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Abstract

Machine Learning (ML) models have pushed state­of­the­art performance closer to (and

even beyond) human level. However, the core of such algorithms is usually latent and

hardly understandable. Thus, the field of Explainability focuses on researching and adopt­

ing techniques that can explain the reasons that support a model’s predictions. Such ex­

planations of the decision­making process would help to build trust between said model

and the human(s) using it. An explainable system also allows for better debugging, during

the training phase, and fixing, upon deployment. But why should a developer devote time

and effort into refactoring or rethinking Artificial Intelligence (AI) systems, to make them

more transparent? Don’t they work just fine?

Despite the temptation to answer ”yes”, are we really considering the cases where these

systems fail? Are we assuming that ”almost perfect” accuracy is good enough? What if,

some of the cases where these systems get it right, were just a small margin away from

a complete miss? Does that even matter? Considering the ever­growing presence of ML

models in crucial areas like forensics, security and healthcare services, it clearly does.

Motivating these concerns is the fact that powerful systems often operate as black­boxes,

hiding the core reasoning underneath layers of abstraction [Gue]. In this scenario, there

could be some seriously negative outcomes if opaque algorithms gamble on the presence

of tumours in X­ray images or the way autonomous vehicles behave in traffic.

It becomes clear, then, that incorporating explainability with AI is imperative. More re­

cently, the politicians have addressed this urgency through the General Data Protection

Regulation (GDPR) [Com18]. With this document, the European Union (EU) brings for­

ward several important concepts, amongst which, the ”right to an explanation”. The defi­

nition and scope are still subject to debate [MF17], but these are definite strides to formally

regulate the explainable depth of autonomous systems.

Based on the preface above, this work describes a periocular recognition framework that

not only performs biometric recognition but also provides clear representations of the fea­

tures/regions that support a prediction. Being particularly designed to explain non­match

(”impostors”) decisions, our solution uses adversarial generative techniques to synthesise

a large set of ”genuine” image pairs, fromwhere the most similar elements with respect to

a query are retrieved. Then, assuming the alignment between the query/retrieved pairs,

the element­wise differences between the query and a weighted average of the retrieved

elements yields a visual explanation of the regions in the query pair that would have to

be different to transform it into a ”genuine” pair. Our quantitative and qualitative exper­

iments validate the proposed solution, yielding recognition rates that are similar to the

state­of­the­art, while adding visually pleasing explanations.

The code is publicly available at https://github.com/ojoaobrito/ExplainablePR.git
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Chapter 1

Introduction

In recent years, few areas of research have enjoyed similar manifestations of interest and

enthusiasm as DL. Staggering amounts of progress have beenmade, culminating in mod­

els that can do seemingly everything: image classification, object detection, image synthe­

sis, amongst many others. As the remainder of this document will make clear, DLmodels

(and other ML techniques) can be used in creative pipelines, incorporating each architec­

ture’s strengths. Such wide availability of solutions proves how accessible the field has

become.

Fortunately for the research community, within the field of DL, there is still some ground

to cover in emerging areas. Explainability is one of those areas, with active lines of re­

search. Most of the techniques found in literature find their way into existing systems due

to a need for explanations. Not by design, but by requirement. Usually, this need comes

after the system’s deployment, as a quick fix. We argue that this mindset is no longer

realistic, especially in areas where decisions need to be accurate and frequently audited.

Even if the system’s environment does not require intensive validation, ensuring some de­

gree of explainability should always be desirable (it could, perhaps, be considered a ”good

practice”).

Based on what was stated above, in this work we are interested in incorporating explain­

able components into a system, that given a pair of images from the periocular region, is

capable of delivering a twofold output: a binary decision (”yes” or ”no”), supported by a

pleasing (and visual) explanation. The former is similar to a classical approach, while the

latter serves the emerging need for decision validation.

1.1 Motivations and Objectives

The present document aims at presenting a view of the state of ML Explainability, as well

as, describing ways to merge such techniques with standard DL methods. By compiling

several approaches with adequate descriptions, we hope to clarify the concepts behind ex­

plainable AI and how it actually works. Such knowledge is becoming increasingly more

valuable as ML systems find their way into real world scenarios.

Regarding the specific goals of this work, we aim at developing an integrated framework

that performs periocular recognition and automatically produces easy to understand ex­

planations. By doing so, we are not only accomplishing a useful task but also bridging the

gap between our system’s reasoning and the users that may end up using it.

1
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1.2 Document Organisation

In order to provide an intuitive reading experience, this document is divided according to

the following chapters:

1. Introduction ­ provides a general overview of this work’s motivations and objec­

tives, as well as, the structure by which this document is organised.

2. Related Work ­ presents an extensive look at widely used algorithms and tech­

niques in the fields of interest.

3. Proposed Methods ­ showcases the methods and intuitions developed to tackle

the problem at hand.

4. Results and Discussion ­ contains the experiments performed to validate the

proposed methods, with accompanying results and discussions.

5. Conclusions and Further Work ­ concludes the present document with both a

review of the work and its potential improvements in the future.

1.3 Dissertation Outline

In order to perceive the workflow that this dissertation encompassed, Fig. 1.1 depicts a

simple Gantt diagramwith the tasks performed and how long they took to complete. Nat­

urally, the work started by devoting several months towards research on the topics of in­

terest: Biometric Recognition, DL and ML Explainability. Then, this foundation was put

to use during the development of both proposed methods (while the first one consumed

a lengthier, uninterrupted time span, the secondmethod required additional research for

adequate DL models). Finally, the results conveyed by our experiments were analysed so

as to better understand if the original goal had been achieved:

Months

09/20 10/20 11/20 12/20 01/21 02/21 03/21 04/21 05/21 06/21

Related  
Work

Biometric Recognition

Deep Learning

Machine Learning Explainability

Proposed 
Methods

Deep Adversarial Framework for Visually 
Explainable Periocular Recognition

Automatic Generation of Image Captions

Results and Discussion

1

Figure 1.1: Gantt diagram with the dissertation outline. With the exception of additional DL research, the
work went through a standard pipeline: research, development and testing.
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Chapter 2

RelatedWork

The goal of the present chapter is to provide a review of the most relevant ideas and tech­

niques in the areas of interest. To that end, the following sections are organised as follows:

section 2.1 starts by acknowledging and describing our domain (i.e., biometric recogni­

tion); section 2.2 describes the concepts behind DL, as well as, its most popular architec­

tures (like CNNs and GANs); section 2.3 follows up by compiling a list of techniques that

are commonly cited in the field of Explainability; section 2.4 summarises the key aspects

of this chapter.

2.1 Biometric Recognition

Typically, a recognition problem involves a set of unique and non­transferable features

that can unmistakably identify a subject. Biometrics, as they are usually designated, serve

such purposes, as long as they are universal, distinguishable, resilient to changes and rel­

atively easy to collect [RP04].

Uponproving their compliancewith these requirements, biometrics canbeused to uniquely

identify instances of data. Naturally, not every biometric suits every use case, and it is an

engineering problem to determinewhich traits will likely convey the highest success rates.

Amongst the varied set of possible biometric signals, the following remain the most pop­

ular:

• Face: face recognition has the natural advantage of being largely non­intrusive (i.e.,

it can work in both controlled and uncontrolled environments), by usually focusing

on the location and shape of facial attributes. Unfortunately, certain lighting condi­

tions or unfavourable capture angles make it more challenging to identify people by

exclusively relying on facial data.

• Iris: iris recognition relies on the complex, yet unique patterns of an individual’s

iris. These can be captured with both visible and near infrared wavelength cameras,

to highlight the colour and structure of the iris, respectively. Additionally, it is quite

difficult to wittingly alter an iris’ textures or use an artificial iris altogether, making

this trait a solid candidate for many real world applications.

• Fingerprint: fingerprint recognition has also been preferred for a wide range of

applications, by asking the user to place one or multiple fingers on top of a dedi­

cated scanner. The ridges and valleys on the fingertip are so unique that each finger

from the same person has different information. Although more common and less

expensive, fingerprint based solutions are still sensitive to external conditions like

debris, cuts or bruises on one’s fingertip (not to mention gloves).
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• Gait: gait recognition differs from the biometrics above because it requires both

spatial and temporal information, so as to analyse the way someone walks. In prac­

tice, themovement patterns of a person’s joints, whenwalking, canbe seen as unique

and invariant enough to constitute a biometric (if not for anatomic changes that our

bodies endure over time). Unfortunately, processing gait information is computa­

tionally expensive, requires more physical space and does not offer the same accu­

racy levels that other traits do.

• Voice: voice recognition is, just like gait, an action over time (i.e., a subject must

record a voice clip for subsequent processing). Our ability to speak is conditioned

by anatomic properties (e.g., vocal tract, mouth) and therefore contains useful in­

formation. Despite this, the widespread adoption of such systems remains largely

held back by voice altering factors (e.g., catching a common cold or having a hoarse

voice).

Furthermore, these unique traits can be divided into twomajor categories: 1) physiologi­

cal biometrics (e.g., the iris, fingerprint and retina) that are naturally possessed by a given

subject and 2) behavioural biometrics (e.g., the gait and handwritten signature) that yield

from the interaction between a subject and the surrounding environment [BZ].

2.1.1 Periocular Recognition

Concentrating growing interests in the biometrics domain, periocular recognition uses the

information in the vicinity of the eye, in which the iris, sclera, eyebrow, eyelid and skin

stand out.

The seminal breakthroughs in the aforementioned area can be traced back to a set of

methods termed feature descriptors. Methods such as HoG, LBP and SIFT were able

to produce simplified data representations by relying on edges, textures and keypoints,

respectively. In [RJ09], the results from each feature descriptor were fused to faithfully

discriminate between the ”genuine”/”impostor” pairs. This work served as the basis for

subsequent fusion­based approaches, as in [PP12b]. In [KZ14] a Restricted Boltzmann

Machine was used to learn a probabilistic distribution over the input data, further dis­

criminated with metric learning and SVMs.

With the effective application of DL solutions, researchers turned to popular architec­

tures (in particular CNNs), to pursue ever increasing recognition accuracy. Accordingly,

in [ZK17] themain concept involves the use ofmultiple CNNs that are specialised in classi­

fying a particular kind of semantic information (e.g., gender or age). Then, a score fusion

process yields the final response. In [PN18], authors enforce a CNN to ignore the ocular

region (due to its likelihood to contain specular reflections) and rely on the eye’s surround­

ing area (eyebrow, eyelid and skin). [RP20] created independent representations of the

iris and periocular regions, that feed classificationmodules, whose scores are finally fused

to reach the decision. Using a multi­glance mechanism, where part of the intermediate
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components are configured to incorporate emphasis on the most important semantical

regions (i.e., eyebrow and eye), Zhao and Kumar [ZK18] developed a recognition model

that particularly focuses on these regions, enabling the deep CNN to learn additional dis­

criminative features that improve the recognition ability of the whole model.

Recently, [SL19] attempted to bridge the gap between biometric recognition and explain­

ability, by learning feature specific filters that respond to a range of preferred spatial lo­

cations.

Finally, [HL20] propose an integrated solution that leverages the discovery of parts as a

form of attention. More specifically, a dictionary of object parts is learned, upon which

a feature map can be grouped into part segments. Then, an attention mechanism deter­

mines the parts that should be regarded as essential to the classification process. This

solution (hereby referred to as HL) is similar to our methods with respect to the inte­

gration of explainability into a recognition framework, making it a prime candidate for a

direct comparison (as seen in section 4.2.1).

2.2 Deep Learning

As a subordinate area to ML, DL focuses primarily on algorithms that mimic the hu­

man brain and how the seemingly simple neurons receive, process, store and release

information in a coordinated manner. Fortunately, the field has progressed immensely

throughout the years, updating and rethinking its archetype (i.e., Artificial Neural Net­

work (ANN)s) to perform a wide range of tasks. However, despite the groundbreaking

success of these approaches, the field went through some really unremarkable periods

before becoming so coveted as it is nowadays.

The first efforts in the field of DL can be traced back to 1943, with the work of neurosci­

entist Walter Pitts andmathematicianWarrenMcCulloch. They proposed the simplest of

elements, one that did so little but, when combined with more of its kind, could achieve a

whole much greater than the sum of its parts. The artificial neuron was capable of taking

inputs, assigning weights to them and, through some light processing, reach an output.

More than a decade after the first steps, the next major innovation came in the form of the

Perceptron [Ros57], so called by Frank Rosenblatt, its inventor. This algorithm could be

used to solve linearly separable binary problems, in a supervised manner (i.e., the train­

ing samples possess ground­truth labels, against which the model’s predictions are to be

compared). Some relevant concepts were established, like the use of activation functions

to give more expressive power. Moreover, this work started with a single layer Perceptron

and naturally extended to an MultiLayer Perceptron (MLP) (i.e., multiple layers of these

units). A formulation similar to this one is still used in modern architectures, whether in

a feed­forward style, where connections between nodes do not form cycles, or otherwise

(i.e., RNNs).

The next couple of decadesmarked the first really low point in the field’s research interest,

except for the continued work upon the ideas behind Perceptrons and the discovery of the
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backpropagation algorithm in 1974 (the default procedure for weight optimisation, based

on the derivative of a loss function with respect to a given weight).

After this period, research saw a rejuvenated wave of interest, with breakthroughs like the

formalisation of the CNN’s precursor, the Neocognitron [Fuk04]. Kunihiko Fukushima

described such framework, in 1980, as having two basic types of layers: convolutional and

downsampling/pooling layers. Convolutional layers would serve the purpose of applying

a sliding window (i.e., a kernel with learnable weights) over the input to extract features.

Downsampling layers, usually in between convolutional layers, could reduce the spatial

complexity of the input and, as a side benefit, give invariance to a feature’s occurrence.

In 1989, Yann LeCun, one of the better known individuals in theDL community, combined

a CNN with backpropagation to classify handwritten digits. Subsequent work led to the

establishment of one of the most relevant ANN designs, LeNet5 [BH98].

Several years later, the next DL revolution was made possible by the advent of Graphics

Processing Unit (GPU)s, reducing training times to much more realistic amounts. Based

on that, Alex Krizhevsky, under the supervision of another DL great, Geoffrey Hinton,

proposed AlexNet [SH12] and achieved a record top­5 error in Imagenet Large Scale Vi­

sual Recognition Challenge (ILSVRC)­2012, proving that deep CNNs were feasible and

well suited to the image classification task. Moreover, it showed that Rectified Linear

Unit (ReLU) could be amongst the de facto activation functions.

Whilst the DL revolution was put in motion, areas like Image Segmentation saw an upris­

ing of novel methods, diverging from the classical clustering or colour/edge based seg­

mentation methods. Many of those methods became obsolete, as the state­of­the­art

moved on to fully connected and region­based approaches [GL17].

Another recent line of work has to do with generative algorithms, brought forward in the

original GAN paper [CB14], co­authored by Ian Goodfellow and Yoshua Bengio, the third

pioneer of DL.

Outside of the theoretical strides, practitioners and newcomers have enjoyed the success

of specialised frameworks that grant more mainstream appeal to DL as a whole. Ten­

sorflow [YZ15] and PyTorch [BC19] are two of those tools, with similarities and dispari­

ties that make them more suited to different target audiences. Nonetheless, both include

Application Programming Interface (API)s that make the coding more user friendly.

