remote sensing

Article

Real-Time Weed Control Application Using a Jetson Nano Edge
Device and a Spray Mechanism

Eduardo Assuncio >3

check for
updates

Citation: Assuncao, E.; Gaspar, PD.;
Mesquita, R.; Simdes, M.P.; Alibabaei,
K.; Veiros, A.; Proencga, H. Real-Time
Weed Control Application Using a
Jetson Nano Edge Device and a Spray
Mechanism. Remote Sens. 2022, 14,
4217. https://doi.org/10.3390/
1514174217

Academic Editor: Mario Cunha

Received: 30 July 2022
Accepted: 18 August 2022
Published: 26 August 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Pedro D. Gaspar
Khadijeh Alibabaei 12(%, André Veiros 2

1,2,% 4

, Ricardo Mesquita 2(), Maria P. Simées %0,
and Hugo Proenca 3

C-MAST Center for Mechanical and Aerospace Science and Technologies, University of Beira Interior,
6201-001 Covilha, Portugal

Department of Electromechanical Engineering, University of Beira Interior, Rua Marqués d’Avila e Bolama,
6201-001 Covilha, Portugal

Instituto de Telecomunica¢des, Department of Computer Science, University of Beira Interior,

6201-001 Covilha, Portugal

School of Agriculture, Polytechnic Institute of Castelo Branco, 6000-084 Castelo Branco, Portugal

* Correspondence: dinis@ubi.pt

Abstract: Portable devices play an essential role where edge computing is necessary and mobility
is required (e.g., robots in agriculture within remote-sensing applications). With the increasing
applications of deep neural networks (DNNs) and accelerators for edge devices, several methods and
applications have been proposed for simultaneous crop and weed detection. Although preliminary
studies have investigated the performance of inference time for semantic segmentation of crops and
weeds in edge devices, performance degradation has not been evaluated in detail when the required
optimization is applied to the model for operation in such edge devices. This paper investigates
the relationship between model tuning hyperparameters to improve inference time and its effect on
segmentation performance. The study was conducted using semantic segmentation model DeeplabV3
with a MobileNet backbone. Different datasets (Cityscapes, PASCAL and ADE20K) were analyzed
for a transfer learning strategy. The results show that, when using a model hyperparameter depth
multiplier (DM) of 0.5 and the TensorRT framework, segmentation performance mean intersection
over union (mIOU) decreased by 14.7% compared to that of a DM of 1.0 and no TensorRT. However,
inference time accelerated dramatically by a factor of 14.8. At an image resolution of 1296 x 966,
segmentation performance of 64% mIOU and inference of 5.9 frames per second (FPS) was achieved
in Jetson Nano’s device. With an input image resolution of 513 x 513, and hyperparameters output
stride OS = 32 and DM = 0.5, an inference time of 0.04 s was achieved resulting in 25 FPS. The
results presented in this paper provide a deeper insight into how the performance of the semantic
segmentation model of crops and weeds degrades when optimization is applied to adapt the model
to run on edge devices. Lastly, an application is described for the semantic segmentation of weeds
embedded in the edge device (Jetson Nano) and integrated with the robotic orchard. The results
show good spraying accuracy and feasibility of the method.

Keywords: semantic segmentation; crop and weed; edge device; precision agriculture

1. Introduction

Weed control is a practice aimed at reducing competition among plants for water
and nutrients. Cultivation techniques to control the development of weeds are commonly
referred to as soil management. The application of herbicides at the beginning of the
vegetative cycle is especially important in weed control because it is one of the critical
factors for success [1]. Automatic weed detection is one of the viable solutions for the
efficient reduction in or exclusion of chemical products in the field. Studies have focused
on modern approaches that automatically analyze and evaluate weeds in images (e.g., crop
and weed segmentation).

Remote Sens. 2022, 14, 4217. https:/ /doi.org/10.3390/1s14174217

https://www.mdpi.com/journal /remotesensing

https://doi.org/10.3390/rs14174217
https://doi.org/10.3390/rs14174217
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-6027-7763
https://orcid.org/0000-0003-1691-1709
https://orcid.org/0000-0002-8599-6737
https://orcid.org/0000-0002-6599-0688
https://orcid.org/0000-0002-2319-8211
https://orcid.org/0000-0001-6901-795X
https://orcid.org/0000-0003-2551-8570
https://doi.org/10.3390/rs14174217
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14174217?type=check_update&version=1

Remote Sens. 2022, 14, 4217

2 of 21

Edge computing approaches have been proposed where the computation of data is
performed locally, as in robots for agriculture. Examples of technical and technological
solutions that can benefit from this approach can be found in [2-12]. Furthermore, it is
desired to balance accuracy, throughput, and power management, which is essential in
various fields such as the Internet of Things (IoT), robotics, autonomous driving, and
drone-based surveillance [13]. Most modern computer vision systems for weed control
are based on desktop computers (i.e., the computer is heavy, not portable, and must be
connected to the power grid) [14-18]. This means that these systems are heavy, expensive,
and require much electrical power. These problems render this approach (i.e., desktop-
based) impractical for use in small and low-cost orchard robots.

Milioto et al. [14] proposed an encoder—decoder model based on convolutional neural
networks (CNNSs) for crop and weed segmentation. They used RGB images and produced
the excess green, excess red, color index of vegetation extraction, and normalized difference
vegetation indices as inputs to the model. The best performance was 59% mean intersection
over union (mIOU) on the desktop device, and an inference time of 190 ms on the Jetson TX2.
This model is relatively heavy compared to others, being able to perform only 5.2 frames
per second (FPS) inferences at an image resolution of 512 x 384 on the Jetson TX2 device.

McCool et al. [15] implemented a lightweight segmentation model based on deep
convolutional neural networks (DCNNs) that could be used in robotic platforms to segment
crops and weeds in images. They used a desktop computer with a graphics processing
unit (GPU) card for training and inference. The model was trained on the Crop Weed Field
Image Dataset (CWFID) with an image resolution of 1296 x 966, and achieved an accuracy
of 93.9% with an inference time of 8.33s using an Inception-v3 backbone.

Khan et al. [16] proposed the CED-NET encoder-decoder semantic segmentation
method for crop and weed segmentation. Their model had four networks, where two
networks are trained independently for segmenting crops, and the other two for weeds.
They claimed that this approach to extract features at different scales provides coarse-to-fine
predictions and reduces the number of network parameters. Using a desktop with a GPU,
they achieved a performance of 77% mIOU in the CWFID dataset.

Wang et al. [17] implemented an encoder—decoder deep-learning network for pixel-
wise semantic segmentation of crops and weeds. In addition, three images pre-processing
were proposed to improve the model performance. They investigated the model by train-
ing and testing in two different datasets: sugar beet and oilseed. The best segmentation
performance was 89% mIOU. Using a desktop with a GPU, the inference time for an image
with a dimension of 1296 x 966 was 100 ms.

Fawakheriji et al. [18] proposed a deep-learning-based method for crop and weed
classification using two different convolutional neural networks (CNNs). The first net-
work performs pixelwise segmentation between vegetation and soil. After segmentation,
each plant is classified into crops or weeds using the second network. For the semantic
segmentation network, they used the UNet structure with the VGG16 backbone. For the
classification network, they used a fine-tuned model of VGG16 that leveraged deep CNN’s
object classification capabilities. For training and testing, they used the NVIDIA GTX 1070
GPU and achieved 87% correctly detected crops and 77% correctly detected weeds.

