Systems, SIGMETRICS '14, pages 221--233, New York, NY, USA, 2014. ACM.
Available from: http://doi.acm.org/10.1145/2591971.2592003. ix, 2

[Vie15] Vienna University of Technology, Secure Systems Lab / Computer Security Group at
UCSB. Anubis - Malware Analysis for Unknown Binaries [online]. 2015. Available
from: https://anubis.iseclab.org [cited 23 September 2015]. xi, 8

[VNF+15] Francisco Vigário, Miguel Neto, Diogo Fonseca, Mário M. Freire, and Pedro R. M.
Inácio. Assessment of the susceptibility to data manipulation of android games
with in-app purchases. In ICT Systems Security and Privacy Protection - 30th IFIP
TC 11 International Conference, SEC 2015, Hamburg, Germany, May 26-28, 2015,
Proceedings, pages 528--541, 2015. Available from: http://dx.doi.org/10.1007/
978-3-319-18467-8_35. xi, 4

[Weg15] Wegilant. Appvigil - Cloud based Android App Security Scanner [online]. 2015.
Available from: https://appvigil.co [cited 23 September 2015]. xi, 8

[Whi15] White Cheats. My Talking Tom Cheats - Coins Hack Android and IOS [online]. 2015.
Available from: whitecheats.com/my-talking-tom-cheats/ [cited 25 September
2015]. 3

[WMW+12] Dong-Jie Wu, Ching-Hao Mao, Te-En Wei, Hahn-Ming Lee, and Kuo-Ping Wu. Droid-
mat: Android malware detection through manifest and api calls tracing. In Proceed-
ings of the 2012 Seventh Asia Joint Conference on Information Security, ASIAJCIS

48

http://dx.doi.org/10.1109/ICDEW.2012.83
www.windowsphone.com
www.windowsphone.com
https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-_Top_Ten_Mobile_Risks
https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-_Top_Ten_Mobile_Risks
http://botan.randombit.net/
http://dx.doi.org/10.7125/APAN.36.4
http://wxcode.sourceforge.net/docs/wxsqlite3/index.html
http://wxcode.sourceforge.net/docs/wxsqlite3/index.html
http://doi.acm.org/10.1145/2591971.2592003
https://anubis.iseclab.org
http://dx.doi.org/10.1007/978-3-319-18467-8_35
http://dx.doi.org/10.1007/978-3-319-18467-8_35
https://appvigil.co
whitecheats.com/my-talking-tom-cheats/

'12, pages 62--69, Washington, DC, USA, 2012. IEEE Computer Society. Available
from: http://dx.doi.org/10.1109/AsiaJCIS.2012.18. 8

[XDA15] XDA Forums. [GUIDE] How to extract, create or edit android adb backups | Android
Development and Hacking | XDA Forums [online]. 2015. Available from: http:
//forum.xda-developers.com/showthread.php?t=2011811 [cited 27 August 2015].
x, 3, 17

[Zet15] Zetetic. SQLCipher - Zetetic [online]. 2015. Available from: https://www.zetetic.
net/sqlcipher/ [cited 8 September 2015]. xiv, 39

49

http://dx.doi.org/10.1109/AsiaJCIS.2012.18
http://forum.xda-developers.com/showthread.php?t=2011811
http://forum.xda-developers.com/showthread.php?t=2011811
https://www.zetetic.net/sqlcipher/
https://www.zetetic.net/sqlcipher/

	Introduction
	Motivation and Scope
	Problems Statement and Objectives
	Adopted Approach for Addressing the Problem
	Main Contributions
	Dissertation Overview

	Related Work and Background
	Introduction
	Related Work
	Android OS! Security
	Android OS! Malware
	OWASP! Top 10 Mobile
	Insecure Data Storage

	ADB!
	Conclusions

	Data Sets and Analysis of Android Applications
	Introduction
	Android Games Data Set
	Android Applications Data Set
	Method for Analyzing Android Applications
	Conclusions

	Assessment of the Susceptibility to Data Manipulation of Android Applications with In-app Purchases
	Introduction
	Analyzing Android Games with In-App Purchases
	Analyzing Android Applications with In-App Purchases
	Discussion on the Severity of the Findings
	Conclusions

	Mechanisms for Preventing Data Manipulation in Android Systems
	Introduction
	Mandatory MAC!
	Current Functioning of the Backup utility
	Approach #1 - Software Modification to the Backup Utility
	Approach #2 - Software Modification to Backup Utility with Networking and Server for Storing MAC!s or Digital Dignatures
	Approach #3 - Software Modification to Backup Utility and a TCB!
	Approach #4 - Software Modification to the Backup Utility and a TCB! with Networking and Server for Storing MAC!s or Digital Signatures

	Usage of Encryption Primitives
	Conclusions

	Conclusions and Future Work
	Main Conclusions
	Directions for Future Work

	Bibliografia