For the purposes of this work, algorithms like CNNs and GANs, amongst others, are of

particular interest. Therefore, the following subsections describe those architectures both

in general and, through the actual models that were chosen, in particular.

2.2.1 Convolutional Neural Networks

Asmentioned above, CNNs have the ability to take a fixed­size image as input, apply com­

plex operations and determine the corresponding class (i.e., the group it belongs to). A

typical CNN architecture includes a feature extraction stage and a classification stage. The

first analyses the image to keep the core aspects, while the second translates that infor­
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mation into the predicted class. The image below is a visual representation of what was

described in this paragraph:

Figure 2.1: Typical CNN architecture [Pra18]. The feature extraction stage extracts as many characteristics
as possible from the input image, while the classification stage gives them meaning (i.e., a class).

During the feature extraction stage, the image goes through a series of convolutional and

pooling layers. A convolutional layer contains a certain number of filters/kernels of small

size (e.g., 3x3 or 5x5 pixels). These filters are responsible for learning both low and high

level features from the source image. The first layers usually capture lines, curves and

general shapes, while the deeper ones are able to capture more and more abstract con­

cepts. As Fig. 2.1 shows, a filter is a small window that slides over the input, multiplying

its values (learned weights) by the ones from the input.

In between convolutional layers, pooling layers are responsible for reducing the dimen­

sionality of the previous layer’s output (in Fig. 2.1, every time a pooling operation is per­

formed, the input’s height and width are reduced, with the depth being determined by the

number of filters). This step also ensures that a feature’s occurrence is spatially invari­

ant. Just like convolutional layers, pooling layers use a kernel of size NxN , but unlike

convolutional layers, they doesn’t possess learnable weights. Two commonly used forms

of pooling are max­pooling and average­pooling: the former only keeps the biggest value

inside the chosen kernel, while the latter keeps themean of all the values inside the kernel.

After extracting features from the input image, the final feature maps are flattened (i.e.,

stretched to a vector like shape) and fed to a regular MLP. An MLP, as described earlier,

is a sequence of Fully Connected (FC) layers of neurons, meaning that a neuron receives

the output of every neuron, in the previous layer, and its output is sent to every neuron in

the next layer.

Finally, the output layer (last layer of neurons) has, typically, a neuron for each class and

the values given by those neurons are the probability of the input image belonging to the

classes associated with those neurons (i.e., in Fig. 2.1, the first neuron outputs the prob­

ability of the image belonging to the ”car” class).

Within convolutions and neurons, there are special functions (called ”activation func­

tions” in the literature) that usually perform non­linear operations.

In convolutions, an example could be the ReLU function, which simply maps negative
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inputs to zero and behaves like the identity function for positive ones.

Neurons, on the other hand, receive several inputs and perform aweighted sumwith them

(once again, these weights are the parameters learned by the network). Next, the result

is given to an activation function (like ReLU, sigmoid or softmax, as shown in Fig. 2.1),

which determines the neuron’s activation value.

These kinds of functions are crucial, without them a neuron could only process simple

data, and not complex (non­linear) data, like images.

Understandably, these methods have been at the core of research efforts over the past

years, not only for their ability to learnmeaningful informationbut also due to the democrati­

sation of GPUs. Naturally, many deep designs were proposed, including the Inception

[VR15], VGG [SZ15], ResNet [RS16] and DenseNet [MW17] architectures (which subsec­

tion 2.2.1.1 covers in more detail).

2.2.1.1 DenseNet

Throughout the years, CNNs got deeper and deeper, in a move that the research commu­

nity saw as somewhat natural. In spite of this, the gradient based training seemed to halt

this trend. That situation was addressed by the ResNet design, which introduced resid­

ual connections to create information pathways betweenmore layers, thus controlling the

vanishing gradient problem. Additionally, the work with such deep networks showed how

some layers could be dropped during training while not seriously affecting the overall per­

formance. Hence, there was evidence that deep residual networks possess a great deal of

redundancy [MW17, SW16]. Based on this knowledge, the authors of DenseNet proposed

an architecture similar to the following:

Figure 2.2: Deep DenseNet with three dense blocks [MW17]. Each one of those blocks contains a series of
convolutions, pooling and/or BN layers.

Fig. 2.2 contains an example of a deep DenseNet with three blocks, each containing 5

layers. The circles represent the feature maps and the arrows send them through com­

posite functions of operations (including BN, convolutions and pooling), which output

more feature maps. Due to the many connections, each composition of operations re­

ceives a concatenation of every feature map from the previous layers. In between dense

blocks, we have the so called ”transition layers”, which change the feature maps’ sizes via

convolution and pooling operations.

With this approach to network design, the authors gave the model a set of densely packed

blocks to perform the feature extraction process. Naturally, many versions of the same de­

sign were created, like DenseNet­121, DenseNet­161 or DenseNet­201 (where the number

is analogous to the number of layers that were included).
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2.2.2 Region­based Instance Segmentation

The basic idea behind image segmentation comes from the definition of the word ”seg­

mentation”: division into separate parts/sections. With effect, when an algorithm at­

tempts to segment an image, it tries to determine the object that a given pixel belongs to.

Notice the wording here, because, unlike object detection, a segmentation algorithm does

not need to know what the objects and visual elements represent (i.e., the classes). But

before we discuss instance segmentation, we should create a notion for object detection

first.

2.2.2.1 R­CNN

The region­based family of object detection algorithms relies on the proposal of Region(s)

of Interest (RoI) in any given image. A naive approach to this task would be to consider

all possible bounding boxes, with varying dimensions, aspect ratios and positions. Unfor­

tunately, this algorithm would rapidly become prohibitive in terms of the computational

budget. So, to keep the same idea but make it more efficient, the R­CNN paper [DM14]

used selective search [GS13] to consider just a few thousand region proposals. The fol­

lowing steps and Fig. 2.3 provide more details on how the proposals are derived:

1. Start with an initial set of seemingly random segmentation regions.

2. Group neighbouring regions together, based on a number of similarity metrics (e.g.,

colour, texture or size).

3. Repeat the previous step until the stopping criterion is reached (e.g., maximum

number of iterations).

Figure 2.3: Visualisation of how the selective search algorithm progresses [GS13]. The top row contains the
segmented regions, while the bottom row contains the corresponding bounding boxes. The algorithm works

by joining similar regions together until a stopping condition is reached.
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Next, the region proposals are resized to a square aspect ratio and fed to a CNN that acts

as a feature extractor. Finally, for each region proposal, a trained SVM receives the cor­

responding feature maps (which are flattened to become a 4096­dimensional vector) and

detects the presence of any object of the class it was trained on:

Figure 2.4: R­CNN pipeline [DM14]. The framework uses selective search to create region proposals, which
are later fed to a CNN that extracts features. Then, a trained SVM classifies the feature maps as describing a

known object or not.

2.2.2.2 Fast R­CNN

After the publication of the R­CNN paper, one of the authors improved the architecture

with Fast R­CNN [Gir15], a much faster and accurate approach. This new version still re­

lies on selective search to generate region proposals but includes some key improvements.

Once the region proposals (i.e., RoI) are generated, the image is fed to a CNN responsible

for extracting a single set of feature maps. Then, each RoI is projected in the common

feature maps, effectively slicing it into smaller feature maps. Next, a new layer called

Region(s) of Interest Pooling (RoIPool) computes a fixed­length vector for each RoI: it

applies max­pooling to each slice of feature maps, ensuring a pre­definedHxW size, thus

creating a small feature map for every RoI that still relies on shared computations. Here

we start to see the gains in speed and space by only extracting features once. The pipeline

continues bymapping the smaller, RoI specific, feature maps to a feature vector, using FC

layers. Finally, the architecture bifurcates into two branches with additional FC layers:

one serves the classification purposes and has a ”K + 1”­way softmax, with probabilities

for each of theK classes and the ”background” class; and another performs regression by

outputting four values for each class, representing the bounding box corners:

Figure 2.5: Fast R­CNN pipeline [Gir15]. The revision of R­CNN uses a common feature map, shared by all
region proposals, instead of extracting features for each and every proposal.
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2.2.2.3 Faster R­CNN

Making further improvements, the Faster R­CNN [GS15] architecture extends the Fast

R­CNN predecessor by replacing the mechanism that proposes the object regions. Faster

inference times and accuracy are, once again, made possible by some rethinking of the

core aspects. Two modules serve as the basis for this unified framework: RPN and Fast

R­CNN detector. The following figure contains a good visual approximation of the Faster

R­CNN architecture:

Figure 2.6: Faster R­CNN pipeline [GS15]. The two main modules are the RPN, to predict where an object
might be, and the R­CNN detector, to classify the proposed regions.

The advantages brought forward by the RPN include its speed and the ability to be tuned

to a specific task (i.e., because it is a trainable component, it can become better suited

to the types of images and biases in the training set, unlike generic algorithms like selec­

tive search). The RPN works by using k anchor boxes (which are, essentially, matrices of

varying aspect ratios) that slide over the image’s feature maps, followed by an intermedi­

ate layer that produces a fixed­length vector (e.g., 256­dimensional) for each anchor. This

vector is then given to two separate FC branches. On one hand, the first branch outputs

2k scores (two for each of the k anchors) which are the probabilities of an object’s pres­

ence in each proposal. On the other hand, the second branch outputs four bounding box

coordinates for each of those k anchors:

Figure 2.7: Visualisation of the proposed RPN [GS15]. By using multiple anchors with different aspect
ratios and sliding them over the received feature maps, the network is able to extract several fixed­length

vectors, which are later used for classification and regression.
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With the region proposals and the image feature maps (the same used by the RPN mod­

ule), the Fast R­CNN detector can find the slice of feature maps that correspond to each

region proposal and pass it through the RoIPool layer. Then, just like before, a RoI feature

vector is computed using a couple of FC layers and given to two sibling branches, which

output a class and bounding box.

With the architecture assembled, all that is needed is away to train it. To do so, the authors

propose a 4­step training procedure:

1. The RPN is initialised with ImageNet weights and fine­tuned to perform the region

proposal task.

2. With the generated proposals fromstep 1, the FastR­CNNdetector is also fine­tuned

with ImageNet weights.

3. The convolutional layers that extract features from the original image are initialised

with the Fast R­CNN weights (remember that these layers are shared across RPN

and Fast R­CNN). The remaining unique layers of the RPN are fine­tuned.

4. Finally, keeping the shared convolutional layers fixed (from step 3), the unique lay­

ers of Fast R­CNN are fine­tuned, resulting in a trained and unified framework.

FasterR­CNNachieved state­of­the­art performance in popular datasets like Pascal Visual

Object Classes (VOC) and Common Objects in COntext (COCO), remaining to this day as

a very influential design.

2.2.2.4 Mask R­CNN

Specifically designed to produce segmentationmasks, theMaskR­CNN framework [DG17]

is an extension of the previously discussed Faster R­CNN. It adds a third branch to the

already existing classification and bounding box regression ones. The mask branch is a

small Fully Convolutional Network (FCN) applied to each RoI, resulting in the prediction

of a binary mask:

Figure 2.8: Mask R­CNN architecture [DG17]. Built on top of Faster R­CNN, this architecture favours
segmentation and includes alignment techniques to ensure optimal mask quality.
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By building on top of the Faster R­CNN architecture, Mask R­CNN adds very little extra

overhead and keeps the speed that the former enjoyed. The Region(s) of Interest Align

(RoIAlign) operation (depicted in Fig. 2.8), which fixes the RoI misalignment present in

the previous R­CNN based methods, also helped the object detection performance (i.e.,

if the mask prediction branch is disabled, the resulting architecture behaves better than

the baseline Faster R­CNN). The reason for the misalignment in the original frameworks

has to do with the approximations that are made with RoIPool, resulting in the loss of

some spatial information. RoIAlign, on the other hand, does not use the exact values in

the feature maps, but rather, interpolations that take into account the surrounding val­

ues. By doing so, we are using some of the information that would have been discarded by

a quantisation based approach like RoIPool. Only after doing this, can the max­pooling

operation be used to obtain a fixed­size feature map (the maximum value still has some

information about its surroundings).

Mask R­CNN achieved, at the time, state­of­the­art results on the COCO dataset and was

even used to perform pose estimation, despite not being intentionally trained to do so.

2.2.3 Generative Adversarial Networks

As generative algorithms, GANs possess the ability to create new data, unlockingmany in­

teresting possibilities. Although seemingly complex, the motivation behind these frame­

works is really intuitive: two networks with competing goals are put against each other to

make for a better learning process (i.e., if one gets better, the other has to keep up).

Formally, a generator G tries to generate new data from random noise. Then, synthetic

and real samples are given to a discriminatorD, whose task is to distinguish their sources:

Figure 2.9: Typical GAN architecture [Mat20]. The generator takes random noise as input and outputs fake,
but realistic images. By the end of training, the fake images should be hard to distinguish from the real ones.

Analysing Fig. 2.9, one can understand the training process thatmuch better: Gwill learn

to sample a random input vector and produce a synthetic image, so that it can foolD into

thinking it came from the real distribution. Conversely, D will learn to distinguish fake

samples from real ones. At first, G’s images will look nothing like the real ones, but the

feedback loop will drive the two adversaries to a converged state: G will be updated by

how far it was from foolingD andD’s update will be based on how it fared at discriminat­

ing between real and fake samples. After training, the discriminator is discarded and we

are left with a generator that can produce realistic images.
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Equations 2.1 and 2.2 present the formal loss functions that enable the training of both

D and G. It should be noted that, in the original description, D will try to maximise the

average of the log probability for real images, as well as, the log of the inverse probability

for fake images. G, on the other hand, should seek to minimise the log of the inverse

probability predicted by the discriminator for fake images:

LD =
1

m

m∑
i=1

[log(D(xi)) + log(1−D(G(zi)))] (2.1)

LG =
1

m

m∑
i=1

log(1−D(G(zi))) (2.2)

Since the original publication, the loss terms have been update, whether by making G

maximise the log of the discriminator probabilities for fake images or rethinking core as­

pects of the training procedure (as in Wassertein GANs [CB17], where the discriminator

is replaced with a critic that scores how realistic the given samples look). Due to the high

interest shown by the research community, many different designs were proposed, in­

cluding AttGAN [SC19], for image manipulation, and StyleGAN2 [LA20], for high quality

image generation. Given its use in this work, the StyleGAN family is highlighted below.

2.2.3.1 StyleGAN

The StyleGAN team started experimenting with a concept called ”progressive growing”.

In the paper where they introduce this idea [LL18], the authors postulate that the discrim­

inatorD and generatorG could start working with low resolution images (e.g., 4x4 pixels)

and then get progressively upgraded to deal with higher and higher resolutions. Both D

andGwould get new layers, at each resolution change, to deal with the higher dimension­

ality. To avoid the risk of sudden shocks or instability, the new layers are faded in smoothly

and every layer remains trainable throughout the entire training process. This methodol­

ogy allows both the D and G to first learn the large­scale aspects of the images and then,

progressively, shift their attention to finer details, which usually come with higher reso­

lutions. The resulting network, called ProgGAN, was able to generate high quality images

at higher than usual resolutions (e.g., 1024x1024 pixels).