Olsen [19] proposed a real-time weed control system for a mobile robot. The author
used a set of deep neural networks to classify nine types of weed images. In the Jetson
Nano device, the MobileNetV2 model achieved an inference time of 29.0 ms; the ResNet-50
architecture achieved an inference time of 59.8 ms; the Inception model ran at 91.9 ms;
and the VGG16 model achieved an inference speed of 166.3 ms. This work addresses the
problem of image classification. That is, the model performs inference on whether weeds
are present and which type they are. However, there is no spatial information (location)
about the detected weeds in the image, unlike the semantic segmentation model.

Partel et al. [20] developed an innovative sprayer that uses object detector Tiny
Yolov3 to distinguish target portulaca plants, sedge weeds, from nontarget pepper plants
and precisely spray to the desired location. Using an NVIDIA Jetson TX2 device and an

Remote Sens. 2022, 14, 4217

30f21

image resolution of 1024 x 256, it achieved overall precision and recall of 59% and 44%,
respectively, and the framework could handle 22 FPS. The experiment was carried out in a
simulated field of crops and weeds that did not correspond to the natural environment,
which is normally a dense vegetable field.

Using the SegNet encoder—decoder network for semantic segmentation, Abdalla et al. [21]
conducted a study on weed segmentation using fine-tuning and data-augmentation tech-
niques. They used SegNet with a VGG16 backbone at an image resolution of 3888 x 5184,
and the model achieved an inference time of 230 ms (i.e., 4.3 FPS) and mIOU of 87% in a
desktop computer equipped with a GPU card.

Asad and Bais [22] used the SegNet and UNET semantic segmentation models with
VGG16 and ResNet-50, classifying crop and background pixels as one class, and all other
vegetation as the second class. At an image resolution of 1440 x 960, the SegNet model
based on ResNet-50 showed the best results with an mIOU of 82%. The experiments were
performed on a desktop computer equipped with a GPU card, and the authors did not
report the inference time.

Ma et al. [23] used the SegNet semantic segmentation model based on a fully con-
volutional network with the AlexNet backbone to segment rice seedlings, weeds, and
the background. At an image resolution of 912 x 1024, the model achieved an mIOU of 62%
and an inference time of 0.6 s (it could process 1.6 FPS). The experiments were performed
on a desktop computer equipped with a GPU card.

Lameski et al. [24] presented a carrot-weed dataset with RGB images of young carrot
seedlings. The dataset contains 39 images with the same size of 3264 x 2448. The dataset
consists of 311,620,608 pixels, comprising 26,616,081 pixels of carrot plants, 18,503,308
pixels of weed plants, and 266,501,219 pixels of soil. The authors conducted the initial
experiments on the dataset using the SegNet semantic segmentation model and achieved
the best accuracy of 0.641 for the segmentation of weeds, plants, and soil. In this work,
there is no information about the inference time and the device for training and inference.

Naushad et al. [25] used VGG16 and wide residual networks (WRNSs) to classify land
use and land cover in RGB band images (at 64 x 64 resolution) from the EuroSAT dataset.
A transfer-learning technique was used to improve the accuracy. The best accuracy was
achieved by the WRN model with 99.17%.

Nanni et al. [26] proposed an ensemble method for semantic segmentation combining
DeepLabV3, HarDNet-MSEG, and Pyramid Vision Transformers. The model was trained
and evaluated on different datasets covering five scenarios: polyp detection, skin detection,
leukocyte recognition, environmental microorganism detection, and butterfly recognition.
According to the authors, the model provides state-of-the-art results.

Autonomous mobile robots use remote-sensing techniques and technologies for sev-
eral agricultural tasks such as monitoring, fertilizing, herbicide spraying, or harvesting.

Computer vision applications can run on mobile devices by using deep-learning frame-
works (e.g., TensorRT or Tensorflow Lite) and accelerators. For this, some optimization
is needed in the original or standard computer-vision models to minimize memory and
computational footprints [27]. Although preliminary studies investigated the inference
performance for the semantic segmentation of crops and weeds in mobile edge devices [14],
[19,20], to the best of our knowledge, no study has been conducted to show the performance
degradation (mIOU) when applying the required optimization to the model to operate in
such edge devices. The purpose of this study is to:

1. Perceive the relationship between the model tuning hyperparameters of the DeeplabV3
semantic segmentation model with MobileNet backbone to improve inference time
and its impact on segmentation performance (using the mIOU metric).

2. Evaluate the suitability of the Cityscapes, PASCAL, and ADE20K datasets for a
transfer-learning strategy in crop and weed segmentation.

3. Propose and evaluate a real-time weed control application using a Jetson Nano Edge
device and a spray mechanism.

Remote Sens. 2022, 14, 4217

4 0f 21

The remainder of this paper is organized as follows. The hardware used to train and
infer the model, the dataset used, an explanation of the semantic segmentation model,
including the used backbone, the model optimization, and the practical application, are
presented in Section 2. The results of the proposed model when applied to the weed
datasets and the practical application are presented along with the related analysis and
discussion in Section 3. The conclusion of the paper is in Section 4.

2. Materials and Methods
2.1. Resources for Network Training and Deployment

A desktop computer with an Intel Core i7-4790 CPU (3.60 GHz), GeForce RTX 2080
8 GB GPU, 16 GiB RAM, and Ubuntu 18.04 was used for training and obtaining the
base model.

A Jetson Nano edge device was used for the deployment. NVIDIA’s Jetson family
features a heterogeneous CPU-GPU architecture, small form factor, light weight, and low
power consumption, and is one of the most widely used edge device families with accelera-
tors for machine-learning inference. It can run neural networks in parallel for applications
such as image classification, object detection, and segmentation (Mittal, 2019). It works with
an inserted micro-SD card with the system image. Table 1 shows the technical specifications
of the Jetson Nano Developer Kit.

Table 1. Technical specifications of Jetson Nano.

Item Spec
Al performance 472 GFLOPs
GPU 128-core NVIDIA
CPU Quad-Core Arm
Memory 4 GB 64-bit
Power 5WI10W

Figure 1 shows the general outline of this work, starting with the acquisition and prepa-
ration of the dataset (Figure 1A). The model was trained to obtain the base models (Figure 1B).
Then, the model was optimized (post-training) (Figure 1C). Lastly, the model was deployed
on the Jetson Nano device (Figure 1D). The next subsections provide more details.

2.2. Dataset

Two datasets were used in this work: CWFID (Section 2.2.1) and the Weeds dataset
(Section 2.2.2). The CWFID was used to investigate how a model degrades when optimiza-
tion is applied to adapt the model to run in edge devices, and the Weeds dataset was used
for the real-time application proposal.

2.2.1. CWFID

The benchmark Crop Weed Field Image Dataset (CWFID) [28] consists of crops (carrots)
and weeds. It was used to train and evaluate the models. For each image, a manual
annotation (ground truth) per pixel (e.g., green mask for crops, and red mask for weeds) is
available for crops and weeds. Tables 2 and 3 summarize the details of the dataset.