Following the work above, the same authors proposed an architecture called StyleGAN.

The main differences between this architecture and the baseline ProgGAN are the use of

an additional mapping network to map latent codes to a new latent space, the use of style

vectors and the introduction of Adaptive Instance Normalisation (AdaIN).

The mapping network opposes itself to the traditional GAN formulation, where we map

a point in the latent space to the image space. In this new configuration, we first map

the latent points to an intermediate space, through an 8­layer MLP. This intermediate

spaceW is, according to the authors,more disentangled than the former spaceZ, enabling

better manipulation of attributes. Once we have the new latent codes, we apply an affine
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transformation to create style vectors, which condition the image generation process. As

for the AdaIN technique, it helps to incorporate the aforementioned styles with the feature

maps that come from the successive convolution layers. There is also the use of noise

vectors, which provide more variation in finer details (i.e., less smoothing):

Figure 2.10: StyleGAN architecture [LA19]. On the left, we have the ProgGAN architecture, while on the
right we have the proposed StyleGAN version with the mapping network and style injection.

After the release of the original StyleGAN, the same team corrected some of the visual

artefacts that it tended to include in the generated images (i.e., ”water droplets” and mis­

aligned eyes or teeth). In fact, the ”water droplet” effect results from the generator at­

tempting to sneak some information past the normalisation step:

Figure 2.11: Water droplet effect generated by the original StyleGAN design [LA19].

The StyleGAN2 framework [LA20], as it ended up being called, redesigned the way style

vectors are incorporated into the generation process, due to a belief that the AdaIN op­

eration limited the generator’s ability to use the maximum amount of information. Fur­

thermore, the revised architecture replaced progressive growing with input/output skip

connections (for the generator) and residual connections (for the discriminator):
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Figure 2.12: Proposed revisions of the networks’ architectures [LA20]. On the left, we have input/output
skip connections and, on the right, residual style connections. After some experiments, the authors settled

on a skip generator (top­left) combined with a residual discriminator (bottom­right).

The improved architecture allowed both networks to have access to every resolution layer

from the beginning, but onlymake use of them if it proved beneficial during training. This

revision, along with several others, improved what was already a state­of­the­art design,

elevating the quality of synthetic imagery even further.

2.2.4 Long Short Term Memory

As seen before, manyDL architectures are particularly tuned for problems like image clas­

sification or synthesis. However, in other tasks, such as text generation, a model must be

able to retain some of the information received previously. This notion of context is par­

ticularly addressed by a family of models known as RNNs. They comprise loops that feed

the output back to the unit, allowing it to combine both new and previous information.

Figure 2.13: Visualisation of a single unit from a RNN [Ola15]. On the left, the unit is seen as theory
describes it, while on the right, the loop is expanded indefinitely to form a chain (for explaining purposes).

An architecture similar to the above is perfectly suited for dealingwith sequences and lists.

Considering their applicability to text generation, these networks can infer the likelihood

of outputting a word based on the immediately preceding words. For example, in the

sentence ”The Eiffel Tower is in ...” the most likely word to appear next is ”Paris”. The
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gap between the relevant context and where the word needs to appear is quite small. But

considering an example like ”I have been inFrance for two years and I love speaking ...”, we

can realise how much more persistence is needed for the notion of ”France” to influence

the word that we expect to see at the end (i.e., ”French”). To deal with longer­lasting

dependencies, a more powerful version of RNNs was introduced in the form of LSTMs:

1 2
3

Ct-1 Ct

ht-1

ft it
Ct
~

ot

ht

Figure 2.14: Representation of an LSTM’s inner workings (edited for explaining purposes) [Ola15]. The top
pathway represents the accumulated context (or cell state), which will be subjected to changes if it proves
beneficial. In the lower portion of the schematics, two main steps are responsible for filtering and updating
the cell state, based on the new information that the unit receives. Finally, the output is a combination of

both the updated context and the new, short­term information.

More formally, the top pathway (commonly described as the cell state) represents the pre­

viously discussed notion of context (i.e., what we know so far). It is updated in steps 1 and

2, by filtering and adding information, respectively.

As an input xt enters the unit (step 1), it is added to the output of the previous unit (ht−1)

and weighted by the learned weights. Then, the sigmoid function takes that summation

and maps it to a value ranging from 0 to 1. It is this value ft that, when multiplied by the

current cell state Ct−1, determines if the context is to be forgotten or kept. These gates, as

they are also called, allow the LSTM to have more control and sensibility.

Next (step 2), having a filtered context, we must determine how much new information

should be added to that context. To do so, a weighted summation of ht−1 and xt is once

again given to a sigmoid function which creates a filter (just like before). Parallel to this

computation, ht−1 and xt are given to a tanh function whichmaps them to a value from−1

to 1, later multiplied by the filter. The resulting value is then added to the filtered context,

thus creating a newly updated context (or cell state).

Finally, the output of the unit is comprised of the updated cell state conditioned on the new

information ht−1 and xt: the tanh function maps the updated context to a value from −1

to 1, later multiplied by the filter derived from the application of sigmoid to the weighted

summation between ht−1 and xt.

Upon closer inspection, it becomes clear how the LSTM unit performs as expected: steps

1 and 2 update the knowledge gathered so far, based on the new information received,

and then step 3 focuses on outputting a value that is not only based on the short­term

information (that is what ht−1 and xt represent) but also on the new long­term context.
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2.3 Machine Learning Explainability

As an example of what this topic is all about, let us imagine a binary classifier whose task

would be to distinguish between wolves and huskies [Mol19]. After training, it ends up

misclassifying a number of huskies as wolves. Explainability techniques could, perhaps,

show a tendency for the classifier to use snow, in some of the images, as a feature for the

class ”wolf”. Without these techniques, it would be decidedly harder to reach the same

conclusion. Thus, the adoption of a higher degree of transparency can bridge the gap be­

tween humans and ML models, increasing the level of trust between the two parties.

In [Lip18], the author highlights the different degrees of explainability in MLmodels. We

might link the word ”explainable” to the model’s architecture, meaning that it can be eas­

ily understood, even if that simple nature leads to a deficiency in capacity. We might also

consider the model’s parameters as an explainable component. There seem to be many

possible (and equally valid) forms of explainability. Therefore, authors in this field have

debated on the most accurate taxonomy to describe the scope and depth of what it means

to be an explainable system.

The proposed criteria [Mol19, Lip18] classifies ML Explainability in terms of depth, scope

and model applicability:

• Intrinsic or Post hoc: are we reducing the model’s complexity to make it more

explainable? Or are we allowing the model to be complex and only explaining its

output?

• Local or Global: are we explaining individual predictions? Or the behaviour of

the entire model?

• Model­specific orModel­agnostic: are the techniques specific to a limited range

of models (i.e., only work with them)? Or are they generic enough to be paired with

practically any kind of ML model?

Following the above criteria, we argue that our approaches (chapter 3) are Post hoc, Lo­

cal and Model­agnostic. In other words, they allow model complexity, explain single in­

stances of data and can be paired with several types of ML and/or DL models (in specific,

different types of classifiers, generativemodels and instance segmentation architectures).

As a natural extension to this introduction, the next subsections attempt to showcase the

most common techniques found in the literature. These techniques have ranging levels

of complexity and applicability to the problem of periocular recognition. Some of them

rely on images, while other make use of plots. Nevertheless, they share a common goal:

remove the mist that conceals the reasoning of complex ML models.
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2.3.1 Partial Dependence Plot

A PDP is, as the name suggests, a plot relating one or two features with a target variable

[Fri01]. Ideally, the features have to be independent in order to properly explain the be­

haviour of another, dependent variable (i.e., target). The main purpose of such technique

is to determine the nature of feature­target relationships (e.g. linear or more complex).

Additionally, PDP is a global explainability method, meaning that it can capture the be­

haviour of the entire dataset to produce a global relationship between features and targets.

From this point forward (including subsection 2.3.2), the features we want to explain will

be represented by xS and the remaining ones by xC .

As an example, let us consider a simple, linear regressionmodel. In this setting, the Partial

Dependence Function, that would allow us to create a plot, has the form:

f̂xS (xS) =

∫
xC

f(xS , xC)P(xC)dxC (2.3)

The formulation above shows that the PDP values for the features in xS are the result of

marginalising themodel f over the distribution of the features present in xC . By doing so,

a new model f̂ is obtained, depending exclusively on the features in xS . To approximate

the indefinite integral, one can take a Monte Carlo approach and average the prediction

of instances in the training set (with length N), while fixating the values of xS:

f̂xS (xS) =
1

N

N∑
i=1

f(xS , x
(i)
C ) (2.4)

It becomes evident, then, that the basic principle of PDP is the lack of correlation between

the features in xS and the ones in xC , which is usually not the case.

Suppose we only have weight (xS) and height (xC) as features. If a given value of xS is

fixated, all the other possible values for xC , observed in the training data, will be paired

with that specific value of xS . In many cases, unlikely combinations will appear, like an

instance where a really small weight will be paired with a really high height. It simply

comes down to the fact that these two features are heavily dependent on each other. Un­

fortunately, such limitation limits PDP’s applicability in a plethora of cases.

In spite of this, in situations where the chosen features are independent, this technique

can even be used for classification problems, in which case the ML model outputs class

probabilities. Consequently, a PDP would display the class, as the dependent variable,

and one or two features as the independent ones. To get a broader perspective, one could

simply create a PDP per class.

To better understand and visualise this concept, Fig. 2.15 shows three different variables

(features) being individually plotted against the target variable (in this case, the number

of bike rentals on any given day). Note that here we are using the model f̂ , which only re­

quires one input variable at a time, given that the remaining variables were marginalised:
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Figure 2.15: Three PDPs from a regression model with three independent variables and one, dependent
variable [Mol19]. The predicted values come from a marginalised model (f̂) that only relies on one feature.

As an explainable technique, PDP works well if its conditions are met (variable indepen­

dence and need for only one or two features per plot). However, when features start get­

ting dependent on each other, PDP can produce unreliable results [Mol19].

Considering the purposes of this work, this method will not suffice for two main reasons.

Firstly, our attributes are, intuitively, entangled: blue eyed people tend to have lighter skin

tones, as opposed to darker skin tones, which often accompany darker iris shades. Feature

independence is much more theoretical and usually present in toy problems. Secondly, it

is simply not enough to display just one or two features at a time.

2.3.2 Accumulated Local Effects

Another technique that produces plots is ALE, commonly cited as an alternative to PDP,

particularly due to the latter’s unreliability when the features are correlated [Apl16].

Before getting into the formulas, it is important to visualise ALE’s reasoning:

Figure 2.16: Calculation of ALE for feature x1, strongly correlated with feature x2 [Mol19]. The distribution
in divided into intervals and, for each one, we determine the difference in predictions when feature x1 takes
on the values of the lower and upper limits. These results are later accumulated (i.e., summed) and centred.
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From the figure above, we get the idea that ALE evaluates differences in predictions at a

smaller scale (i.e. the intervals) and then sums everything to get a broader perspective on

how the model f behaves. Indeed, that is what the next formula describes:

f̂xS (xS) =

∫ xS

z0,1

∫
xC

∂f(zS , xC)

∂zS
P(xC |zS)dxCdzC − a (2.5)

In equation 2.5, ALE also tries to produce a new model that only requires the features in

xS . The difference with regards to PDP comes from the fact that we do not use all the pos­

sible values for the features in xC , but rather, the values that are possible in the range that

our specific feature values belong to (P(xC |zS)). By using a conditional distribution, we
eliminate the unlikely combinations that PDP would have considered. Then, the leftmost

integral applies the same reasoning to the entire range of possible values for the features

that xS contains. Finally, a constant a is subtracted to ensure that, in the ALE plot, the

average effect is zero.

As an example, the next couple of formulas are going to describe how the ALE values are

calculated when we want to use just one feature (this method is broad enough to work for

two features at a time and even for categorical features).

Just like with PDP, in practice we approximate the theoretical definition, and, in this case,

that process is done with the following formula:

f̂j(x) =

kj(x)∑
k=1

1

|Nj(k)|
∑

i:x
(i)
j ∈Nj(k)

[f(zk,j , x
(i)
\j )− f(zk−1,j , x

(i)
\j )] (2.6)

Starting from the right, in [f(zk,j , x
(i)
\j )− f(zk−1,j , x

(i)
\j )], we are interested in determining

the difference in predictions when we replace the value of the feature j we want to explain

with the values from the upper (zk,j) and lower (zk−1,j) limits of a given interval. The

summation
∑

i:x
(i)
j ∈Nj(k)

allows us to repeat the aforementioned process for every instance

whose feature j belongs to a neighbourhood given by Nj(k). If we recall Fig. 2.16, these

neighbourhoods are the vertical slices that divide feature j’s distribution. Then, to average

the differences we divide the summation by the number of instances in the given interval

(|Nj(k)|). This part of the formula computes the local effect of feature j.
Following the above steps, the leftmost summation is responsible for computing and,

more importantly, accumulating the local effects of every interval (thus giving meaning

to the acronym ALE). Finally, we subtract the average to the resulting values, ensuring

that they stay centred around zero:

f̂j(x) = f̂j(x)−
1

n

n∑
i=1

f̂j(x
(i)
j ) (2.7)

Fig. 2.17 depicts an ALE plot of the problem seen in subsection 2.3.1. This example shows

that the plots are indeed centred around zero, with positive values indicating an increase

in themodel’s prediction and negative values indicating a decrease, when compared to the
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average prediction. Additionally, it becomes clear how shaky ALE plots can be, especially

when compared with the PDP version (as a side note, the number of intervals contributes

to this effect):

Figure 2.17: Three ALE plots from a regression model with three independent variables and one, dependent
variable [Mol19]. As per the trained model, the temperature and humidity’s influence outweights that of the

wind speed.

Overall, ALE plots are considered a superior technique to PDPs, despite having some

drawbacks too: as mentioned before, the shaky lines can become undesirable and the

implementation of this method is more complex. In spite of this, it is generally accepted

that, when we are working with independent variables and require fast computing times,

PDP is the preferred option. For virtually any other scenario, ALE is regarded as the su­

perior solution.

Just like PDP, and despite being better for the specific use case described in the present

document, the visualisation of only a couple features limits ALE’s applicability. The fol­

lowing subsections will describe other methods that come closer to what is expected from

a framework that can, visually, explain its decisions.

2.3.3 Occlusion Map

Being one of the most straightforward techniques, Occlusion Maps try to make perturba­

tions on certain areas of an input image and register how the model (usually a classifier,

like a CNN) reacts to those changes.

In practice, this method involves taking a square, of fixed size and colour, and sliding it

over the image, iteratively. Then, the perturbed images are fed to the classifier and its

scores are noted. Finally, the scores are translated into a heat map, indicating the por­

tions of the image where an occlusion had the most impact (i.e., the areas most used by

the model to predict the correct class).

Fig. 2.18 shows a clear example of what kind of results can be expected with this tech­
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nique. Another example can be found in [ZF14] and Fig. 2.19, where the authors went

even further by visualising feature maps and noticing how the classifier would attribute

different (wrong) classes when certain parts of the image get occluded:

Figure 2.18: Example of a heat map generated with the Occlusion Map technique [She18]. Here, the model
clearly identified the melanoma as a crucial element.

Figure 2.19: Another example of Occlusion Maps being used to interpret a model’s decisions [ZF14]. The
rightmost figure shows how the predicted class varies with respect to occlusions.

As seen above, Occlusion Maps are able to locate areas of an image that contribute the

most to a classifier’s decision. As an additional benefit, they are also easy to implement

and require almost no redesign or retraining of the classifier.

The applicability of this technique, however, is somewhat limited, given the need for a

higher level explanation (i.e., the ability to highlight well defined areas of the periocular

region, like the iris or the eyebrow).

2.3.4 Saliency Map

Described in [VZ14], this technique also attempts to highlight certain parts of the input

imagewith brighter or darker shades, based on their importance to themodel’s score. The

authors propose a simple example to start with, similar to the following:

Sc(I) = wT
c I + bc (2.8)

Equation 2.8 comes froma linear scoremodel for class c and, as standard, there is aweight

vector w, which is later transposed, and a bias b. In this setup, each pixel of image I is

weighted according to its importance. Translating such formulation to a CNN becomes

more complicated. In spite of this, one can approximate that value by computing the

first­order Taylor expansion:

Sc(I) ≈ wT I + b (2.9)

23



Deep Adversarial Frameworks for Visually Explainable Periocular
Recognition

In this case, w is the derivative of Sc with respect to a specific image I0:

w =
∂Sc

∂I

∣∣∣∣
I0

(2.10)

One can interpret equation 2.10 as obtaining an image­specific class saliency where the

magnitude of the derivative indicates the pixels that need to be changed the least to change

the final score the most.

Having this foundation, the authors continued the Saliency Map extraction process. Re­

membering that any image (i.e., I0) hasm rows and n columns, a class Saliency Map be­

longs to Rm∗n. The first step is to find w, as per equation 2.10 through back­propagation.

Then, if I0 is a greyscale image, w has exactly one element for each pixel, meaning the

Saliency Map could be calculated as Mij = |wh(i,j)|, where h(i, j) is the index of the ele­
ment in w directly corresponding to I0’s pixel in row i and column j. As for Red Green

Blue (RGB) images, with multiple depth channels, w has more elements to account for

the added depth (in this case, an index takes the form h(i, j, c)). Thus, to ensure a sin­

gle saliency value is derived, only the maximum magnitude across all channels is kept:

Mij = maxc |wh(i,j,c)|.
Fig. 2.20 has some examples extracted directly from the original source. It should be

note that the three Saliency Maps shown are from the highest scoring class on pseudo­

randomly selected ILSVRC­2013 test images:

Figure 2.20: Three Saliency Maps (below) extracted from each of the input images (above) [VZ14]. The
pixels in whiter tones are the most significant to the classes that were predicted, meaning that changes to

them could impact the output class.

One advantage of Saliency Maps is that they are not expensive to compute, only requiring

a single back­propagation pass, and do not assume the existence of any additional anno­

tations (apart from the labels used when training the original model).

The ability to locate the most relevant components of an image fits perfectly into the de­

sirable output of a periocular recognition system (not tomention the higher finesse, when

compared with Occlusion Maps). Therefore, subsection 4.2.1 presents some results that

make use of Saliency Maps to achieve satisfactory levels of explainability.
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2.3.5 Local Interpretable Model­Agnostic Explanations

One of the most widely adopted techniques is LIME, originally proposed in [SG16]. This

method relies on surrogate, auxiliary models to, locally, explain the behaviour of a much

more complex, black box model.

In order to create a basic understanding of how LIME works, the authors propose we

forget about the training data and assume we only have access to the trained black box

model itself, to which samples can be fed and predictions can be withdrawn. LIME’s ap­

proach starts by taking a sample and creating variations from it. With this process, a new

dataset is created and these samples can be fed to the original, black­box model. Having

the dataset and the corresponding predictions, LIME moves on to the next phase, where

a much simpler model (often linear) is trained with the aforementioned data. The linear

model is, however, weighted, meaning that it gives more importance to samples that are

closer to the one being explained (thus forcing locality). The learned model should be a

good approximation of the original one, albeit locally (the so called local fidelity [Mol19]).

In broader terms, an explanation can be defined as follows:

explanation(x) = argmin
g∈G

L(f, g, πx) + Ω(g) (2.11)

Equation 2.11 shows how an explanation for an instance x is the summation of a loss com­

ponent L (e.g. Mean Squared Error (MSE)) and a complexity component Ω. Lmeasures

how the predictions from the surrogatemodel g and the originalmodel f compare, consid­

ering the neighbourhood given by πx. Ω controls the degree of complexity of the surrogate

model (preferably low). It should be noted that, in practice, LIME optimises the former

term, with the latter being left to the user’s responsibility.

One interesting characteristic of thismethod is that it works for tabular, text or image data.

For each of them, LIME tries to create the previously mentioned variations by changing

certain aspects of the raw data. With tabular data, it varies each feature individually,

helped by a normal distribution with mean and standard deviation in accordance to that

feature. As for text and images, LIME turns words or super­pixels (contiguous patches of

neighbouring pixels) on or off.

Fig. 2.21 presents an example on how LIME obtains visual explanations:

Figure 2.21: Inception’s top­3 predictions (”electric guitar”, ”acoustic guitar” and ”labrador”, respectively)
explained using LIME [SG16]. The highest contributing super­pixels were kept, while the remaining ones

were greyed out.
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LIME’s disadvantages include the inherent limitations of linear models, which can be in­

capable ofmodelling a complex decision boundary, even if it is local and at a smaller scale.

Despite the drawbacks, this technique is certainly capable of providing a hint of explain­

ability to otherwise opaque models.

Considering LIME is popular and effective, subsection 4.2.1 includes a perspective on how

it could be applied to the present work.

2.3.6 Anchors

Following theirworkwithLIME, the authors proposed another approach in [SG18], whose

goal is to create decision rules in the form IF­THEN, such that a prediction is sufficiently

anchored by some features (i.e., if changes in other feature values do not change the pre­

diction). The techniques employed to that end include reinforcement learning and graph

search.

Just like LIME, this method generates perturbations on real instances to create local ex­

planations. Simple IF­THEN rules are used to explain local behaviours, instead of sur­

rogate models. Additionally, the notion of coverage is introduced to specify the amount

of instances a rule applies to (i.e., they are expected to be reusable). Fig. 2.22 provides a

visualisation of both anchors and LIME:

Figure 2.22: A comparison between LIME and anchors [SG18]. One can see that, while LIME tries its best
to approximate the decision boundary’s behaviour, an anchor provides a more realistic result.

The form of an anchor is usually:

IF (feature1 == value1 AND/OR feature2 == value2 AND/OR ...) THEN

PREDICT target = value3
WITH PRECISION ...% AND COVERAGE ...%

The example above shows the readability provided by an anchor, which specifies the fea­

tures that contributed themost to a prediction, the originalmodel’s prediction, the level of

precision (i.e., accuracy) shown by the anchor and how applicable it is to the perturbation

space’s instances.

In more formal terms, an anchor A must satisfy a given level of precision (τ ) such that
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precision(A) ⩾ τ . To determine an anchor’s precision, we can use the following equation:

precision(A) = ED(z|A)[1f(x)=f(z)] (2.12)

Analysing equation 2.12, z stands for the perturbed neighbours of x to which A is appli­

cable, D is the distribution of perturbed instances and 1f(x)=f(z) denotes the black box

model’s predictions with respect to x and z (expectably, the same). In practice, it is in­

tractable to determine adequate anchors using equation 2.12. To solve such issue, the au­

thors propose the introduction of a new parameter (referred to as δ) such that 0 ⩽ δ ⩽ 1,

effectively creating a probabilistic definition:

P (precision(A) ⩾ τ) ⩾ 1− δ (2.13)

Furthermore, the notion of coverage, intuitively explained as the need for rules that are

applicable to a large portion ofD, can also be described with an equation:

coverage(A) = ED(z)
[A(z)] (2.14)

Maximising coverage is desirable, given that the generated anchors should be reusable on

a decently sized portion of the perturbation space:

max
As.t.P (precision(A)⩾τ)⩾1−δ

coverage(A) (2.15)

From all the equations shown, it becomes clear that this process tries to find anchors with

the highest coverage, assuming they satisfy the precision constraint (2.13). One interest­

ing aspect is that, rules withmore predicates (i.e., conditions in the IF branch) have a ten­

dency for higher precision. However, such characteristic is not to be pushed to extreme

cases. A rule that has too many predicates may be overly tuned to predict the instance

given (x) and none other (or a really small amount of similar instances). There is, then, a

trade­off between precision and coverage.

In addition to the formulations described above, this technique relies on the following

steps:

1. Candidate anchors are generated in rounds. The first round is responsible for cre­

ating one candidate per feature of x.

2. The best performing candidates move to the next round, where they are expanded

to explain yet another feature of x.

3. This iterative process eventually stops when another routine determines we have an

anchor good enough to satisfy equation 2.13.

When an anchor is said to perform better than the remaining ones in any given round, a

step was used involving the Multi­Armed­Bandit formulation, where each arm is a can­

didate rule and a classical problem of exploration and exploitation arises. This type of
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setting helps speed up the search for an optimal rule, at any given moment.

In terms of examples, the original paper describes the process of obtaining anchors for

text and image classification purposes (among other tasks), showing the versatility of

this method. Text data is perturbed by omitting certain words and replacing them with

pseudo­random ones (following some rules that guarantee coherent replacement words).

As for images, instead of turning super­pixels on or off (as was the case with LIME), the

active ones are kept and superimposed over an unrelated image, to determine how the

black box model handles them:

Figure 2.23: Anchor explanations for the class ”beagle” [SG18]. In the rightmost figures, we can visualise
how this technique superimposes the active super­pixels over unrelated samples to mislead a CNN.

Anchors are intuitive and easy to understand, delivering a performance level close to

LIME’s. Subsection 4.2.1 includes some experimental results with LIME, instead of an­

chors, mainly due to the fact that there is an official implementation of LIME for image

data, but not for anchors.

2.3.7 SHapley Additive exPlanations

SHAP, first introduced in [LL17], has its foundation laid upon Shapley values, which in

turn originated from cooperative game theory, in which features are seen as players inside

a cooperative setting, where they can choose to form coalitions (cooperative parties) to

maximise future gains.

As seen in the original source, to calculate the Shapley value for feature/player i, one can

use the following formula:

ϕi =
∑

S⊆F\{i}

|S|!(|F | − |S| − 1)!

|F |!
[fS∪{i}(xS∪{i})− fS(xS)] (2.16)

Breaking down equation 2.16 step by step, we consider F to be the set containing every

feature in our problem and S is some subset of F that does not contain i. Additionally, x

is the instance we seek to explain and f is a version of the black box model that considers

n features (for example, fS∪{i} is a model that was trained to used all features in S and i,

but fS was trained exclusively with S). Hence, this method requires retraining f for every

possible coalition of the features present in F .
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Starting from the right, with [fS∪{i}(xS∪{i})−fS(xS)]we are computing themarginal value

of adding player i to subset S. In other words, we have a coalition where i was not origi­

nally present (S), allowing us to perform a prediction using fS on xS . The obtained pre­

diction is our base value (i.e. one where i has no influence whatsoever). Then, if we train

a version of the black box model f that uses i (fS∪{i}) and give it an instance xS∪{i}, we

will get a prediction where feature i was considered. Therefore, by subtracting this latter

value by the former base value, we determine the marginal influence of feature i in the

game and feature subset S.

Moving to the left, the fraction |S|!(|F |−|S|−1)!
|F |! is responsible for averaging out the effect of

every other feature in S that is not i. Imagining that |S| = 3 and |F | = 5, we would have
3!(5−3−1)!

5! = 1
20 . Hence, every possible subset S with three elements, derived from a set

F with five elements, contributes by 1
20 . This factor will then rescale the influence of i in

a specific subset S. By doing so, we are marginalising the actual composition of S, thus

isolating the effect of feature i.

Finally, the summation repeats the same process for every possible subset S, essentially

approximating the real Shapley value of feature i.

With the theoretical foundation provided above, one can understand SHAP that much

better. As the authors mention, SHAP borrows from LIME and Shapley values to build a

better technique. Similarly to LIME, SHAP uses an auxiliary (linear) model to aid in the

search for explanations. One interesting aspect of SHAP, are the several branches that

build upon it, like KernelSHAP [Mol19], whose details will be described below.

Being based on a linearmodel that requires a training stage, the first step to understanding

KernelSHAP is to analyse its loss function:

L(f, g, πx) =
∑
z′∈Z

[f(hx(z
′))− g(z′)]2πx(z

′) (2.17)

The main aspects of equation 2.17 are f (the original black box model), g (the surrogate

model) and πx (the SHAP kernel). The model f can, basically, be any ML model (i.e., we

are only interested in what comes out of it). The same cannot be said about g, which is

much more important for this technique and can be defined as:

g(z′) = ϕ0 +

M∑
i=1

ϕiz
′
i (2.18)

In the equation above, g is, as we know, the explanation (surrogate) model, z′ is a sim­

plified vector of ones and zeros to enable or disable certain features (also known as the

coalition vector),M is the maximum coalition size and ϕi is the coefficient (i.e., Shapley

value) for feature i. For tabular data, the coalition vector would turn on or off certain

features and for images it would do the same process but for super­pixels. According to

[LL17], formulation 2.18 has certain properties, amongst which, local accuracy (i.e., the

explanation model should match the original model in terms of predictions).
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The final piece of the puzzle is the SHAP kernel, responsible for attributing more weight

to small or large coalitions, as opposed to coalitions that only aggregate half the features

(or close to it). We happen to learn more about individual features if we can analyse them

in isolation (small coalitions) or if we have almost every feature but one (large coalitions):

πx(z
′) =

(M − 1)(
M
|z′|

)
|z′|(M − |z′|)

(2.19)

Finally, the five steps that bring everything together are as follows:

1. SampleK coalitions: z′k ∈ {0, 1}M .

2. Obtain predictions for each z′k by using f(hx(z
′
k)). Note that h is a function that

enables or disables features to form coalitions. For tabular data, it keeps the features

we wish to form a coalition with and, for the deactivated features, it samples values

from other instances. As for images, it keeps super­pixels (if they are paired with a

1 in the coalition vector) or replaces them with a solid colour (if paired with a 0).

3. Compute the weight for each z′k with equation 2.19.

4. Fit the weighted linear model using equation 2.17.

5. Return the coefficients from the linear model, namely, the Shapley values ϕi.

After training, the computed coefficients (ϕi) are the Shapley values that explain each

feature’s effect over x’s prediction. In order to illustrate the way KernelSHAP works, the

following figure contains a visual explanation of a CNN’s prediction:

Figure 2.24: KernelSHAP’s explanations of a CNN’s predictions when given an image from the ImageNet
dataset [LL17]. Green super­pixels have higher Shapley values and thus contribute more to the predicted

class (unlike super­pixels marked with red tones ­ this behaviour is inverted in subsection 4.2.1).

SHAP is a solid technique with comparable results to LIME’s, exceeding it in some cases.