Remote Sens. 2022, 14, 4217 5o0f 21

" A. Dataset preparation i , 'C Post-training Optimization
: P i !)
\Images : i femmmmea s . i
— 3 i ; | Export model to | i
} reprocessin |] Exp : :
\‘?‘"“”‘a'ﬂﬁ Lg’ convert T“ks to ¢ trainined | frozen graph | |
L Masks” color index { models_ : e e e [
CWFID dataset : : oI '
; \ ‘Convert model to &
I : ' tensorRT engine | :
1 P
smit : : sssssssssssmmememd :
train | validation ! i E
1 ."' D. Deploy on Jetson Nano device L'I
B L L L T e T T T P 1 i
"' B. Train the Deeplab model : : {
g P K ' TensorRT runtime !
K Define : !
i hyperparameters i ' ‘L i
H ' ' |
! v i ; Optimized model i
! Train | Evaluate : ' evaluation |
: [” the Deeplab model ' | i
] s : i
H Mo Yes : " F
H modify Model i Yrstssssssmsassmsssssssmsssssssnssssans
! hyperparameters «— Bestresult? —3» baseline —!—-’

Figure 1. General overview of the model training and inference process carried out in this work. (A)
Mlustrate the collection and preparation of the dataset. (B) Show the training process to obtain the
base models. (C) Show the model optimization. (D) Show the deployment on the Jetson Nano device.

Table 2. Scope of the CWFID dataset and split.

Parameter Value
Number of images 60
Number of labeled plants 494
Number of labeled crop 162
Number of labeled weed 332

Dataset split

Number of training images 42
Number of test images 18

Table 3. CWFID dataset pixels information.

Item Back Ground Weed Class Crop Class
Total of pixels 69,580,840 4,322,897 1,212,423
Training pixels 49,922,402 3,093,709 817,137

Test pixels 19,658,438 1,229,188 395,286

2.2.2. Weed Dataset for Real-Time Application

A weed dataset was assembled to train the model for the real-time application ex-
periment. The images were captured using a Sony DSC-RX100M2 camera. A total of
12 RGB images were selected and resized into a resolution of 513 x 513 (the input size of the
pretrained model used for fine tuning). Subsequently, the images were manually labeled.

Remote Sens. 2022, 14, 4217 6 of 21

Figure 2 shows two examples of images in the weed dataset for the real-time application
experiment. The images are shown at the top, and the respective image, labeled weed (i.e.,
ground-truth mask) , is shown at the bottom. Tables 4 and 5 summarize the weed dataset
for the real-time application experiment.

Sample 1 Sample 2

Mask 1 Mask 2

Figure 2. Examples of images in the weed dataset for the real-time application experiment.

Table 4. Scope of the weed dataset for the real-time experiment.

Parameter Value
Number of images 12
Number of labeled weeds 847
Dataset split
Number of training images 10
Number of validation images 2

Table 5. Information about the pixels of the weed dataset.

Item Background Weed Class
Total of labeled pixels 25,934,802 1,789,998

Remote Sens. 2022, 14, 4217

7 of 21

2.3. DeepLab Model and Training
2.3.1. Semantic Segmentation

Semantic segmentation is a dense prediction task that assigns semantic labels to each
pixel in an image [29]. Some state-of-the-art models are based on an encoder-decoder
network structure, as shown in Figure 3. Encoder-decoder is a group of models that learn
to map data from an input space to an output space over a two-level network [30].

Latent
Representation

Encoder . ~ Decoder

Figure 3. General structure of semantic segmentation based on DCNN.

Long et al. [29] developed a method for semantic segmentation by adapting a deep-
learning classification network to perform dense prediction. A fully convolutional net-
work (FCN) generates coarse output maps with reduced dimensions (i.e., downsampling).
The feature maps are brought back to the input size by stacking deconvolutional layers
(i.e., upsampling).

An encoder-decoder semantic segmentation model for medical images, U-NET, was
developed by Ronneberger et al. [31]. Similarly, in [29], an FCN was used in the encoder
part to capture contextual information. In this phase, due to the max-polling operation,
the feature maps are contracted. In the decoder, successive expansion is performed using
the mirrored structure of the encoder, but upsampling operators replace max polling.

Chen et al. [32] proposed a semantic segmentation model that combines the responses
at the last CNN layer with a fully connected conditional random field (CRF). This approach
adds more context to the model and helps in locating segment boundaries with better
accuracy. In [30] contains the main semantic segmentation strategies.

Defining a network backbone while considering the most important aspects for a
particular application is a crucial task. In our study, time is an important aspect, since the
application needs to perform inferences in real-time. Another aspect is the lightness of the
model, since the hardware is a small, low-cost, and low-power portable device with limited
processing power (cores) and memory. Considering these aspects, the MobilenetV2 [33]
was selected, as it met these specifications.

In this work, state-of-the-art semantic segmentation model DeepLabV3 [34] was em-
ployed with the MobilenetV2 backbone by using the Tensorflow Model Garden (TMG)
framework [35] to perform the experiments. The DeelLabV3 was chosen because it is a
very versatile model where the Mobilenet backbone could be used for the purposes of this
work, such as model shrinking with hyperparameters. Figure 4 illustrates the architecture
of the DeepLabV3 model, as originally described.

2.3.2. Network Backbone

In an image segmentation model based on deep learning, the first part consists of a
DCNN. Its main goal is to extract features from the input image. This feature extractor is
usually referred to as the backbone of the model. In this work, the MobilenetV2 DCNN
was used as the backbone. The architecture of MobilinetV2 was customized by adjusting
the depth multiplier (DM) and output stride (OS) hyperparameters to achieve the desired
performance for the application (i.e., light weight and fast inference time). To optimize
the model for light weight, the DM hyperparameter for model shrinkage was adjusted.
In particular, the DM hyperparameter affects the number of model input channels for each
layer. For example, at DM = 1.0, the model had the original number of input channels; at
DM = 0.5, the model had half the number of input channels. In this study, the experiments

Remote Sens. 2022, 14, 4217

8 of 21

Input

were conducted with DM = 1.0 and DM = 0.5. In addition, the DeepLabV3 model imple-
ments atrous convolution to explicitly control how densely features should be computed
rather than using pooling in a fully convolutional network. The OS hyperparameter is the
ratio of the size of the input image and the size of the last output feature map in the encoder.
Values of 8, 16, and 32 were used for OS to investigate the trade-off between accuracy and
inference time, as this hyperparameter affects segmentation accuracy and inference time.

......................................
d
,’ Encoder

1x1 Conv —_—

rate 6

DCNN (
[2x3 Comv — —> 1x1 Conv
Atrous Conv - rate 12 —> J

“ pooling ’
. — —/ 7

3x3 Conv >

-——— e ———————

34
|
S

S S

-
o

-

‘ \
; Decoder \
1 Upsample | _ _ !
X S __ \ Prediction
! 1
| l !
1 A I
1 - \ (T 3 |
1 1x1 Conv —_—> —_ Concat ‘ —_— — 3 3x3Conv 3 p:":gp e

! : .) 1
! |
! 1
\ i
b *

Figure 4. DeepLabV3 model illustration, adapted from [34].