Additionally, it relies on grounded and proven concepts, like game theory, Shapley values

and LIME’s reasoning. However, KernelSHAP suffers much the same problems as other

permutation based methods: by replacing omitted features with random ones, unlikely

data points may be generated, which can lead to unrealistic explanations [Mol19].

30



Deep Adversarial Frameworks for Visually Explainable Periocular
Recognition

Nonetheless, a possible application of SHAP to the problem of periocular recognition can

be found in subsection 4.2.1.

2.4 Conclusion

The present chapter focused on describing DL and some of its main architectures, which

lay the foundation for the proposed methods. Such description was followed by a com­

pilation of the most relevant techniques in the field of ML Explainability. Some of them

are perfectly valid and interesting, but their applicability is let down by the lack of visual

explanations or overly simple nature, while others are better suited to what this work is

trying to accomplish. As an attempt to empirically validate this belief, the following chap­

ter contemplates a section solely dedicated to discussing what results can be expected by

only using existing techniques, in the search for an adequate level of explainability.
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Chapter 3

Proposed Methods

The present chapter provides an extensive overview of two methods that try to explain

whether two images from periocular regions come from the same person or not. To that

end, the remainder of this chapter is organised as follows: sections 3.1 and 3.2 contain

an overview of the methods that were developed, while section 3.3 summarises the main

takeaways from the present chapter.

3.1 Deep Adversarial Framework for Visually Explainable

Periocular Recognition

The first framework, that set out to tackle the problem of periocular recognition, is based

on widely used DL architectures: CNNs and GANs. Such models were used as the basis

of both parts that make up the final answer: the CNN for the traditional binary part and

the GAN for the visual counterpart. To go over the details of said method, subsection

3.1.1 covers the pre­processing steps that enabled the subsequent stages, which are later

described in subsection 3.1.2.

3.1.1 Data Pre­processing

The data pre­processing stage is quite common in pipelines that involve some kind of DL

model. Thesemodels often demand fixed size inputs and performoptimallywith balanced

and rich datasets. Naturally, the present method also required some preliminary steps:

Figure 3.1: Diagram of the data pre­processing pipeline. The images are resized, processed and stored in
proper folders.
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Fig. 3.1 depicts three major sets (one for each of the main components):

• Image resizing: the images are resized to a fixed size (e.g., 256x256 pixels).

• ID balancing: considering that, in the unprocessed dataset, some IDs possess

more images than others, each ID gets it images either sampled or augmented. On

one hand, if the ID has less images than a pre­defined target, the existing ones are

augmented to reach said target (with techniques like horizontal flips, rotations, con­

trast changes or noise additions). On the other hand, if the image count is too great,

a simple sampling routine chooses as many images as the target value enforces.

• Image grouping: the images are grouped by ID and some of them are reserved

just for the test phase (according to a pre­established set).

• Image pairing: the images are paired with each other, to form either ”genuine” or

”impostor” pairs.

• Image storing: the images are stored in folders targeted towards training, valida­

tion and testing (in the case of DenseNet). As obviously required for the CNN and

GAN, within each of these main folders there are class sub­folders (”0” for ”impos­

tor” pairs and ”1” for ”genuine” pairs). The Mask R­CNN model just required the

images and corresponding masks to be stored in standard folders.

3.1.2 Method Description

DenseNet-161
(classify pairs)

A

Genuine

Impostor
B

StyleGAN2
(generate synthetic
Genuine pairs)

X

Y ...
Mask R-CNN
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Figure 3.2: Cohesive perspective of the main pipeline of the proposed solution. The recognition step
encompasses a CNN that distinguishes between ”genuine” and ”impostor” pairs. Then, upon an ”impostor”
decision, steps two to five (explanation) find theK ”genuine” synthetic pairs amongst a large set that most
closely resemble the query pair. Assuming the alignment between the query and the retrieved pairs, the
element­wise differences between the query and a weighted average of the retrieved elements provides a

visual explanation of the features in the query that would have to be different to turn it into a ”genuine” pair.
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3.1.2.1 Learning Phase

The main components of the proposed method comprise three well known models: the

DenseNet­161, Mask R­CNN and StyleGAN2. The first one (DenseNet­161) is trained

to solve an identity verification problem, while the segmentation model (Mask R­CNN)

is fine­tuned to produce high­quality masks for the iris and eyebrow. Finally, the GAN

model (StyleGAN2) learns how to create synthetic data that, while closely resembling the

distributions in the training set, is diverse enough to approximate unseen subjects. Ad­

ditionally, a fourth, auxiliary model (ResNet­18) is fitted to discriminate between images

from the left and right sides of the face. Although trained separately, all the models learn

from the same training split, which excludes a set of disjoint IDs that are reserved for

performance evaluation purposes.

Regarding themodel used in the verification task (DenseNet­161), it should be stated that

it has much more parameters than the network used by Zhao and Kumar [ZK17] in their

solution. This might be the fact that sustained slightly better recognition performance

of our model with respect to the baseline (subsection 4.2.2), but also at the expense of a

substantial higher computational cost of classification than the baseline, which might be

impracticable in some cases.

3.1.2.2 Inference Phase

Once trained, our method is conceptually divided into five major steps, as depicted in Fig.

3.2. Firstly, the DenseNet­161model is used to verify the claimed identity: upon receiving

a pair of images, the model discriminates between ”genuine”/”impostor” pairs. If the pair

is deemed to be ”impostor”, the remaining steps create a visually accurate explanation of

that decision.

The second step takes the query pair and, usingMaskR­CNN, segments the irises and eye­

brows regions. Next, step three uses the StyleGAN2 generator to create a large, synthetic

set of exclusively ”genuine” pairs (i.e., where both images belong to the same person). For

each of these synthetic pairs, the ResNet­18model determines its side configuration (i.e.,

whether images regard the left or right side of the face) and, as before, masks are obtained

by the segmentation model. Uncurated synthetic samples are shown in Fig. 3.3.

After obtaining the synthetic data and their corresponding masks, the synthetic dataset is

indexed based on the coordinates of the center of the iris, which will enable faster search

in the retrieval step. To that end, the clustering algorithm K­Means is trained on a sub­

set of the iris segmentation masks to obtain three centroids, one for each major iris gaze

family (i.e., left, centre and right). This way, we index the available pairs based on their

combination of iris positions (e.g., left­left, right­centre, …). By doing so, when searching,

we can just rely on the synthetic pairs that share the same combination as the test pair,

saving time and useless calculations.

35



Deep Adversarial Frameworks for Visually Explainable Periocular
Recognition

Figure 3.3: Examples of the synthetic image pairs in our dataset, generated according to a GAN model.
These elements are drawn exclusively from the ”genuine” distribution. Upon a query, the most similar
synthetic pairs with respect to the query are found, which will provide the features/regions that would

transform the query into a ”genuine” comparison.

Upon settling for a portion of the synthetic dataset that closely meets the iris position

constraint, the segmentation masks are further used to determine which synthetic pairs

have the iris and eyebrow approximately overlapped to the query. This is an important

requirement to obtain visually pleasant explanations, given that pixel­wise differences are

extremely sensitive to differences in phase (i.e., component misalignment). Accordingly,

we obtain a similarity score sX between each synthetic neighbour and the query, given by:

sX = ωmasks ∗ ||query_pairA − neighbourX||2, (3.1)

being ||.||2 the ℓ − 2 norm and ω. a weight that considers component misalignment. This

way, we obtain a weighted distance between each synthetic neighbour and the first image

of the query pair. ωmasks values serve to favour pairs that have good alignment, consid­

ering 1 − IoU(., .), i.e., the complement of the Intersection over Union (IoU) of the syn­

thetic/query segmentation masks.

In practice, we search amongst the (large) thousands of synthetic pairs for the closest to

the query pair in terms of the first image. Therefore, given that the second image of the

query pair is from a different subject, it will most likely have features that are different

to the synthetic neighbours, which are exactly the kind of dissimilarities that make up

the final explanations. This way, the K closest neighbours are sorted according to their

element­wise distance to image B, using (4.1).

Finally, to produce the visual explanation, the K best neighbours are used to obtain the

pixel­wise differences against the query pair imageB. In practice, a neighbour distance is

subtracted from the total sumof distances, creating an inverted distance. This assures that

the contribution of the closest synthetic neighbours to the final result is more important

than of those with bigger distances.
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3.1.2.3 Implementation Details

The DenseNet­161 model was trained for 15 epochs with a learning rate of 0.0002 and a

batch size of 64 image pairs. The Adam algorithm was used for the weight optimisation

process (with default β1 and β2 values). A similar training setup was used to train the

ResNet­18model, albeit for a smaller number of epochs (i.e., 5).

For the Mask R­CNN’s training process, we kept its default values, using a learning rate

of 0.001, a batch size of 1 and 30 epochs worth of training (in this case, fine­tuning from

the COCO pre­trained weights).

Regarding the StyleGAN2 architecture, the training step comprised a total of 80000 itera­

tions and a batch size of 8. After converging, the generator is capable of synthesising real­

istic looking images, such as the roughly 400000 pairs that make up the artificial dataset.

Finally, for the number K, that determines how many synthetic neighbours should be

kept, we used a default value of 15.

3.2 Automatic Generation of Image Captions

For the second method considered in the scope of this dissertation, the feature extraction

prowess of a CNN and the text generation of an LSTM were combined to allow for auto­

matic image captioning. The basic premise is that this solution takes as input an image

pair and produces text descriptions in which, hopefully, the different periocular compo­

nents are highlighted. As before, subsection 3.2.1 describes the data preparation steps,

while subsection 3.2.2 describes the main architecture.

3.2.1 Data Pre­processing

This admittedly simpler method also required some preliminary steps, to ensure proper

sizing and storing of the image pairs:

CNN + LSTM (generate captions)

Image resizing Image storing

Figure 3.4: Diagram of the second method’s pre­processing pipeline. The images are resized and stored in
proper folders.

As Fig. 3.4 depicts it, the image pairs are resized to the pre­established size required by

the ResNet model (i.e., 224x224 pixels) and stored in a simple folder. Then, once in the

training stage, the images and captions are adequately paired.
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3.2.2 Method Description

3.2.2.1 Learning Phase
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Figure 3.5: Overview of the learning stage of the captioning solution. A given image pair is given to the same
CNN, which extracts a feature map for each image. Then, the two feature maps are concatenated lengthwise
and given to a couple of linear layers, culminating in a 512­dimensional feature vector. At the same time,
the ground­truth caption is embedded and concatenated with the feature vector, leading the resulting

tensor through a padding operation (to ensure consistency). Next, the LSTM receives the padded tensor and
tries to output the most likely tokens (that make up a caption). Finally, the predicted tokens are encoded so

as to retrieve the corresponding embedding, which can naturally be compared to the ground­truth
embedding for learning purposes.

In this architecture, twomajor components can be considered: an encoder (i.e., the CNN)

and a decoder (i.e., the LSTM). The former tries to produce a compact representation of

the images received, while the latter attempts to generate a plausible caption from that

representation. More formally, the encoding is done using the ResNet’s feature extrac­

tion abilities. Firstly, 2048­dimensional feature maps for both images A and B and con­

catenated lengthwise to form a single vector with 4096 values. Then, this vector is con­

catenated with an embedding of the ground­truth caption and sent through a padding

operation that rearranges its input to achieve the desired shape.

After these steps, the resulting tensor is fed to the LSTM, whose task is to predict the

tokens that would make up a realistic caption (after a couple of linear layers). To allow

for proper comparison against the ground­truth, the predicted sequence is embedded in

a similar fashion as before.
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3.2.2.2 Inference Phase
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Figure 3.6: In inference mode, the encoding stage is kept: two feature maps are derived, concatenated and
compressed further into a 512­dimensional feature vector. Unlike before, the decoding starts with the
LSTM receiving the feature vector as is and, in conjunction with two linear layers, outputting the most
probable token to start a sentence (ideally, ”<START>”). The predicted token is fed to the embedder and
the resulting representation is fed back to the LSTM, completing a loop. To exit said loop, one of two

conditions must be met: either the maximum sequence length is reached or the ”<END>” token is output.

Once finished training, the encoding stage remains virtually the same: the two images go

through the same CNN, the resulting featuremaps are concatenated and a couple of linear

layers predict a feature vector. It is in the decoding stage that differences start to appear.

Firstly, the LSTM receives just the feature vector and, with the aid of two linear layers,

predicts the first token (ideally, ”<START>”). An embedding is derived (as in training)

and fed to the LSTM so that it contiues the token generation process until we reach one

the following stop criteria: 1) the predicted sequence reaches a length bigger than the

pre­defined maximum or 2) the ”<END>” token is reached.
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3.2.3 Implementation Details

The method described before was trained for a total of 20 epochs with a learning rate of

0.001 and a batch size of 64 samples. The total number of training samples was roughly

1000 unique pairs, with each having 2 available captions (thus equating to approximately

2000 ”pair­caption” combinations). Once again, the Adam optimiser was used to update

the weights (with default β1 and β2 values). Unlike before, the CNN’s parameters were not

update and instead the ImageNet weights were used. Furthermore, the embedding length

was set to 512, as was the LSTM’s hidden size (i.e., the number of units in the unrolled

chain).

3.3 Conclusion

This chapter described the two methods developed to fulfil the proposed goal: being able

to explain why two images appear to be from different subjects. While the first solution

operates in the visual domain (i.e., images), the secondmethod attempts to convey a simi­

lar amount of information in written form. Naturally, the next chapter will evaluate these

approaches, with a range of samples from each.
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Chapter 4

Results and Discussion

The present chapter focuses on the experimental and practical side of this dissertation. In

it, one can expect to find results for both state­of­the­art and proposed methods, as well

as, the conclusions that each entails. To that end, section 4.1 describes the datasets used;

subsections 4.2 and 4.3 assess the performance of both proposed methods; section 4.4

presents some final remarks.

4.1 Datasets andWorking Scenario

As mentioned above, the proposed framework is composed of two modules: 1) one for

recognition and 2) the other for explanation purposes. Regarding the former, the chosen

CNN is solely trained on the UBIPr dataset [PP12a], which provides the ID annotations

used in the identity verification problem. Regarding the explanation step, it mainly relies

on a combination of UBIPr and FFHQ [LA19]. Despite not being directly applicable to the

context of this work (i.e., it contains full face images, thus requiring extra steps to extract

the periocular region), the FFHQdataset contains a large variety in terms of periocular at­

tributes, some of which are scarcer in the UBIPr dataset. In practice, a small, but curated,

portion of the FFHQ samples was used to create a data super set (Fig. 4.1). Regardless

of their source, all images were resized to a common shape, depending on the task (i.e.,

512x512x3 for Mask R­CNN, 256x256x3 for StyleGAN2 and 128x128x3 for the CNNs).

Figure 4.1: Samples from the two datasets used. The top row represents images of the UBIPr dataset,
whereas the bottom row illustrates cropped samples of the FFHQ dataset.

As it is usual in the biometric recognition context, it is important to define proper working

modes andworld settings, forwhich the system is built. With respect to theworkingmode,

our model runs in verification mode (also referred to as one­to­one), where the system

validates a claimed identity [RP04]. As for the world setting, we assume an open­world

setting, in which unseen subjects can be faithfully handled in the inference step.
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4.2 Deep Adversarial Framework for Visually Explainable

Recognition

4.2.1 Explainability Evaluation

To justify the pursuit of new explainable techniques, one must start by exploring existing

methods. Thus, model­specific (HL and Saliency Maps) and model­agnostic techniques

(LIME and SHAP) were employed, so as to give a general overview of what is achievable

with currently available approaches. Apart from HL (which used a ResNet­101 model),

the techniques were paired with the same DenseNet­121 network. Regardless of the ar­

chitecture, the task was to output the class of an image pair: ”genuine” or ”impostor”.

The DenseNet­121 model was trained for 15 epochs with a learning rate of 0.0002 and

32 samples per batch. Regarding the ResNet training procedure, it comprised 5 epochs,

a batch size of 32 and a learning rate of 0.001. Excluding Saliency Maps, the remaining

techniques rely on pre­defined hyper­parameters. As such, LIME was set to show the

top 100 super­pixels and was allowed 20000 perturbed samples; KernelSHAP used 100

segments/super­pixels and 10000 samples; HL was trained with four discoverable parts.

Finally, note that for LIME, SHAP and HL, the official implementations were used 123

SaliencyMaps are, essentially, greyscale imageswherewhiter tones highlight crucial areas

used by the CNN to predict a class. Accordingly, in Fig. 4.2, the first pair is explained by

highlighting subject B’s glasses while, in the second pair, subject A’s eyebrow definitely

justifies a non­match decision (just like a skin spot in subjectB’s sample, which this tech­

nique fails to identify). Moving to the bottom row, pair number three is clearly explained

by accentuating one of the irises and the fourth pair is explained through the differences

in the eyebrow regions (albeit, not as detrimental as the skins could have been).

Overall, Saliency Maps provide relatively easy explanations to otherwise opaque models,

and manage to outline big components (like the eyebrow or iris), while at the same time,

leaving behind skin spots and equally small, but relevant, features.

1

3

2

4

Figure 4.2: Impostor pairs explained using Saliency Maps. Whiter tones highlight areas that justify the
predicted class.

1https://github.com/marcotcr/lime
2https://github.com/slundberg/shap
3https://github.com/zxhuang1698/interpretability­by­parts
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LIME, as previously mentioned, divides images into super­pixels that are either kept or

disabled. With effect, in Fig. 4.3, the first pair’s explanation includes a portion of person

B’s glasses and, in the second pair, a disparity in terms of eyebrows is somewhat mani­

fested. As for pairs three and four, the former is explained by keeping super­pixels that

comprise subjectA’s eyebrow (but missing those that include the irises), while the latter’s

explanation preserves some skin super­pixels.

Similarly to Saliency Maps, LIME generates passable explanations, meaning that it high­

lights at least onemajor feature, but failing to be consistently incisive, in our experiments.

1

3
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4

Figure 4.3: Impostor pairs explained with LIME. As mentioned earlier, LIME keeps the most favourable
super­pixels and replaces the remaining ones with a solid colour.

KernelSHAP, on the other hand, produces results with various shades of green and red,

depending on how favourable (red) or not (green) the highlighted super­pixels are to the

predicted ”impostor” class. As before, the first pair is explained with the presence or ab­

sence of glasses and the second with the eyebrows and a portion of the skin. As for pair

number three, both irises are shaded with a slight red tone, just like the eyebrows. Lastly,

regarding the fourth pair, a major skin area, belonging to person B, is accurately painted

in red (even though some of the skin portrays either green or very slight red tones).

In general, this implementation of SHAP (i.e., KernelSHAP) is able to colour specific fea­

tures in an image based on how likely they are to change the ”impostor” class. Despite

missing some features (e.g., some skin areas), the overall results are satisfactory, with

some room for improvement.
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Figure 4.4: Impostor pairs explained with SHAP. SHAP diverges from LIME by highlighting certain areas
with red or green tones, depending on whether they increase or decrease the probability of the output class.
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Finally, as described in [HL20], HL produces intuitive heat maps as a form of explain­

ability. In Fig. 4.5, pair one is rightly explained by colouring one of the eyebrows and the

glasses with red tones. Pair number two remains accurate by strongly identifying both

eyebrow as being different, in addition to the eyelashes. As pleasing as the top two results

are, the third explanation unfortunately fails to capture obvious differences in iris colour,

amongst other possible explanations. Pair number four concludes this method’s results

with an acceptable explanation, in the sense that the skins are largely ignored in favour of

the eyebrows.

HLdelivers readable results,mostly aidedby a clear indication ofwhich areas are regarded

as important. Unfortunately, some features are not displayed in a sufficiently prominent

manner (e.g., the skin in the fourth sample), leading to partial explanations.
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Figure 4.5: Impostor pairs explained with the method by Huang and Li. Such method produces heat maps
in which red areas are the most significant.

These results are already decent and certainly keep explainability at the forefront. How­

ever, there are cases where these techniques miss obvious components, and we argue im­

provements can be made with approaches that are specifically designed to address this

type of problem.

Considering the points established above, our deep framework attempts to produce both

readable and effective results. As seen in Fig. 4.6, our explanations follow the same colour

coding as KernelSHAP (i.e., green for irrelevant features and red for relevant ones). We

produce immediately discernible explanations, highlighting, where applicable, eyebrows,

irises, skins, glasses and skin spots. More specifically, to explain the first pair our ap­

proach gave emphasis to the glasses and, to a lesser scale, person A’s skin texture. For

pair number four, the explanation shows how decisive the skins were to an ”impostor”

decision, while in pair five one of the eyelids and both eyebrows are shown to be different.

As for the sixth pair, we highlight both eyebrows and subject A’s iris, in what can be con­

sidered the expected behaviour. Finally, for pair number nine, besides one of eyebrows

and a skin spot, our solution even includes the eyelashes in the feature set that justifies a

non­match output.

In broad terms, we argue that our approach delivers explanations that are easy to under­

stand, categorically statingwhy a decision was taken (in this case, ”impostor”).

44



Deep Adversarial Frameworks for Visually Explainable Periocular
Recognition

1 2

3 4

5 6

7 8

9 10

Figure 4.6: Results obtained with the first method. The top four pairs can be directly compared with the
results seen in Figs. 4.2, 4.3, 4.4 and 4.5, whereas the bottom six pairs are exclusive to our method, so as to

test it against a broader set.

When objectively measuring the differences between the explanations provided by the

proposedmethod and the baselines (LIME, SHAP, Huang and Li (HL) and SaliencyMaps

(SM)), we used a set of 100 heterogeneous test queries and measured the pixel­wise ex­

planation coefficients returned by each technique, which correspond to the importance

(weight) given by each method to a particular image position for a decision. Next, consid­

ering that anymeaningful correlations between the responses of twomethods would have

to be linear, we measured the Pearson’s linear correlation between pairs of techniques:

rxy =

∑
i(xi − x̂)(yi − ŷ)√∑

i(xi − x̂)2
∑

i(yi − ŷ)2
, (4.1)

where xi/yi denote the ith scores provided by each technique and the .̂ symbol denotes

the mean value. This way, rxy measures how similar are the explanations provided by the

x and y techniques: values close to 0 will correspond to more independent explanations,

while values towards 1 will point for semantic similarities between the explanations pro­

vided by both techniques.
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Figure 4.7: Pearson correlation values between the pixel­wise responses provided by the method proposed
in this document (Ours) and four baselines techniques (LIME, SHAP, Huang and Li (HL) and Saliency

Maps (SM)).

The results are conveyed through the confusion matrices shown in Fig. 4.7, where the

main diagonal provides the distributions of the scores generated by each technique and

the remaining cells provide the scatter plots between pairs of techniques with the Pear­

son’s correlation value rxy given at the top­left corner of each cell (”SM” stands for Saliency

Maps and ”HL” denotes the Huang and Li solution)). All these techniques report a local

numeric value that corresponds to the role/importance of each region in the final deci­

sion. The exception is LIME, where the pixels are discriminated in a binary manner (i.e.,

”visible” or ”occluded”). In this case, we consider ”visible” to be equal to 1 and ”occluded”

to 0.

Overall, we observed that the techniques provide relatively independent responses for the

importance given to each pixel in the final decision. Interestingly, in some cases, there

are even negative correlation values between two methods (e.g., HL and LIME or SM

and LIME). There are other pairs of solutions that achieved almost full independence be­

tween their responses (the Shapley/Ours methods), which points for completely different

strategies being used to define the explaining regions/features. Regarding our method,

its levels of correlation were kept relatively low with respect to the remaining method­

ologies, achieving values of 0.24 with respect to the method of Huang and Li (the most

correlated), and 0.1 for Saliency maps. Still, we conclude that the proposed solution is ex­
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tracting semantic information (e.g., features and regions) of the vicinity of the human eye

that is evidently different of the kind of information emphasised by any of the remaining

methods, which supports the usefulness of the solution described in this document.

4.2.2 Recognition Accuracy Evaluation

At first, note that we do not aim at providing a better recognition framework than the

state­of­the­art, in terms of the recognition rates. Even though, our main purpose in this

section was to perceive if the proposed recognition/explanation network is able to achieve

competitive recognition performance with respect to the state­of­the­art.

We compare the recognition effectiveness of the proposed method with respect to a well

known periocular recognition model (due to Zhao and Kumar [ZK17], considered to rep­

resent the state­of­the­art). In order to assess the performance of both methods, the EER

and AUC metrics were used.

On one hand, EER measures the threshold at which we have an equality between a sys­

tem’s false acceptance rate (i.e., the percentage of samples in which the system output a

1 when it should have been a 0) and false rejection rate (i.e., the percentage of samples

that a system classifies as 0 when they are, in fact, of class 1). Ideally, the EER should be

as small as possible, therefore indicating that a system is highly accurate.

On the other hand, AUC is typically applied on binary systems (like ours) and it quanti­

fies the system’s ability to distinguish between classes. To compute such metric, we must

start by obtaining a ROC curve (similar to the one shown in Fig. 4.8). This graph plots

the relation between True Positive Rate (TPR) and False Positive Rate (FPR) values at

many different decision thresholds (i.e, the values beneath which our systems considers

a sample to be of class 0 and above which the sample belongs to class 1). AUC, as the

name suggests, stands for the area directly beneath the ROC curve. In a perfect situation,

the curve would touch the (0, 1) point and the area would obviously be 1. Conversely,

a random classifier would be closer to the red dashed line in Fig. 4.8, meaning that no

threshold would save it from being a bad model.

Using theUBIRIs.v2 set [OA10] and the learning/evaluationprotocols described in [ZK17],

we obtained the results summarised in Table 4.1. Also, we provide ROC values of the pro­

posed strategy, that can be fairly combined with the similar ROC plot provided by the

original authors of the baseline in [ZK18].

Abootstrapping­like strategywas used, by sampling 90%of the available data inUBIRIS.v2

and dividing the resulting samples between two disjoint sets: 80% for training and the re­

maining 20% for test. The models were trained separately in each sample and the perfor­

mance evaluated in the corresponding test set, from where the EER and AUC scores were

obtained. This process was repeated 10 times, to perceive the mean± standard deviation

values for both metrics. Overall, results were satisfactory, particularly considering that ­

due to our modular design ­ the recognition module of the proposed framework can be

easily replaced by any other, while keeping its explainability abilities.
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Method EER AUC

Ours (open­world) 0.108± 3e−2 0.813± 5e−2

Ours (closed­world) 0.087± 2e−2 0.910± 2e−2

Zhao and Kumar [ZK17] 0.109± 2e−3 −

Table 4.1: Comparison between the recognition rates attained by the proposed method (in both world
settings) and a state­of­the­art method (strictly operating in an open­world setting). Results are given for

the same learning/test sets of the UBIRIS.v2 dataset.

For reference purposes, Fig. 4.8 provides the ROC curve of our solution. When drawing

comparisonswith the corresponding results reported by authors in [ZK17] in the same set,

it can be seen a close recognition summary performance between both methods (sum­

marised in Table 4.1). Overall, we observed a similar performance between these tech­

niques in this dataset, which supports the idea that the proposed solution is able to ap­

proach state­of­the­art recognition rates.

Figure 4.8: ROC curve obtained for the proposed method in data of the UBIRIS.v2 set, according to the
empirical protocol designed by Zhao and Kumar [ZK17]. The ROC curve corresponds to EER and AUC

values of about 0.108 and 0.813, respectively.

4.2.3 Inference Time Evaluation

Besides explainability and accuracy metrics, one can assess the time span that any given

technique needs to produce an explanation. As such, Table 4.2 presents the inference

times attained by each method in 10 randomly sampled test pairs (so as to obtain mean±
standard deviation values):
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Method Inference Time (m)

Saliency Maps (SM) [VZ14] 15.71± 0.24

LIME [SG16] 3.64± 0.05

SHAP [LL17] 3.14± 0.04

Huang and LI (HL) [HL20] 0.08± 0.01

Ours 3.23± 1.75

Table 4.2: Comparison between the mean inference times (in minutes) attained by our approach and four
baseline techniques (LIME, SHAP, Huang and Li (HL) and Saliency Maps (SM)). HL stands out from the
rest, mainly due to the fact that it is, essentially, a CNN with some extra steps for explainability, thus

leveraging the swift inference times that CNNs usually have.

The results shown above indicate that our approach is competitive against all but one

technique (HL, which fairs much better than its competitors). In terms of inference times

alone, it becomes clear how the permutation and search based techniques end up con­

suming more time when either feeding a black­box model with artificial permutations or

searching amongst a synthetic dataset. Nonetheless, these results should not be analysed

in isolation, since they are entangled with the explanations seen in subsection 4.2.1.

4.2.4 Ablation Studies

For our ablation experiments, we identified two hyper­parameters of our method that

might play the most significant roles in the final effectiveness of the whole solution: 1)

the number of neighbours retrieved (K) from the synthetic set for every query and 2) the

length of the synthetic set itself. This section discusses how changes in these values affect

the quality of the generated explanations in a less than optimal way (as seen in Fig. 4.9).
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Figure 4.9: Typical changes in the results when the two most important parameters of the proposed method
are varied. The red square indicates which image is being explained (i.e., B), while the red dashed squares
provide the default values used in our experiments. In general, increasingK up to 15 allows for smoother
explanations, as does keeping a large dataset. Reducing the latter tends to produce less sensitive results,

substantially decreasing the plausibility of the visual explanations.
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4.2.4.1 Number of Neighbours

The valueK determines howmany synthetic pairs are considered with respect to a query.

Overall, we observed that smaller values lead to more sensitive and jagged results. Up to

a certain point (e.g., 15), increasingK typically enables to obtain smoother explanations,

due to the larger number of samples taken into account when averaging the closest neigh­

bours. This trend, however, starts returning incremental improvements (notice in Fig.

4.9, whereK >= 50 progressively stops presenting a prominent tone on the eyelid).