2.3.3. Network Training

Software tools were Python 3.6 with the TensorFlow Deep Learning package and the
Tensorflow Model Garden (TMG) framework. Using a fine-tuning strategy is more effective
than training deep networks from scratch [36] . In this work, we performed fine tuning as
recommended in [36]. TMG provided a fine-tuning strategy to train the last layers of the
DeepLabV3 model for a new segmentation dataset. DeepLabV3 was trained on the basis
of pretrained models on the Cityscape [37], ADE20k [38], and PASCAL [39] datasets to
reduce training time and investigate which of these models provided the best segmentation
results. The training configurations were as suggested in [35]. Specifically, ADAM learning
rate = 0.001, ADAM momentum = 0.9, ADAM epsilon =1 X 108, and base learning rate of
0.0001 were used for 30,000 iterations with a batch size of 2.

2.4. Post-Training Optimization

After training, the TMG framework provided a set of checkpoint files (i.e., the trained
model). Then, the checkpoint files were converted into a frozen graph using a tool (script)
available in the TMG framework. Then, the frozen graph was converted (optimized) to run
on the Tensorflow Real-Time (TensorRT) engine using the TensorRT class converter.

TensorRT is a software development kit (SDK) developed by NVIDIA Corporation to
optimize inference time for deep learning on NVIDIA graphics processing units (GPUs) [40].
It works on top of already trained networks by combining layers and optimizing kernel
selection to improve latency, output capacity, energy efficiency, and memory consump-
tion [41]. An example of TensorRT optimization is model quantization from 32-bit floating-

Remote Sens. 2022, 14,4217

9o0f21

point numbers to 16-bit (FP16) or 8-bit integers (INT8). In addition, TensorRT performs on
an optimized inference engine based on a trained network.

2.5. Model Assessment
2.5.1. Computation Footprint

The metric of floating-point operations (FLOPs) was used to measure the computa-
tional complexity of the models, where addition and multiplication were both considered
as one FLOP [42]. The number of FLOPs required by the model to perform an inference is
an indicator of model latency, which is reflected in the inference time.

2.5.2. Segmentation Performance

The metric used to evaluate pixelwise segmentation performance is (mIOU), defined
by Equation (1):
TP,

1 C
mlou = E; TP; + FP, + EN;’

)

where TP stands for true positive, FP stands for false positive, FN stands for false negative,
and C is the number of classes.

2.6. Real-Time Application

The semantic segmentation model (computer vision) was integrated into the robotic
orchard rover developed by Veiros et al. [43] (Figure 5). The goal of this experiment was
to investigate the accuracy and feasibility of the computer-vision framework in conjunc-
tion with a mechanism for applying a herbicide spray to weeds. The experiments were
conducted in the laboratory.

Figure 5. Robotic Rover for agricultural applications: (1) herbicide reservoir; (2) camera; (3) Cartesian
robotic manipulator with spray nozzle; (4) control system.

2.6.1. Mechanism

Figure 6 shows the main components of the Cartesian robotic manipulator for spray
applications. Three actuators must be controlled by the output pins of the Jetson Nano
device: pressure motor: a DC motor that applies pressure to the herbicide container;
manipulator motor: a stepper motor that moves the axis of the Cartesian manipulator;
nozzle relay: a relay that opens and closes the spray valve; spray nozzle; Cartesian robot
manipulator; herbicide container.

Remote Sens. 2022, 14,4217

10 of 21

Figure 6. Main components of the robotic rover for weed control. (1) pressure motor: The DC motor
that applies pressure to the herbicide container; (2) manipulator motor: The stepper motor that moves
the axis of the Cartesian manipulator; (3) nozzle relay: The relay that opens and closes the spray
valve; (4) spray nozzle; (5) Cartesian robot manipulator; (6) herbicide container.

2.6.2. Camera

A Raspberry Pi v2 camera module with a Sony IMX219 8-megapixel sensor was used
to capture the video images. Figure 7 shows the camera location embedded on the robotic
orchard rover.

Figure 7. Camera location (1) embedded on the robotic orchard rover.

2.6.3. Computer Vision and Mechanism Integration

The DeepLabV3 model was trained with the dataset described in Section 2.2.2 for
practical application. Training was performed as described in Section 2.3.3, fine tuning on
the PASCAL dataset, with hyperparameters OS = 16 and DM = 1.0. Although the dataset
consisted of only a few images, each image contained many labeled weeds (see Figure 2).

Remote Sens. 2022, 14, 4217

11 of 21

Another fact that allows for training deep learning models with few data is the use of a
fine-tuning strategy.

Figure 8 provides a general view of the practical experiment involving integration
between the computer vision and the mechanism. The output of the computer-vision model
was a segmented image with a set of (X, Y) coordinates (centroid) of each weed (green
dots). These coordinates were converted into the manipulator’s Cartesian manipulator
coordinates (X’, Y’). The (X’, Y’) coordinates were then fed into the control algorithm that
calculated the sequence of movements to position the spray nozzle on the detected weed
and execute the spray.

Input image

DC

Jetson Nano Device Motor
= ~
.
A
L
Y 1]
N 1]
{Weed image Manipulator .
Coordinate Coordinate 1
1) Coordinate X, Y7 Control ! . -
N o -—> r Drivers
H Transformation Algorithm f X
v 1]
1 1]
1 1]
v 1]
1 1
v 1]
1 1]
1 1]
1 ' spray
Stepper Stepper
1
! B MotorX® Motory” nozzle

Figure 8. General view of the practical experiment.

2.6.4. Coordinate Transformation

The spray nozzle was attached to the Cartesian axis of the robot manipulator. The axis
was driven by the stepper motorX’ (Figure 8), which was configured to perform one
revolution when 1000 pulses are applied. The image output from the computer-vision
framework had a resolution of 513 x 513.

For the spray nozzle to cover the spatial camera view, the stepper motor X’ should
receive 4350 steps. This relationship is shown in Figure 9. Given an (X, Y) weed position in
the image, the number of pulses (steps) that must be applied to stepper motor X’ for the
nozzle to hit the weed position is calculated by Equation (2).

4351
513

where X stands for the position of the weed in the image. That means that the coordinate
transformation converts the pixel position into the number of pulses (steps).

Pulses = x X, (2)

Remote Sens. 2022, 14, 4217 12 of 21

Manipulator Coord.
A

& 0 r 14350
(step motor pulse)
spray Image Coord.
nozzle A,

~ 513 pixel
X

Y

Figure 9. Image coordinate and Cartesian robot coordinate.

3. Results and Discussions

This section presents the results of the DeepLabv3 experiments on the semantic seg-
mentation of the WCFID dataset where hyperparameters were set, an optimization frame-
work was applied, and fine tuning was performed.

3.1. Pretrained Models and Fine-Tuning Performance

To investigate how the pretrained models affected segmentation performance for
the use case (i.e., crop and weed segmentation), experiments were conducted with the
fine-tuning strategy using the Cityscape, ADE20k, and PASCAL datasets. Table 6 shows
the results for this experiment in combination with hyperparameters OS and DM = 1.0.

Table 6. Fine-tuning comparison (mIOU).

Pre-Trained Dataset 0OS=8 OS =16 0S=32
PASCAL 75% 72% 66%
ADE20k 76% 74% 68%
Cityscape 78% 74% 68%

As shown in Table 6, when fine tuned using hyperparameter OS = 8, the Cityscape
dataset performed the best with 78% mIOU. However, when using OS = 16 and OS = 32,
the performance for fine tuning with Cityscape and ADE20k was the same. OS = 8 gave
the best result compared to OS = 16 and OS = 32 because it captured more spatial infor-
mation from the input. The fine-tuning process uses knowledge gained from pretraining
in other datasets. For example, the Cityscape dataset likely had more similarities with
plants, e.g., the Vegetation class in the Nature group, which is probably the reason for the
best result.