4.2.4.2 Length of the Synthetic Dataset

This is the most sensitive parameter of our solution. Considering that it is important to

find ”genuine” pairs that closely resemble a query, it is particularly sensitive to assure

that all typical periocular data variations are faithfully represented in the synthetic set,

assuring that the retrieved elements (i.e., themost similar) will have itsmajor components

(iris, eyebrows and eyelids) aligned to the query itself. If this condition is not satisfied, the

explanations lose their biological plausibility and effectiveness. Fig. 4.9 illustrates how

smaller synthetic sets lead to less evident explanations, especially around the eyelid and

the eyebrow.

4.3 Automatic Generation of Image Captions

As the first method, the proposed solution for image captioning attempts to produce ex­

planations that are as easy to understand as possible. With effect, the generated sentences

are syntactically correct, following the training distribution, which included many differ­

ent ways of opening or closing a sentence and conveying the relevant information (i.e.,

which periocular components sustain an ”impostor” decision).

Practically speaking, the first pair has evidently different eyelid shapes and, in the second,

the people have obvious differences in the eyebrows (both explanations were included in

the generated captions). Next, in the third pair the eyebrow distributions are not different

enough so as to justify their inclusion in the explanation (there is a skin spot that could

better justify the ”impostor” decision). Then, in the fourth pair the explanation returns to

a decent accuracy level, by specifying the skins, while in the fifth sample the iris colours are

left behind in favour of the skin spots (once again, this is not totally wrong but the spots

are perhaps not the most striking visual difference). Finally, the sixth pair is correctly

explained by highlighting the skins and eyebrows.
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Figure 4.10: Samples generated by the proposed solution for automatic captioning. In general, the
periocular components (in red) that are included in each explanation are fairly accurate, with some

exceptions (e.g., fifth sample).

4.4 Conclusion

The present chapter attempted to validate whether explainability could be achieved in

practical scenarios (and in several forms ­ visual andwritten, in this case). As seen through

the experimental results, both solutions appear to produce satisfactory results (evenwhen

the most obvious components are not highlighted, the ones that end up being chosen are

not technically wrong). Finally, an interesting possibility would be to combine the two

approaches into a single, unified framework that produces more thorough explanations.
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Chapter 5

Conclusions and Further Work

The present chapter is a general, high­level overview of the work that was developed in

the scope of this dissertation. Therefore, the next paragraphs attempt to validate whether

themain goal was achieved, what intuitions were developed and, if possible, how the work

could be further improved.

Regarding the primary goal of this work (i.e., the adoption of explainable principles into

a periocular recognition system), the two methods present different, yet equally substan­

tial levels of readability. On one hand, the first method generates images with various

shades of green or red, according to each pixel’s contribution to an ”impostor” decision.

On the other hand, the second approach conveys its reasoning through text captions that

highlight the most different periocular components.

As seen in the results chapter, we managed to deliver images and captions that, more of­

ten than not, faithfully explain the differences between two subjects. The firstmethodwas

able to highlight relevant periocular components such as the irises, eyebrows, skins and

even eyelashes. Compared to other implementations, our explanations are definitely easy

to read and convey more useful information. Even in terms of the recognition task (i.e.,

excluding the explainable components), our method attained competitive results to those

possible with an existing solution, despite that not being the main focus. As an additional

benefit, the recognition stage could be replaced with other, possibly more performant ap­

proach, with virtually no cost for the explanations.

The secondmethod that was proposed focused on the text domain by generating plausible

captions for a given ”impostor” pair. These text descriptions give emphasis to periocular

components that stand out as being too different. In many cases, the captions included

the most visually different components, while in others, less obvious (but still valid) com­

ponents were preferred.

Based on both methods’ results, it is expected that a combination of the two would pro­

duce even more complete results, with visual and text based explanations. Such system

would take the premise of this dissertation even further.

Finally, further development stages of this work could focus on 1) reducing the time that it

takes to generate ”impostor” explanations and 2) allowing ”genuine” pairs to be explained

as well. With regard to the first point, our inference times are comparable to those at­

tained by Saliency Maps, LIME and SHAP, but fall quite behind the number achieved by

Huang and Li’s method. Consequently, as a way to close this gap, a potential direction in

the future could improve the way in which our synthetic dataset is structured. Currently,

we mainly divide the images in terms of the position of the irises. This ensures that only
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a suitable portion of the images ends up being used, avoiding useless calculations. In

addition, we could also store the images based on their attributes (i.e., iris colour, eye­

brow density, amongst others). By doing so, in inference time, we could have additional

processing to determine the attributes of both test images, that make up a pair, and only

use the synthetic samples that meet the iris position and attribute constraints, hopefully

saving time altogether.

As for explaining ”genuine” pairs, a different approach would have to be added, so as to

fully cover the possible outputs of our recognition system. Solutions like keypoint match­

ing or image registration could help us understand how little an image A needs to be

changed so that it closely matches an image B (which should, more often than not, be

the case with ”genuine” pairs).

The above improvements (and others that are not described here) could make our work

even more valuable, proving that we can take an existing task and make it more transpar­

ent and pleasing for the end user.
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Abstract

In the biometrics context, the ability to provide the rea-
soning behind a decision has been at the core of major
research efforts. Explanations serve not only to increase
the trust amongst the users of a system, but also to aug-
ment the system’s overall accountability and transparency.
In this work, we describe a periocular recognition frame-
work that not only performs biometric recognition, but also
provides visual representations of the features/regions that
supported a decision. Being particularly designed to ex-
plain non-match (”impostors”) decisions, our solution uses
adversarial generative techniques to synthesise a large set
of ”genuine” image pairs, from where the most similar el-
ements with respect to a query are retrieved. Then, as-
suming the alignment between the query/retrieved pairs, the
element-wise differences between the query and a weighted
average of the retrieved elements yields a visual explana-
tion of the regions in the query pair that would have to be
different to transform it into a ”genuine” pair. Our quan-
titative and qualitative experiments validate the proposed
solution, yielding recognition rates that are similar to the
state-of-the-art, but - most importantly - also providing the
visual explanations for every decision.

1. Introduction

This work describes an integrated framework for peri-
ocular biometric recognition which - apart performing the
recognition task - also provides a visual explanation that
sustains every decision. Considering the biometric recog-
nition ubiquity and dependability [21], our main goal in
this paper is not to propose a better recognition framework
in terms of the error rates, but to particularly diverge of
the black-box paradigm and follow a visually explainable
paradigm, as illustrated in Fig. 1.

0*The code is publicly available at https://github.com/
ojoaobrito/ExplainablePR.git

Figure 1. Key insight of the proposed visual explainable frame-
work: given a pair of images, the system not only reports a bi-
nary decision (”genuine”/”impostor” classes), but also highlights
the regions in each sample that contributed the most in case of
a non-match decision. In this example, yet the iris and skin colour
are similar between samples, the eyebrows and eyelashes shapes
are evidently different, along with a skin spot in the sample illus-
trated at the left side. These are exactly the regions highlighted in
the visual explanations.

Typically, a recognition problem involves a set of unique
and non-transferable features that can unmistakably iden-
tify a subject. Biometric traits, as they are designated in
the field, serve such purposes, as long as they are univer-
sal, distinguishable, resilient to changes and easy to collect
[16]. Upon proving their compliance with these require-
ments, biometric traits can be divided into two major cate-
gories:

1. Physiological features (e.g., the iris, fingerprint and
retina) that are naturally possessed by a given subject;

2. Behavioural biometrics, that yield from the interaction
between a subject and the surrounding environment
(e.g., the gait and handwritten signature) [2].
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Figure 2. Cohesive perspective of the main pipeline of the proposed solution. The first step (recognition) encompasses a CNN that
distinguishes between ”genuine” and ”impostor” pairs. Then, upon an ”impostor” decision, steps two to five (explanation) find the K
”genuine” synthetic pairs among a large set that most closely resemble the query pair. Assuming the alignment between the query and
the retrieved pairs, the element-wise differences between the query and a weighted average of the retrieved elements provides a visual
explanation of the regions/features in the query that would have to be different to turn the query into a ”genuine” pair.

Concentrating growing interests in the biometrics do-
main, periocular recognition uses the information in the
vicinity of the eye to perform recognition, in which the iris,
sclera, eyebrow, eyelid and skin stand out.

Regarding the concept of explainability and its appli-
cation to recognition problems, it should be noted that
Deep Learning solutions rely on model complexity and
abstraction prowess to become truly accurate. Although
seemingly innocuous, there could be seriously negative
outcomes if such black-boxes gamble on the clearance
of unauthorised people into sensible areas. Hence, it is
particularly important to provide human understandable
explanations of the decisions, which will augment the
overall system accountability and transparency, enabling a
broader range of applications (i.e., forensics). Recently, the
EU, through the GDPR [3], introduced the notion of ”right
to an explanation”. Even though the definition and scope
of such explanations are still subject to debate [10], these
are definite strides towards a formal regulation regarding
the importance given to the concept of explainability.

According to the above points, this paper describes a
framework that receives a pair of images and returns a two-

fold output: 1) a binary match/non-match decision, that dis-
criminates between the ”genuine”/”impostor” pairs; and 2)
a visual explanation that highlights the features/regions of
the input data that sustained a particular decision. This
is considered the main contribution of our work, in the
sense that - to the best of our knowledge - it is the first
that creates an accurate and explainable representation of
the reasons behind certain decisions of the recognition sys-
tem. Other contributions include the use of Generative Ad-
versarial Networks (GANs), to synthesise visually pleasant
images pair that faithfully resemble the distribution of the
”genuine” pairs, which augments the variety and flexibility
of the learning set and can be seen as an alternate form of
data augmentation.

Fig. 2 provides a cohesive overview of the frame-
work that performs the recognition task and provides the
corresponding explanations: at first, a CNN (of a well
known architecture) is trained to discriminate between
match/non-match decisions. If the pair is deemed to
belong to the ”impostors” distribution, we find its most
similar ”genuine” pairs in a large set of synthetic data. The
insight here is that, even if the query pair has significant
differences between its elements that led to an ”impostor”
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decision, the closest synthetic pairs most likely do not (as
they were drawn from the ”genuine” distribution). Then,
assuming that the most likely synthetic pairs and the query
are sufficiently aligned, obtaining the pixel-wise weighted
differences between them will elevate visual disparities.

The remainder of this paper is organised as follows: Sec-
tion 2 summarises the most relevant research in the fields of
periocular recognition and Machine Learning Explainabil-
ity. Section 3 describes our method and Section 4 analyses
the results obtained. Section 5 concludes this paper, while
also providing some final remarks.

2. Related Work

2.1. Periocular Recognition

The seminal breakthroughs in the periocular recognition
problem can be traced to a set of methods termed feature
descriptors. Methods such as HoG, LBP and SIFT were
able to produce simplified data representations by relying
on edges, textures and keypoints, respectively. In [17], the
results from each feature descriptor were fused to faith-
fully discriminate between the ”genuine”/”impostor” pairs.
This work served as basis for subsequent fusion-based ap-
proaches, as in [14]. In [6] a Restricted Boltzmann Machine
was used to learn a probabilistic distribution over the input
data, further discriminated with metric learning and SVMs.

With the effective application of Deep Learning solu-
tions, researchers turned to popular architectures (in par-
ticular Convolutional Neural Networks), to pursue ever in-
creasing recognition accuracy. Accordingly, in [23] the
main concept involves the use of multiple CNNs that are
specialised in classifying a particular kind of semantic in-
formation (e.g., gender or age). Then, a score fusion pro-
cess yields the final response. In [15], authors enforce a
CNN to ignore the ocular region (due to its likelihood to
contain specular reflections) and rely in the eye’s surround-
ing area (eyebrow, eyelid and skin). [18] created indepen-
dent representations of the iris and periocular regions, that
feed classification modules, whose scores are finally fused
to reach the decision. Using a multi-glance mechanism,
where part of the intermediate components are configured
to incorporate emphasis on the most important semantical
regions (i.e., eyebrow and eye), Zhao and Kumar [24] de-
veloped a recognition model that particularly focus these
regions, enabling the deep Convolutional Neural Network
(CNN) to learn additional discriminative features that im-
prove the recognition capability of the whole model. Re-
cently, [19] attempted to bridge the gap between biometric
recognition and interpretability, by learning feature specific
filters that respond to a range of preferred spatial locations.
[5] propose an integrated solution that leverages the discov-
ery of parts as a form of attention.

2.2. Machine Learning Explainability

In the literature, the existing explainable techniques are
commonly divided in terms of their depth, scope and model
applicability [8], [11]. Depth is related to the length to
which we explain a given model, i.e., whether the technique
limits the model’s complexity to make it more transparent
(intrinsic explainability) or allows complexity and focuses
on explaining exclusively the system outputs (post hoc ex-
plainability). Scope indicates the range that a technique
possesses, i.e., if it explains individual predictions (local)
or the model’s entire behaviour (global). Finally, applica-
bility divides the techniques based on their model affinity,
i.e., whether they are only compatible with a specific family
of models (model-specific) or any kind of model (model-
agnostic). The most commonly cited techniques include
LIME [20] and Shapley codes (SHAP) [9]. The former uses
a surrogate linear model, trained on perturbed data (e.g.,
disabled clusters of adjacent pixels), to locally approximate
the behaviour of a complex black-box model. The latter
uses game theory and Shapley values, which are assigned
to the features based on how important they are to a given
prediction. Additionally, Saliency Maps [22] use the deriva-
tive of a highly complex function (essentially, a CNN) with
respect to a given input image, to determine which pixels
need to be changed the least, while also changing the out-
put class the most. Finally, for visualisation purposes and,
therefore, outside the scope of this work, PDP [4] and ALE
[1] techniques are able to produce plots that correlate the
independent variables to a target variable, exploiting the no-
tions of marginal and conditional distributions, respectively.

3. Proposed Method
3.1. Learning Phase

The main components of the proposed method comprise
three well known models: the DenseNet-161, Mask R-CNN
and StyleGAN2. The first one (DenseNet-161) is trained to
solve an identity verification problem, while the segmenta-
tion model (Mask R-CNN) is fine-tuned to produce high-
quality masks for the iris and eyebrow. Finally, the GAN
model (StyleGAN2) learns how to create synthetic data that,
while closely resembling the distributions in the training set,
is diverse enough to approximate unseen subjects. Addi-
tionally, a fourth, auxiliary model (ResNet-18) is fitted to
discriminate between images from the left and right sides of
the face. Although trained separately, all the models learn
from the same training split, which excludes a set of disjoint
IDs that are reserved for performance evaluation purposes.

Regarding the model used in the verification task
(DenseNet-161), it should be stated that it has much more
parameters than the network used by Zhao and Kumar [23]
in their solution. This might be the fact that sustained
slightly better recognition performance of our model with
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respect to the baseline (Sec. 4.3), but also at the expense
of a substantial higher computational cost of classification
than the baseline, which might be impracticable in some
cases.

3.2. Inference Phase

Once trained, our method is conceptually divided into
five major steps, as depicted in Fig. 2. Firstly, the
DenseNet-161 model is used to verify the claimed identity:
upon receiving a pair of images, the model discriminates
between ”genuine”/”impostor” pairs. If the pair is deemed
to be ”impostor”, the remaining steps create a visually in-
terpretable explanation of that decision.