3.2. Model Optimization and Performance Degradation

This experiment investigates the relationship between model optimization (i.e., tuning
hyperparameters and applying the TensorRT framework to improve inference time) and
segmentation degradation. Although fine tuning with the Cityscape dataset gave the best
results, as shown in a previous experiment, fine tuning in this experiment was used for
the PASCAL dataset because a pretrained model with DM = 0.5 and DM = 1.0 was only
available for the PASCAL dataset [44]. Table 7 shows the computational cost of each model

Remote Sens. 2022, 14, 4217

13 of 21

measured in giga floating-point operations (GFLOPs). It is clear how much the optimization
reduced the computational cost: using hyperparameters DM = 0.5 and OS = 32 in the CNN
backbone, the computational cost of the model was reduced from 81.9 to 4.4 GFLOPs. This
performance was due to the reduction in convolutional layers in the MobileNet backbone
by hyperparameters DM, which shrank the model by a factor of 0.5, and OS.

Table 7. Temporal computational cost (in GFLOPs) with different parameterisations.

Optimization 0S=8 0S =16 0S =32
DM =1.0 81.9 25.1 14.7
DM =0.5 26.1 7.9 44

Table 8 shows how segmentation performance is affected by optimization to reduce
inference time. The best model segmentation performance was 75% mIOU for the model
with OS = 8 and DM = 1.0. The worst performance was 64% mIOU for the model with
successive and more stringent optimization to improve the inference time, i.e., depth
multiplier of 0.5, output stride of 32, and TensorRT. Reducing the model size to achieve fast
inference time by using DM = 0.5 and OS = 32 led to a decrease in segmentation accuracy.
The model became shallower and lost information about the features of the input image.
An important result is also that using the TensorRT framework for enhancement did not
affect the segmentation accuracy. TensorRT is an inference-oriented framework whose
main purpose is efficient inference. It also supports dynamic graphs, which enables the
efficient reuse of memory and improves inference performance [27].

Table 8. Summary of segmentation performance with respect to different tested parameterisations.

Optimization 0S=8 0S =16 0S =32
DM =1.0 75% 72% 66%
DM = 1.0 + TensorRT - 72% 66%
DM =0.5 73% 68% 64%
DM = 0.5 + TensorRT - 68% 64%

The corresponding segmentation quality results are shown in Figure 10. Segmentation
performance (quality) varied with different hyperparameters DM and OS. Comparing the
results with the same OS but different DM (i.e., (c) with (h), (d) with (i), and (e) with (j)),
the results with DM = 0.5 had more mis-segmentations between crops and weeds than
those with DM = 1.0. This result can be explained by the fact that the DM hyperparameter
affected the complexity of the model (size). A model with DM = 1.0 was deeper than a
model with DM = 0.5.

If we now compare the results with the same DM but different OS (8, 16 and 32), we
can see that the results with O = 8 were finer (fine details) than those with OS = 16 and
OS = 32. The results with OS = 16 were finer than those of models with OS = 32. This result
can be explained by the fact that the OS hyperparameter influenced the sparsity of the
input calculation of the model.

Table 9 shows how optimization affected the time of model inference. The best result
was 0.17 s using DM = 0.5, OS = 32 and TensorRT. Table 7 shows that this configuration
resulted in the smallest model, which reduced the inference time, as expected .

Remote Sens. 2022, 14, 4217 14 of 21

(a) Input (b) Ground truth) 0S:8/dm:1.0 d) 0S:16/dm:1.0 e) 0S:32/dm:1.0

(f) Input (g) Ground truth h) O5:8 /dm:0.5 i) 0S:16 /dm:0.5 (j)0S:32 /dm:0.5

Figure 10. Qualitative segmentation results for the CWFID dataset. The labels of each subimage,
except input and ground truth, denote the optimization used in the model to obtain the segmentation
results according to Table 8.

Table 9. Inference time performance (s).

Optimization 0S=8 0S =16 0S =32
DM =1.0 2.51 0.85 0.77
DM = 1.0 + TensorRT - 0.57 0.31
DM =0.5 1.19 0.43 0.33
DM = 0.5 + TensorRT - 0.3 0.17

Tables 10 and 11 show the relationship (correlation) between model segmentation
performance and inference time. The inference time could be accelerated by a factor of 14.8,
while the segmentation performance (mIOU) decreased by 14.7%. With these optimizations
and an image resolution of 1296 x 966, the model could perform segmentation in 5.9 FPS.

Table 10. Variation in inference time with respect to different parameterisations when compared to
the baseline configuration.

Optimization 0S=8 0S=16 0S =32
DM =1.0 1 3.0 3.3
DM = 1.0 + TensorRT - 44 8.1
DM =0.5 21 5.8 7.6
DM = 0.5 + TensorRT - 8.4 14.8

Table 11. Variations in model performance (mIOU%) with respect to different parameterisations
considering the optimal configuration tested.

Optimization 0S=8 0S =16 0S =32
DM =1.0 0 —4.0 —12.0
DM = 1.0 + TensorRT - —4.0 —12.0
DM =0.5 -3.0 —-9.3 —14.7
DM = 0.5 + TensorRT - —9.3 —14.7

In addition, the results were compared with previously published segmentation work
in the CWFID dataset. In Table 12, Maxwell is a very small 128-core GPU integrated into

the Jetson Nano developer kit, while Titan X is a standard 3584-cores GPU and Titan XP a
3840-cores GPU board.

Remote Sens. 2022, 14, 4217

15 of 21

Table 12. Comparison of the segmentation performance of other works on the CWFID test dataset.
DeepLabV3* (OS = 8 and DM = 1.0) and DeepLabV3** (OS = 32 and DM = 0.5).

Model Input Size GPU Accuracy mIOU FPS
Adapted- . o
V3 [15] 1296 x 966 Titan X 93.9% - 0.12
CED-Net [16] 1296 x 966 Titan XP - 77% -
DeepLabV3* 1296 x 966 Maxwell - 75% 0.4
DeepLabV3** 1296 x 966 Maxwell - 64% 59

For work comparison, Table 12 shows the input size of the image, the GPU capabilities,
the segmentation performance of the model in terms of accuracy or mIOU, and the inference
performance FPS. Regarding GPU characteristics, our approach (DeepLabV3) uses the
Maxwell embedded in the Jetson Nano, which is a portable device. In contrast, the other
approaches use GPU cards that function in conjunction with a desktop.

Regarding the segmentation performance of the models, CED-Net and our model
could be compared because the value of the results is presented in the same metric (mIOU).
CED-Net outperformed our approach (DeepLabV3*) by only 2%.

Inference time performance could be compared between our approach and Adapted-
IV3. Our approach (DeepLabV3**) outperformed Adapted-IV3 by about 50 times. The
primary key to this performance is the use of the MobileNet backbone in the encoder part
of the DeepLabV3 model, since the MobileNet DCNN provides light weight by performing
depthwise separable convolutions. Another contribution to this performance was the
setting of hyperparameters DM = 0.5 and OS = 32, and the use of the TensorRT framework.

3.3. Image Scale Analysis

In addition, smaller input images were considered to evaluate the inference time
under this condition. The experiment was performed by cropping the WCFDI images
in their center to a resolution of 513 x 513. Table 13 shows these results. For the quality
segmentation shown in Figure 11, an inference time of 0.04 s was achieved, corresponding
to processing of 25 FPS.

(a) Input (b) Ground (c) 08:32 /dm:0.5

Figure 11. Qualitative segmentation result for input image resolution of 513 x 513, hyperparameter
OS = 32.

Table 13. Analysis of inference time with respect to the size of the input (s).

Optimization 0S=8 0S =16 0S =32
DM =1.0 0.54 0.18 0.12
DM = 1.0 + TensorRT 0.27 0.09 0.07
DM = 0.5 0.54 0.12 0.06

DM = 0.5 + TensorRT 0.27 0.07 0.04

Remote Sens. 2022, 14,4217

16 of 21

3.4. Real-Time Application

The goal of this experiment was to demonstrate a practical application of the deep-
learning-based computer-vision model, its reliability in real-time, and its integration with
mechanical control.

After weeds had been detected by the computer-vision model, a series of actuators
were controlled in sequence (e.g., the manipulator motor and the spray solenoid valve).
The response time of each actuator was considered by setting the required delay time to
finish the current step and start the next step.

We simulated a field soil with weeds by manually positioning them in the camera’s
field of view. Figure 12 shows the general view of the experiment. The window in which
the input image coming from the camera is displayed. The window in which the segmented
image is displayed. The area where the weed was placed.

Figure 12. General view of the experimental results. (A) is the window in which the input image
coming from the camera is displayed. (B) is the window in which the segmented image is displayed.
(C) is the area where the weed was placed.

Figure 13 illustrates the test result for a single image of the image acquisition. In (A),
an image with two weeds is shown. In (B), two weeds were segmented with a high-quality
border corresponding to the image in (A). The green dots in the center of the blue segmented
regions are the references (location coordinates) for the Cartesian manipulator, as described
in Section 2.6.4. (C) shows the weeds in the field of view of the camera and the spray nozzle.

Remote Sens. 2022, 14,4217

17 of 21

Figure 13. Real-time application result: segmentation of weeds (general view), (A) An image with
two weeds is shown; (B), two weeds were segmented with a high-quality border corresponding to
the image in (A); (C) shows the weeds in the field of view of the camera and the spray nozzle.

Figure 14 shows a sequence of four images. The upper-left partial image (Frame: 189)
is an image without weeds. The remaining images (frame: 224, frame: 226, and frame: 241)
show the image with the weeds (input) and the corresponding segmentation results (out-
put). The blue segmented areas had high shape similarity with the corresponding weed
image. The green dots indicating the center of gravity of the weeds are clearly visible
in the center of each segmented area. Thus, these results show the good accuracy of the
computer-vision model.

Camera image 1 Segmentation 1 Camera image 2 Segmentation 2

Camera image 3 Segmentation 3 Camere image 4 Segmentation 4

Figure 14. Real-time application result: segmentation of weeds. Details of an image sequence.

The computer-vision model was used in the Jetson Nano device to determine the
reference position of the weeds for mechanism control (see Sections 2.6.3 and 2.6.4). Given
a set of weed references, the Cartesian manipulator positioned the nozzle on the particular
weed and performed the spraying. Figure 15 shows the exact positioning of the nozzle and
the spray.

Remote Sens. 2022, 14, 4217

18 of 21

Figure 15. Result of real-time application: positioning of nozzle and spray atomization.

A video demonstration of the experiment result is available in the data-availability
statement at the end of the manuscript.

3.5. Final Discussions

Taken together, these results provide important insights into the semantic segmen-
tation accuracy and inference time performance of crop and weed detection when the
necessary optimizations are conducted to the model to run it on edge devices. At the cost
of worse segmentation performance, inference time can be dramatically increased, enabling
real-time inference. The approach proposed in our study can render the inference time
faster than that of the compared models even though it is a portable device, while the others
are desktop-based. Compared to an approach with similar hardware and input size [14],
our proposed approach performed inference about 5 times faster. DeepLabV3 proved to be
a very versatile model for segmentation tasks, since the trade-off between segmentation
accuracy and inference time can be controlled by hyperparameters OS and DM.

In addition, fine tuning the model in the Cityscapes, PASCAL, and ADE20K datasets
yielded good results. Cityscapes provided the marginally best performance compared to
the PASCAL and ADE20K datasets. The results show that, when accuracy requirements
are high, fine tuning with the pretrained Cityscape dataset is the best solution. If time
inference is a requirement, then the best approach is to fine-tune with the pretrained
Cityscape or ADE20k dataset, since both achieved the same accuracy performance. In the
latter case, it is recommended to fine-tune with the PASCAL dataset if Cityscape and
ADE20k are not available. Real-time application for weed spraying was also accurate
and feasible. The segmentation model embedded in the edge device provided all the
information (position references) needed to control the mechanism. According to the video
demonstration, the mechanism precisely positioned the nozzle at all target weeds and
applied the spray.

4. Conclusions

Edge devices play an important role when mobility is required. Computer-vision
models running on such devices must be optimized due to the device’s limitations in terms
of memory and computation. There are many studies and proposals for the optimization
of deep learning models, but there is still a lack of research on how the performance of the
models is affected by optimization. Moreover, there are not yet many real-world use cases
of computer vision and its interaction with mechanisms in the domain of agriculture.

In this work, the optimization of the semantic segmentation model for weed was
investigated, and its effects on inference time and segmentation performance were studied.
The procedure can be described by using crop and weed images for training and validating
the model; the procedure was applied for training the DeeplabV3 semantic segmentation
model with the fine-tuning approach. Model optimization was performed before and after

Remote Sens. 2022, 14, 4217

19 of 21

training by selecting different model hyperparameters and applying model quantization.
Lastly, the performance of the model was evaluated.

Experimental results show that, by using hyperparameters DM = 0.5 and OS = 32
in the CNN backbone, the computational cost of the model was reduced from 81.9 to
4.4 GFLOPs. On the Jetson Nano device, the best inference time of the model was 0.17
s. Compared to the baseline model (i.e., the model without optimization), the inference
time was accelerated by a factor of 14.8, while the segmentation performance (mIOU) was
decreased by 14.7%. This result illustrates the potential of the optimizations for building
lightweight models that still have good predictive accuracy.

Since the technique of fine tuning is important when only a small amount of train-
ing data is available, the effects of fine tuning on pretrained models were investigated.
With respect to the PASCAL and ADE20K datasets, Cityscapes achieved the marginally
best performance.

An extension of this work is to propose a practical application using the weed seg-
mentation model presented in this study, an edge device, and a spraying mechanism.
The results show that the proposed method is feasible, and has good accuracy and potential
for weed control.

The limitation of this study was that the Cartesian robot manipulator operates in only
one axis, while in practice, the other axis motion is the translational motion performed by
the robot wheels. Since the practical application was carried out in a simulated environment
(laboratory), the main objective of future work is to develop a complete system to study the
performance of weed control in a real agricultural environment.