The second step takes the query pair and, using Mask
R-CNN, segments the irises and eyebrows regions. Next,
step three uses the StyleGAN2 generator to create a large,
synthetic set of exclusively ”genuine” pairs (i.e., where both
images belong to the same person). For each of these syn-
thetic pairs, the ResNet-18 model determines its side con-
figuration (i.e., whether images regard the left or right side
of the face) and, as before, masks are obtained by the seg-
mentation model.

After obtaining the synthetic data and their correspond-
ing masks, the synthetic dataset is indexed based on the co-
ordinates of the center of the iris, which will enable faster
search in the retrieval step. To that end, the clustering algo-
rithm K-Means is trained on a subset of the iris segmenta-
tion masks to obtain three centroids, one for each major iris
gaze family (i.e., left, centre and right). This way, we index
the available pairs based on their combination of iris posi-
tions (e.g., left-left, right-centre . . . ). By doing so, when
searching, we can just rely on the synthetic pairs that share
the same combination as the test pair, saving time and use-
less calculations.

Upon settling for a portion of the synthetic dataset that
closely meets the iris position constraint, the segmentation
masks are further used to determine which synthetic pairs
have the iris and eyebrow approximately overlapped to the
query. This is an important requirement to obtain visually
pleasant explanations, given that pixel-wise differences are
extremely sensitive to differences in phase (i.e., component
misalignment). Accordingly, we obtain a similarity score
sX between each synthetic neighbour and the query using:

sX = ωmasks ∗ ||query pairA − neighbourX||2, (1)

being ||.||2 the ` − 2 norm and ω. a weight that considers
component misalignment. This way, we obtain a weighted
distance between each synthetic neighbour and the first im-
age of the query pair. ωmasks values serve to favour pairs
that have good alignment, considering 1 − IoU(., .), i.e.,
the complement of the intersection-over-union of the syn-
thetic/query segmentation masks. In practice, we search
amongst the (large) thousands of synthetic pairs, the closest

to the query pair in terms of the first image. Therefore, given
that the second image of the query pair is from a different
subject, it will most likely have features that are different
to the synthetic neighbours, which are exactly the kind of
dissimilarities that make up the final explanations.

This way, the K closest neighbours are sorted accord-
ing to their element-wise distance to image B, using (2).
Finally, to produce the final explanation, the K best neigh-
bours are used to obtain the pixel-wise differences against
the query pair image B. In practice, a neighbour distance
is subtracted from the total sum of distances, creating an
inverted distance. This assures that the contribution of the
closest synthetic neighbours to the final result is more im-
portant than of those with bigger distances.

3.3. Implementation Details

The DenseNet-161 model was trained for 15 epochs with
a learning rate of 0.0002 and a batch size of 64 image pairs.
The Adam algorithm was used for the weight optimisation
process (with default β1 and β2 values). A similar training
setup was used to train the ResNet-18 model, albeit for a
smaller number of epochs (i.e., 5). For the Mask R-CNN’s
training process, we kept its default values, using a learn-
ing rate of 0.001, a batch size of 1 and 30 epochs worth
of training (in this case, fine-tuning from the COCO pre-
trained weights). Regarding the StyleGAN2 architecture,
the used training step comprised a total of 80000 iterations
and a batch size of 8. After converging, the generator is ca-
pable of synthesising realistic looking images, such as the
roughly 400000 pairs that make up the artificial dataset. Fi-
nally, for the number K, that determines how many syn-
thetic pairs should be kept, we used a default value of 15.

4. Experiments and Discussion
4.1. Datasets and Working Scenario

As mentioned above, the proposed framework is com-
posed of two modules: 1) one for recognition; and 2) the
other for explanation purposes. Regarding the former, the
chosen CNN is solely trained on the UBIPr dataset [13],
which provides the ID annotations used in the identity veri-
fication problem. Regarding the explanation step, it mainly
relies on a combination of UBIPr and FFHQ [7]. Despite
not being directly applicable to the context of this work (i.e.,
it contains full face images, thus requiring extra steps to
extract the periocular region), the FFHQ dataset contains a
large variety in terms of periocular attributes, some of which
are scarcer in the UBIPr dataset. In practice, a small, but
curated, portion of the FFHQ samples was used to create a
data super set. Regardless of their source, all images were
resized to a common shape, depending on the task (i.e.,
512x512x3 for Mask R-CNN, 256x256x3 for StyleGAN2
and 128x128x3 for the CNNs).
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As it is usual in the biometric recognition context, it is
important to define proper working modes and world set-
tings, for which the system is built. With respect to the
working mode, our model runs in verification mode (also
referred to as one-to-one), where the system validates a
claimed identity [16]. As for the world setting, we assume
an open-world setting, meaning that unseen subjects can be
faithfully handled in the inference step.

4.2. Explainability Evaluation

Our explainability chain starts by the train of a
DenseNet-121 model to perform the verification task.
This model can be further paired to either LIME, SHAP
or Saliency Maps to create comprehensive comparison
schemes, to which we add the method described in [5].
Fig. 4 provides several examples of the synthetic ”genuine”
images pairs generated from the GAN model. Apart their
obvious visual realism, it is important that this set contains
samples with the most likely known data covariates for the
periocular region: varying gazes, wide-opened/closed eyes,
varying poses, partial occlusions, and even varying facial
expressions. Failing in incorporating such diversity will de-
termine that the closets synthetic pairs of a query will still
be notoriously different from it, and that the visual repre-
sentations obtained will have poor realism.

Fig. 3 displays the expected results from a visually ex-
plainable system. In practice, LIME tries to keep the most
important super-pixels, SHAP highlights those it deems im-
portant in red tones and Saliency Maps produce greyscale
explanations. As for the method by Huang and Li, it gener-
ates a heat-map in which red tones elevate important areas.
Focusing on the common pairs between all methods, the
left sample is essentially different with regards to eyebrow
thickness and presence/absence of a noticeable skin spot.
As for the right one, the most obvious disparities have to do
with the eyebrow areas. Overall, our results are the most
informative, when compared with the remaining four solu-
tions. While LIME and SHAP do a decent job, Saliency
Maps provide a faint explanation. It is Huang and Li’s
method that comes closer to our level of visual appeal, by
clearly highlighting portions of the eyebrow and a portion
of subject A’s skin spot, in the left pair. Moreover, when
given the right sample, it generates a solid red area com-
prising subject B’s eyebrow. However, upon closer inspec-
tion, our results show more appealing visual cues: in the
left sample, distinct red tones on top of A’s skin spot and
eyelashes, as well as, reiterated eyebrow differences in the
right sample with highlights in both eyebrows, rather than
just one. As for the remaining samples, the third (just below
the first) is clearly explained by highlighting the entirety of
both skin areas, which are obviously different between im-
ages A and B. Finally, in the fourth pair it is also shown
how the eyelids differ, by colouring that periocular compo-

nent on subject B’s image, and, in the fifth sample, subjects
B’s eyebrow and iris are accurately shown in red.

When objectively measuring the differences between the
explanations provided by the proposed method and the
baselines (LIME, SHAP, Huang and Li (HL) and Saliency
Maps (SM)), we used a set of 10 heterogeneous test queries
and measured the pixel-wise explanation coefficients re-
turned by each technique, which correspond to the impor-
tance (weight) given by each method to a particular image
position for a decision. Next, considering that any mean-
ingful correlations between the responses of two methods
would have to be linear, we measured the Pearson’s linear
correlation between pairs of techniques:

rxy =

∑
i(xi − x̂)(yi − ŷ)√∑

i(xi − x̂)2
∑

i(yi − ŷ)2
, (2)

where xi/yi denote the ith scores provided by each tech-
nique and the .̂ symbol denotes the mean value. This way,
rxy measures the similarity between explanations provided
by the x and y techniques: values close to 0 will correspond
to more independent explanations, while values towards 1
will hint at semantic similarities between such explanations.

The results are provided in the confusion matrices shown
at Fig. 5, where the main diagonal provides the distribu-
tions of the scores generated by each technique and the
remaining cells provide the scatter plots between pairs of
techniques with the Pearson’s correlation value rxy given
at the top left corner of each cell (’SM’ stand for Saliency
Maps and ’HL’ denotes the Huang and Li solution)). All
these techniques report a local numeric value that corre-
sponds to the role/importance of each region in the final
decision. The exception is LIME, where the pixels are bi-
nary discriminated into ”visible”/”occluded’. In this case,
we considered that ”visible” will be equal to 1, while ’oc-
cluded” will be equal to 0. Overall, we observed that the
techniques provide relatively independent responses for the
importance given to each pixel in the final decision. In-
terestingly, in some cases, there are even negative corre-
lation values between two methods (e.g., HL and LIME
or SM and LIME). There are other pairs of solutions that
achieved almost full independence between their responses
(the Shapley/Ours methods), which points for completely
different strategies being used to define the explaining re-
gions/features. Still considering our method, its levels of
correlation were kept relatively low with respect to the re-
maining methodologies, achieving values of 0.24 with re-
spect to the method of Huang and Li (the most correlated),
and 0.1 for Saliency maps. Still, we concluded that the pro-
posed solution is extracting semantic information (e.g., fea-
tures and regions) of the vicinity of the human eye that is
evidently different of the kind of information emphasised
by any of the remaining methods, which supports the use-
fulness of the solution described in this paper.
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Figure 3. Examples of the results attained by three standard interpretability techniques (LIME, SHAP and Saliency Maps), a state-of-the-art
interpretable deep model for fine-grained visual recognition (i.e., [5]) and our method. Notice how our results are clearer in highlighting
the components that justify every non-match decision (e.g., skin texture and color, eyebrows/eyelashes size and distribution, irises color
and even skin spots).
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Figure 4. Examples of the synthetic image pairs in our dataset,
generated according to a GAN model. These elements are drawn
exclusively from the ’’genuine” distribution. Upon a query, the
most similar synthetic pairs with respect to the query are found,
which will provide the features/regions that would transform the
query into a ”genuine” comparison.

Figure 5. Pearson correlation values between the pixel-wise re-
sponses provided by the method proposed in this paper (Ours) and
four baselines techniques (LIME, SHAP, Huang and Li (HL) and
Saliency Maps (SM)).

4.3. Recognition Accuracy Evaluation

At first, note that we do not aim at providing a better
recognition framework than the state-of-the-art, in terms
of the recognition rates. Even though, our main pur-
pose in this section was to perceive if the proposed recog-
nition/explanation network is able to achieve competitive
recognition performance with respect to state-of-the-art im-
plementations.

We compare the recognition effectiveness of the pro-
posed method with respect to a well known periocular
recognition model (due to Zhao and Kumar [23], considered
to represent the state-of-the-art). Using the UBIRIs.v2 set
[12] and the learning/evaluation protocols described in [23],
we obtained the results summarised in Table 1. Also, we
provide ROC values of the proposed strategy, that can be
fairly combined with the similar ROC plot provided by the
original authors of the baseline in [24].

A bootstrapping-like strategy was used, by sampling
90% of the available data in UBIRIS.v2 and dividing the re-
sulting samples between two disjoint sets: 80% for training
and the remaining 20% for test. The models were trained
separately in each sample and the performance evaluated in
the corresponding test set, from where the EER and AUC
scores were obtained. This process was repeated 10 times,
to perceive the mean ± standard deviation values for both
metrics. Overall, results were satisfactory, particularly con-
sidering that - due to our modular design - the recognition
module of the proposed framework can be easily replaced
by any other, while keeping its explainability abilities.

Method EER AUC

Ours (open-world) 0.108± 3e−2 0.813± 5e−2

Ours (closed-world) 0.087± 2e−2 0.910± 2e−2

Zhao and Kumar [23] 0.109± 2e−3 −

Table 1. Comparison between the recognition rates attained by the
proposed method (in both world settings) and a state-of-the-art
method (strictly operating in an open-world setting). Results are
given for the same learning/test sets of the UBIRIS.v2 dataset.

For reference purposes, Fig. 6 provides the Receiver Op-
erating Characteristic (ROC) curve for our solution. When
comparing to the corresponding results reported by authors
in [23] in the same set, a close recognition summary per-
formance between both methods can be derived (as seen in
Table 1). Overall, we observed a similar performance be-
tween these techniques in this dataset, supporting the idea
that our solution is able to approach state-of-the-art recog-
nition rates.

Figure 6. Receiver Operating Characteristic (ROC) curve obtained
for the proposed method, using the UBIRIS.v2 set and a simi-
lar empirical protocol as Zhao and Kumar [23]. The ROC curve
equates to EER and AUC values of 0.108 and 0.813, respectively.
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Figure 7. Typical changes in the results when two key parameters
of the proposed method are varied. The red square indicates which
image is being explained (i.e., B), while the red dashed squares
provide the default values used. In general, increasing K up to 15
allows for smoother explanations, as does keeping a large dataset.
Reducing the latter tends to produce less sensitive results, substan-
tially decreasing the plausibility of the explanations generated.

4.4. Ablation Studies

For our ablation experiments, we identified two hyper-
parameters of our method that might play the most signif-
icant roles in the final effectiveness of the whole solution:
1) the number of neighbours retrieved (K) from the syn-
thetic set for every query and 2) the length of the synthetic
set itself. This section discusses how changes in these val-
ues affect the quality of the generated explanations in a less
than optimal way (as seen in Fig. 7).

4.4.1 Number of Neighbours

The value K determines how many synthetic pairs are con-
sidered with respect to a query. Overall, we observed that
smaller values lead to more sensitive and jagged results. Up
to a certain point (e.g., 15), increasing K typically enables
to obtain smoother explanations, due to the larger number
of samples taken into account when averaging the closest
neighbours. This trend, however, starts returning incremen-
tal improvements (notice in Fig. 7, where K >= 50 pro-
gressively stops presenting a prominent tone on the eyelid).

4.4.2 Length of the Synthetic Dataset

This is the most sensitive parameter of our solution. Consid-
ering that it is important to find ”genuine” pairs that closely
resemble a query, it is particularly sensitive to assure that all
typical periocular data variations are faithfully represented
in the synthetic set, assuring that the retrieved elements (i.e.,

the most similar) will have its major components (iris, eye-
brows and eyelids) aligned to the query itself. If this condi-
tion is not satisfied, the explanations loose their biological
plausibility and effectiveness. Fig. 7 illustrates how smaller
synthetic sets lead to less evident explanations, especially
around the eyelid and the eyebrow.

5. Conclusions and Further Work
This paper described an integrated framework, based in

well known deep-learning architectures, to simultaneously
perform periocular recognition and - most importantly - to
provide visual explanations of the regions/features that sus-
tained every non-match decision, which we consider to be
the cases where explanations are the most required. Accord-
ing to the powerful generative ability of GANs, we create a
very large set of synthetic pairs that follow the ”genuine
distribution”. At inference time, for every ”impostor” com-
parison we are able to perceive the regions and features that
failed the most (i.e., those that most evidently were differ-
ent from a subset of the ”genuine” synthetic pairs). This
enables to generate pleasant explanations, where each com-
ponent of the target region appears with a different colour
depending on how it influenced the final decision. Impor-
tantly, the modular nature of our method ensures that the
periocular region can be replaced by other biometric traits
(e.g., the face) without compromising the explanations.

As future work, we are developing a strategy for also
providing intuitive explanations of the ”genuine” observa-
tions, where the strategy has to be very different from the
idea behind the ”impostors” insight used in this paper.
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