The results presented in this study demonstrate the potential of using lightweight
models and portable edge devices for the real-time semantic segmentation of weeds.

Author Contributions: Conceptualization: P.D.G.; Data curation: E.A., A.V. and R.M.; Formal
analysis: E.A., PD.G., M.P.S. and H.P,; Funding acquisition: P.D.G.; Investigation: E.A., A.V. and
R.M.; Methodology: E.A. and P.D.G.; Project administration: P.D.G.; Resources: RM., M.P.S. and K.A.;
Software: E.A.; Supervision: P.D.G.; Validation: E.A. and K.A.; Visualization: E.A.; Writing—original
draft: E.A.; Writing—review and editing: P.D.G. and H.P. All authors have read and agreed to the
published version of the manuscript.

Funding: This research work is funded by the PrunusBot project—Autonomous controlled spraying
aerial robotic system and fruit production forecast, Operation no. PDR2020-101-031358 (leader),
Consortium no. 340, Initiative no. 140, promoted by PDR2020, and cofinanced by the EAFRD and the
European Union under the Portugal 2020 program.

Informed Consent Statement: Not applicable.

Data Availability Statement: the video demonstration is available at https://eduardo-assuncao-
hub.github.io/Weed_detection/ (accessed on 30 July 2022).

Acknowledgments: The authors are thankful for the opportunity and financial support to carry on
this project to Fundagao para a Ciéncia e Tecnologia (FCT) and R&D Unit “Center for Mechanical and
Aerospace Science and Technologies” (C-MAST), under project UIDB/00151/2020. Hugo Proenca’s
work was funded by Fundacéo para a Ciéncia e Tecnologia in the scope of the UIDB/00151/2020
research project.

Conflicts of Interest: the authors declare no conflict of interest.

https://eduardo-assuncao-hub.github.io/Weed_detection/
https://eduardo-assuncao-hub.github.io/Weed_detection/

Remote Sens. 2022, 14, 4217 20 of 21

Abbreviations

The following abbreviations are used in this manuscript:

DNNs Deep neural networks

DM Depth multiplier
mIOU Mean intersection over union
FPS Frames per second

CNNs Convolutional neural networks
DCNNSs Deep convolutional neural networks
GPU Graphics processing unit

CWFID Crop Weed Field Image Dataset
WRNs Wide residual networks

FCN Fully convolutional network

CRF Conditional random field

™G Tensorflow model garden

FLOPs Floating-point operations

References

1. Simdes, M. +Péssego — Resultados de Apoio a Gestdo. Technical report, Centro Operativo e Tecnolégico Hortofruticola Nacional,
Alcobacga, 2017.

2. Alibabaei, K.; Gaspar, P.D.; Lima, TM. Modeling evapotranspiration using Encoder-Decoder Model. 2020 International
Conference on Decision Aid Sciences and Application (DASA). IEEE, 2020, pp. 132-136.

3. Assungdo, E.; Diniz, C.; Gaspar, P.D.; Proenca, H. Decision-making support system for fruit diseases classification using Deep
Learning. 2020 International Conference on Decision Aid Sciences and Application (DASA). IEEE, 2020, pp. 652-656.

4. Shanmugam, S.; Assuncdo, E.; Mesquita, R.; Veiros, A.; Gaspar, PD. Automated weed detection systems: A review. KnE
Engineering 2020, pp. 271-284.

5. Cunha, J.; Gaspar, P.D.; Assuncao, E.; Mesquita, R. Prediction of the Vigor and Health of Peach Tree Orchard. International
Conference on Computational Science and Its Applications. Springer, 2021, pp. 541-551.

6. Mesquita, R.; Gaspar, PD. A Novel Path Planning Optimization Algorithm Based on Particle Swarm Optimization for UAVs for
Bird Monitoring and Repelling. Processes 2021, 10, 62.

7. Alibabaei, K.; Gaspar, P.D.; Lima, TM. Modeling soil water content and reference evapotranspiration from climate data using
deep learning method. Applied Sciences 2021, 11, 5029.

8. Alibabaei, K.; Gaspar, P.D.; Lima, TM. Crop yield estimation using deep learning based on climate big data and irrigation
scheduling. Energies 2021, 14, 3004.

9. Alibabaei, K.; Gaspar, P.D.; Lima, T.M.; Campos, R.M.; Girdo, I.; Monteiro, J.; Lopes, C.M. A Review of the Challenges of Using
Deep Learning Algorithms to Support Decision-Making in Agricultural Activities. Remote Sensing 2022, 14, 638.

10. Alibabaei, K.; Gaspar, P.D.; Assuncdo, E.; Alirezazadeh, S.; Lima, T.M. Irrigation optimization with a deep reinforcement learning
model: Case study on a site in Portugal. Agricultural Water Management 2022, 263, 107480.

11. Alibabaei, K.; Gaspar, P.D.; Assungéo, E.; Alirezazadeh, S.; Lima, T.M.; Soares, V.N.; Caldeira,].M. Comparison of On-Policy Deep
Reinforcement Learning A2C with Off-Policy DQN in Irrigation Optimization: A Case Study at a Site in Portugal. Computers
2022, 11, 104.

12. Alibabaei, K.; Assungdo, E.; Gaspar, P.D.; Soares, V.N.; Caldeira,]. M. Real-Time Detection of Vine Trunk for Robot Localization
Using Deep Learning Models Developed for Edge TPU Devices. Future Internet 2022, 14, 199.

13. Mittal, S. A Survey on optimized implementation of deep learning models on the NVIDIA Jetson platform. Journal of Systems
Architecture 2019, 97, 428-442. doi:https://doi.org/10.1016/j.sysarc.2019.01.011.

14. Milioto, A.; Lottes, P.; Stachniss, C. Real-Time Semantic Segmentation of Crop and Weed for Precision Agriculture Robots
Leveraging Background Knowledge in CNNs. 2018 IEEE International Conference on Robotics and Automation (ICRA), 2018, pp.
2229-2235. doi:10.1109/ICRA.2018.8460962.

15. McCool, C.; Perez, T.; Upcroft, B. Mixtures of Lightweight Deep Convolutional Neural Networks: Applied to Agricultural
Robotics. IEEE Robotics and Automation Letters 2017, 2, 1344-1351. doi:10.1109/LRA.2017.2667039.

16. Khan, A.; Ilyas, T.; Umraiz, M.; Mannan, Z.I.; Kim, H. CED-Net: Crops and Weeds Segmentation for Smart Farming Using a
Small Cascaded Encoder-Decoder Architecture. Electronics 2020, 9. doi:10.3390/ electronics9101602.

17. Wang, A.; Xu, Y.; Wei, X; Cui, B. Semantic Segmentation of Crop and Weed using an Encoder-Decoder Network and Image En-
hancement Method under Uncontrolled Outdoor Illumination. IEEE Access 2020, 8, 81724-81734. doi:10.1109/ ACCESS.2020.2991354.

18. Fawakherji, M.; Youssef, A.; Bloisi, D.; Pretto, A.; Nardi, D. Crop and Weeds Classification for Precision Agriculture Using
Context-Independent Pixel-Wise Segmentation. 2019 Third IEEE International Conference on Robotic Computing (IRC), 2019, pp.
146-152. doi:10.1109/IRC.2019.00029.

https://doi.org/https://doi.org/10.1016/j.sysarc.2019.01.011
https://doi.org/10.1109/ICRA.2018.8460962
https://doi.org/10.1109/LRA.2017.2667039
https://doi.org/10.3390/electronics9101602
https://doi.org/10.1109/ACCESS.2020.2991354
https://doi.org/10.1109/IRC.2019.00029

Remote Sens. 2022, 14, 4217 21 of 21

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.
39.
40.
41.
42.
43.

44.

Olsen, A. Improving the accuracy of weed species detection for robotic weed control in complex real-time environments. PhD
thesis, James Cook University, Australia, 2020.

Partel, V,; Charan Kakarla, S.; Ampatzidis, Y. Development and evaluation of a low-cost and smart technology for
precision weed management utilizing artificial intelligence. = Computers and Electronics in Agriculture 2019, 157, 339-350.
doi:https://doi.org/10.1016 /j.compag.2018.12.048.

Abdalla, A.; Cen, H.; Wan, L.; Rashid, R.; Weng, H.; Zhou, W.; He, Y. Fine-tuning convolutional neural network with transfer
learning for semantic segmentation of ground-level oilseed rape images in a field with high weed pressure. Computers and
Electronics in Agriculture 2019, 167, 105091. doi:https://doi.org/10.1016/j.compag.2019.105091.

Asad, M.H.; Bais, A. Weed detection in canola fields using maximum likelihood classification and deep convolutional neural
network. Information Processing in Agriculture 2020, 7, 535-545. doi:https://doi.org/10.1016/j.inpa.2019.12.002.

Ma, X.; Deng, X.; Qi, L.; Jiang, Y.; Li, H.; Wang, Y.; Xing, X. Fully convolutional network for rice seedling and weed image
segmentation at the seedling stage in paddy fields. PLOS ONE 2019, 14, €0215676. doi:10.1371/journal.pone.0215676.

Lameski, P.; Zdravevski, E.; Trajkovik, V.; Kulakov, A. Weed detection dataset with RGB images taken under variable light
conditions. International Conference on ICT Innovations. Springer, 2017, pp. 112-119.

Naushad, R.; Kaur, T.; Ghaderpour, E. Deep Transfer Learning for Land Use and Land Cover Classification: A Comparative
Study. Sensors 2021, 21. doi:10.3390/s21238083.

Nanni, L.; Lumini, A.; Loreggia, A.; Formaggio, A.; Cuza, D. An Empirical Study on Ensemble of Segmentation Approaches.
Signals 2022, 3, 341-358. d0i:10.3390/signals3020022.

Hadidi, R.; Cao, J.; Xie, Y.; Asgari, B.; Krishna, T.; Kim, H. Characterizing the Deployment of Deep Neural Networks on
Commercial Edge Devices. 2019 IEEE International Symposium on Workload Characterization (IISWC), 2019, pp. 35-48.
doi:10.1109/IISWC47752.2019.9041955.

Haug, S.; Ostermann, J. A crop/weed field image dataset for the evaluation of computer vision based precision agriculture tasks.
European conference on computer vision. Springer, 2014, pp. 105-116.

Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2015, pp. 3431-3440. doi:10.1109/CVPR.2015.7298965.

Minaee, S.; Boykov, Y.Y.; Porikli, F; Plaza, A.].; Kehtarnavaz, N.; Terzopoulos, D. Image Segmentation Using Deep Learning: A
Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 2021, pp. 1-1. doi:10.1109/TPAMI.2021.3059968.
Ronneberger, O.; PFischer.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. Medical Image
Computing and Computer-Assisted Intervention (MICCAI). Springer, 2015, Vol. 9351, LNCS, pp. 234-241. (available on
arXiv:1505.04597 [cs.CV]).

Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Semantic Image Segmentation with Deep Convolutional Nets
and Fully Connected CRFs, 2016, [arXiv:cs.CV/1412.7062].

Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L. MobileNetV2: Inverted Residuals and Linear Bottlenecks. 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 4510-4520.

Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic
Image Segmentation. ECCV, 2018.

Chen, C.; Du, X,; Hou, L.; Kim, J.; Li, J.; Li, Y.; Rashwan, A.; Yang, F; Yu, H. TensorFlow Official Model Garden. https:
/ / github.com/tensorflow /models/tree /master/official, 2020.

Chu, B.; Madhavan, V.; Beijpom, O.; Hoffman, J.; Darrell, T. Best Practices for Fine-Tuning Visual Classifiers to New Domains.
ECCV Workshops, 2016.

Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The Cityscapes
Dataset for Semantic Urban Scene Understanding. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

Zhou, B.; Zhao, H.; Puig, X,; Fidler, S.; Barriuso, A.; Torralba, A. Scene Parsing through ADE20K Dataset. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017.

Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge.
International Journal of Computer Vision 2010, 88, 303-338.

NVIDIA. TensorRT Release Notes. https://docs.nvidia.com/deeplearning/tensorrt/release-notes/, 2021.

NVIDIA. NVIDIA TensorRT. https://developer.nvidia.com/tensorrt, 2021.

Tang, R.; Adhikari, A.; Lin, J. FLOPs as a Direct Optimization Objective for Learning Sparse Neural Networks. CoRR 2018,
abs/1811.03060.

Veiros, A.; Mesquita, R.; Gaspar, P.D.; Simdes, M.P. Multitask Robotic rover for agricultural activities (R2A2): A robotic platform
for peach culture. X International Peach Symposium. 2022.

Yu, H.; Chen, C,; Du, X,; Li, Y,; Rashwan, A.; Hou, L,; Jin, P;; Yang, F; Liu, F; Kim, J.; Li,]. TensorFlow DeepLab Model Zoo.
https:/ /github.com/tensorflow /models/blob/master/research/deeplab/g3doc/model_zoo.md/ (accessed on 30 July 2022).

https://doi.org/https://doi.org/10.1016/j.compag.2018.12.048
https://doi.org/https://doi.org/10.1016/j.compag.2019.105091
https://doi.org/https://doi.org/10.1016/j.inpa.2019.12.002
https://doi.org/10.1371/journal.pone.0215676
https://doi.org/10.3390/s21238083
https://doi.org/10.3390/signals3020022
https://doi.org/10.1109/IISWC47752.2019.9041955
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1109/TPAMI.2021.3059968
http://xxx.lanl.gov/abs/1412.7062
https://github.com/tensorflow/models/tree/master/official
https://github.com/tensorflow/models/tree/master/official
https://docs.nvidia.com/deeplearning/tensorrt/release-notes/
https://developer.nvidia.com/tensorrt
https://github.com/tensorflow/models/blob/master/research/deeplab/g3doc/model_zoo.md/

	Introduction
	Materials and Methods
	Resources for Network Training and Deployment
	Dataset
	CWFID
	Weed Dataset for Real-Time Application

	DeepLab Model and Training
	Semantic Segmentation
	Network Backbone
	Network Training

	Post-Training Optimization
	Model Assessment
	Computation Footprint
	Segmentation Performance

	Real-Time Application
	Mechanism
	Camera
	Computer Vision and Mechanism Integration
	Coordinate Transformation

	Results and Discussions
	Pretrained Models and Fine-Tuning Performance
	Model Optimization and Performance Degradation
	Image Scale Analysis
	Real-Time Application
	Final Discussions

	Conclusions
	References

